Abstract

Energy transfer (ET) and heat generation processes in Yb3+/Ho3+-codoped low-silica calcium aluminosilicate glasses were investigated using thermal lens (TL) and photoluminescence measurements looking for the emission around 2.0 μm. Stepwise ET processes from Yb3+ to Ho3+, upon excitation at 0.976 μm, produced highly efficient emission in the mid-infrared range at around 2.0 μm, with high fluorescence quantum efficiency (η10.85 and independent of Ho3+ concentration) and relatively very low thermal loading (<0.4) for concentration up to 1.5% of Ho2O3. An equation was deduced for the description of the TL results that provided the absolute value of η1 and the number of emitted photons at 2.0 μm per absorbed pump photon by the Yb3+ ions, the latter reaching 60% for the highest Ho3+ concentration. These results suggest that the studied codoped system would be a promising candidate for the construction of photonic devices, especially for medical applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Jacinto, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, and M. L. Baesso, “Pump-power-controlled luminescence switching in Yb3+/Tm3+ codoped water-free low silica calcium aluminosilicate glasses,” Appl. Phys. Lett. 91, 071102 (2007).
    [CrossRef]
  2. H. Scheife, G. Huber, E. Heumann, S. Bar, and E. Osiac, “Advances in up-conversion lasers based on Er3+ and Pr3+,” Opt. Mater. 26, 365–374 (2004).
  3. H. Y. Peng, K. Zhang, L. H. Zhang, Y. Hang, J. Q. Xu, Y. L. Tang, Y. Cheng, J. Xiong, C. C. Zhao, G. Z. Chen, and X. M. He, “Spectroscopic properties of Tm, Ho: LiLuF4,” Chinese Opt. Lett. 8, 63–65 (2010).
    [CrossRef]
  4. D. C. Hanna, R. M. Percival, R. G. Smart, and A. C. Tropper, “Efficient and tunable operation of a Tm-doped fiber laser,” Opt. Commun. 75, 283–286 (1990).
    [CrossRef]
  5. J. X. Feng, X. T. Tian, Y. M. Li, and K. S. Zhang, “Generation of a squeezing vacuum at a telecommunication wavelength with periodically poled LiNbO(3),” Appl. Phys. Lett. 92, 221102 (2008).
    [CrossRef]
  6. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser-radar system at 2.1 μm using Tm, Ho-YAG lasers,” Opt. Lett. 16, 773–775 (1991).
    [CrossRef]
  7. D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
    [CrossRef]
  8. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
    [CrossRef]
  9. P. H. Ernest, “Cataract surgery after holmium: YAG laser thermal keratoplasty,” J. Cataract. Refract. Surg. 28, 1864–1868 (2002).
    [CrossRef]
  10. S. K. Doumouchtsis, F. Y. K. Lee, D. Bramwell, and M. M. Fynes, “Evaluation of holmium laser for managing mesh/suture complications of continence surgery,” BJU Int. 108, 1472–1478 (2011).
    [CrossRef]
  11. A. S. E. Fayad, “Retrograde holmium: YAG laser disintegration of stones in pelvic ectopic kidneys: does it minimize the risk of surgery?,” J. Endourol. 22, 919–922 (2008).
  12. B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19, 855–866 (2009).
    [CrossRef]
  13. T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Continuous-wave operation at 2.1 μm of a diode-laser-pumped, Tm-sensitized Ho-Y3Al5O12 laser at 300 K,” Opt. Lett. 12, 678–680 (1987).
    [CrossRef]
  14. B. H. Wand, R. F. Kotmel, M. Aita, and G. Samson, “Percutaneous myocardial revascularisation method for heart myocardium|irradiating inner wall of heart with laser energy emitted from distal end of laser to form channel extending from inner surface of myocardium,” in US Patent No. 5389096-A, (14February1995).
  15. R. Sroka, P. Janda, T. Killian, F. Vaz, C. S. Betz, and A. Leunig, “Comparison of long term results after Ho:YAG and diode laser treatment of hyperplastic inferior nasal turbinates,” Lasers Surg. Med. 39, 324–331 (2007).
    [CrossRef]
  16. P. Janda, R. Sroka, C. S. Betz, G. Grevers, and A. Leunig, “Ho:YAG and diode laser treatment of hyperplastic inferior nasal turbinates,” Laryngo-Rhino-Otologie 81, 484–490 (2002).
  17. A. Leunig, P. Janda, R. Sroka, R. Baumgartner, and G. Grevers, “Ho:YAG laser treatment of hyperplastic inferior nasal turbinates,” Laryngoscope 109, 1690–1695 (1999).
    [CrossRef]
  18. R. M. Kuntz, “Current role of lasers in the treatment of benign prostatic hyperplasia (BPH),” Eur. Urol. 49, 961–969 (2006).
  19. M. C. Pierce, S. D. Jackson, M. R. Dickinson, and T. A. King, “Laser-tissue interaction with a high-power 2 μm fiber laser: preliminary studies with soft tissue,” Lasers Surg. Med. 25, 407–413 (1999).
    [CrossRef]
  20. T. Rothacher, W. Luthy, and H. P. Weber, “Diode pumping and laser properties of Yb:Ho:YAG,” Opt. Commun. 155, 68–72 (1998).
    [CrossRef]
  21. A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
    [CrossRef]
  22. F. G. Yang, F. P. Yan, Z. Y. You, C. Y. Tu, C. L. Sun, Y. Wang, Z. J. Zhu, and J. F. Li, “End-pumping Tm, Ho, Ce:NaY(WO4)(2) crystal laser at 2.07 μm and the up-conversion repressed,” Laser Phys. Lett. 7, 867–869 (2010).
    [CrossRef]
  23. J. F. Wu, Z. D. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. R. Yu, “Single frequency fiber laser at 2.05 μm based on Ho-doped germanate glass fiber,” in Proc. SPIE 7195, 71951K (2009).
    [CrossRef]
  24. C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100, 113103 (2006).
    [CrossRef]
  25. M. O. Ramirez, D. Jaque, and L. E. Bausa, “Intracavity thermal loading measurements and evaluation of the intrinsic fluorescence quantum efficiency in Yb3+:LiNbO3:MgO lasers,” Appl. Phys. Lett. 89, 091122 (2006).
    [CrossRef]
  26. Y. Guyot, A. Steimacher, M. P. Belancon, A. N. Medina, M. L. Baesso, S. M. Lima, L. H. C. Andrade, A. Brenier, A. M. Jurdyc, and G. Boulon, “Spectroscopic properties, concentration quenching, and laser investigations of Yb3+-doped calcium aluminosilicate glasses,” J. Opt. Soc. Am. B 28, 2510–2517 (2011).
    [CrossRef]
  27. Z. G. Zang and Y. J. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt. 51, 3424–3430 (2012).
    [CrossRef]
  28. Z. G. Zang and Y. J. Zhang, “Low-switching power (<45  mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59, 161–165 (2012).
    [CrossRef]
  29. C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: thermal and optical properties of laser glasses—a review,” J. Non-Cryst. Solids 352, 3582–3597 (2006).
    [CrossRef]
  30. C. Jacinto, M. V. D. Vermelho, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, A. C. Bento, T. Catunda, and M. L. Baesso, “Thermal lens study of energy transfer in Yb3+/Tm3+-codoped glasses,” Opt. Express 15, 9232–9238 (2007).
    [CrossRef]
  31. D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses,” Appl. Phys. Lett. 74, 908–910 (1999).
    [CrossRef]
  32. D. F. De Sousa, L. A. O. Nunes, J. H. Rohling, and M. L. Baesso, “Laser emission at 1077 nm in Nd3+-doped calcium aluminosilicate glass,” Appl. Phys. B 77, 59–63 (2003).
    [CrossRef]
  33. L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100, 027402 (2008).
  34. C. Jacinto, M. T. de Araujo, E. A. Gouveia, and A. S. Gouveia-Neto, “Fourfold output power enhancement and threshold reduction through thermal effects in an Er3+/Yb3+-codoped optical fiber laser excited at 1.064 μm,” Opt. Lett. 24, 1287–1289 (1999).
    [CrossRef]
  35. W. F. Silva, G. S. N. Eliel, P. V. dos Santos, M. T. de Araujo, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Color tunability with temperature and pump intensity in Yb3+/Tm3+ codoped aluminosilicate glass under anti-Stokes excitation,” J. Chem. Phys. 133, 034507 (2010).
    [CrossRef]
  36. C. Jacinto, M. T. de Araujo, E. A. Gouveia, and A. S. Gouveia-Neto, “Thermal effect on multiphonon-assisted anti-Stokes excited upconversion fluorescence emission in Yb3+-sensitized Er3+-doped optical fiber,” Appl. Phys. B 70, 185–188 (2000).
  37. D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodriguez, J. A. Capobianco, F. Vetrone, A. Juarranz de la Fuente, F. Sanz-Rodriguez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha, and J. Garcia Sole, “Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
    [CrossRef]
  38. L. S. Herculano, N. G. C. Astrath, L. C. Malacarne, J. H. Rohling, S. T. Tanimoto, and M. L. Baesso, “Laser-induced chemical reaction characterization in photosensitive aqueous solutions,” J. Phys. Chem. B 115, 9417–9420 (2011).
    [CrossRef]
  39. L. C. Malacarne, N. G. C. Astrath, A. N. Medina, L. S. Herculano, M. L. Baesso, P. R. B. Pedreira, J. Shen, Q. Wen, K. H. Michaelian, and C. Fairbridge, “Soret effect and photochemical reaction in liquids with laser-induced local heating,” Opt. Express 19, 4047–4058 (2011).
    [CrossRef]
  40. N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Q. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, A. N. Medina, and M. L. Baesso, “Thermal-lens study of photochemical reaction kinetics,” Opt. Lett. 34, 3460–3462 (2009).
    [CrossRef]
  41. J. A. Sampaio, S. Gama, M. L. Baesso, and T. Catunda, “Fluorescence quantum efficiency of Er3+ in low silica calcium aluminate glasses determined by mode-mismatched thermal lens spectrometry,” J. Non-Cryst. Solids 351, 1594–1602 (2005).
    [CrossRef]
  42. D. N. Messias, C. Jacinto, M. J. V. Bell, and T. Catunda, “Thermal and optical properties of Yb3+- and Nd3+-doped phosphate glasses determined by thermal lens technique,” IEEE J. Quantum Electron. 43, 751–757 (2007).
    [CrossRef]
  43. C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Thermal lens study of the OH- influence on the fluorescence efficiency of Yb3+-doped phosphate glasses,” Appl. Phys. Lett. 86, 071911 (2005).
    [CrossRef]
  44. J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
    [CrossRef]

2013 (1)

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodriguez, J. A. Capobianco, F. Vetrone, A. Juarranz de la Fuente, F. Sanz-Rodriguez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha, and J. Garcia Sole, “Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[CrossRef]

2012 (2)

Z. G. Zang and Y. J. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt. 51, 3424–3430 (2012).
[CrossRef]

Z. G. Zang and Y. J. Zhang, “Low-switching power (<45  mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59, 161–165 (2012).
[CrossRef]

2011 (4)

Y. Guyot, A. Steimacher, M. P. Belancon, A. N. Medina, M. L. Baesso, S. M. Lima, L. H. C. Andrade, A. Brenier, A. M. Jurdyc, and G. Boulon, “Spectroscopic properties, concentration quenching, and laser investigations of Yb3+-doped calcium aluminosilicate glasses,” J. Opt. Soc. Am. B 28, 2510–2517 (2011).
[CrossRef]

L. S. Herculano, N. G. C. Astrath, L. C. Malacarne, J. H. Rohling, S. T. Tanimoto, and M. L. Baesso, “Laser-induced chemical reaction characterization in photosensitive aqueous solutions,” J. Phys. Chem. B 115, 9417–9420 (2011).
[CrossRef]

L. C. Malacarne, N. G. C. Astrath, A. N. Medina, L. S. Herculano, M. L. Baesso, P. R. B. Pedreira, J. Shen, Q. Wen, K. H. Michaelian, and C. Fairbridge, “Soret effect and photochemical reaction in liquids with laser-induced local heating,” Opt. Express 19, 4047–4058 (2011).
[CrossRef]

S. K. Doumouchtsis, F. Y. K. Lee, D. Bramwell, and M. M. Fynes, “Evaluation of holmium laser for managing mesh/suture complications of continence surgery,” BJU Int. 108, 1472–1478 (2011).
[CrossRef]

2010 (3)

H. Y. Peng, K. Zhang, L. H. Zhang, Y. Hang, J. Q. Xu, Y. L. Tang, Y. Cheng, J. Xiong, C. C. Zhao, G. Z. Chen, and X. M. He, “Spectroscopic properties of Tm, Ho: LiLuF4,” Chinese Opt. Lett. 8, 63–65 (2010).
[CrossRef]

F. G. Yang, F. P. Yan, Z. Y. You, C. Y. Tu, C. L. Sun, Y. Wang, Z. J. Zhu, and J. F. Li, “End-pumping Tm, Ho, Ce:NaY(WO4)(2) crystal laser at 2.07 μm and the up-conversion repressed,” Laser Phys. Lett. 7, 867–869 (2010).
[CrossRef]

W. F. Silva, G. S. N. Eliel, P. V. dos Santos, M. T. de Araujo, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Color tunability with temperature and pump intensity in Yb3+/Tm3+ codoped aluminosilicate glass under anti-Stokes excitation,” J. Chem. Phys. 133, 034507 (2010).
[CrossRef]

2009 (3)

J. F. Wu, Z. D. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. R. Yu, “Single frequency fiber laser at 2.05 μm based on Ho-doped germanate glass fiber,” in Proc. SPIE 7195, 71951K (2009).
[CrossRef]

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Q. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, A. N. Medina, and M. L. Baesso, “Thermal-lens study of photochemical reaction kinetics,” Opt. Lett. 34, 3460–3462 (2009).
[CrossRef]

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19, 855–866 (2009).
[CrossRef]

2008 (3)

A. S. E. Fayad, “Retrograde holmium: YAG laser disintegration of stones in pelvic ectopic kidneys: does it minimize the risk of surgery?,” J. Endourol. 22, 919–922 (2008).

J. X. Feng, X. T. Tian, Y. M. Li, and K. S. Zhang, “Generation of a squeezing vacuum at a telecommunication wavelength with periodically poled LiNbO(3),” Appl. Phys. Lett. 92, 221102 (2008).
[CrossRef]

L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100, 027402 (2008).

2007 (5)

C. Jacinto, M. V. D. Vermelho, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, A. C. Bento, T. Catunda, and M. L. Baesso, “Thermal lens study of energy transfer in Yb3+/Tm3+-codoped glasses,” Opt. Express 15, 9232–9238 (2007).
[CrossRef]

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[CrossRef]

C. Jacinto, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, and M. L. Baesso, “Pump-power-controlled luminescence switching in Yb3+/Tm3+ codoped water-free low silica calcium aluminosilicate glasses,” Appl. Phys. Lett. 91, 071102 (2007).
[CrossRef]

R. Sroka, P. Janda, T. Killian, F. Vaz, C. S. Betz, and A. Leunig, “Comparison of long term results after Ho:YAG and diode laser treatment of hyperplastic inferior nasal turbinates,” Lasers Surg. Med. 39, 324–331 (2007).
[CrossRef]

D. N. Messias, C. Jacinto, M. J. V. Bell, and T. Catunda, “Thermal and optical properties of Yb3+- and Nd3+-doped phosphate glasses determined by thermal lens technique,” IEEE J. Quantum Electron. 43, 751–757 (2007).
[CrossRef]

2006 (4)

R. M. Kuntz, “Current role of lasers in the treatment of benign prostatic hyperplasia (BPH),” Eur. Urol. 49, 961–969 (2006).

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: thermal and optical properties of laser glasses—a review,” J. Non-Cryst. Solids 352, 3582–3597 (2006).
[CrossRef]

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100, 113103 (2006).
[CrossRef]

M. O. Ramirez, D. Jaque, and L. E. Bausa, “Intracavity thermal loading measurements and evaluation of the intrinsic fluorescence quantum efficiency in Yb3+:LiNbO3:MgO lasers,” Appl. Phys. Lett. 89, 091122 (2006).
[CrossRef]

2005 (2)

J. A. Sampaio, S. Gama, M. L. Baesso, and T. Catunda, “Fluorescence quantum efficiency of Er3+ in low silica calcium aluminate glasses determined by mode-mismatched thermal lens spectrometry,” J. Non-Cryst. Solids 351, 1594–1602 (2005).
[CrossRef]

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Thermal lens study of the OH- influence on the fluorescence efficiency of Yb3+-doped phosphate glasses,” Appl. Phys. Lett. 86, 071911 (2005).
[CrossRef]

2004 (1)

H. Scheife, G. Huber, E. Heumann, S. Bar, and E. Osiac, “Advances in up-conversion lasers based on Er3+ and Pr3+,” Opt. Mater. 26, 365–374 (2004).

2003 (1)

D. F. De Sousa, L. A. O. Nunes, J. H. Rohling, and M. L. Baesso, “Laser emission at 1077 nm in Nd3+-doped calcium aluminosilicate glass,” Appl. Phys. B 77, 59–63 (2003).
[CrossRef]

2002 (4)

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
[CrossRef]

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[CrossRef]

P. H. Ernest, “Cataract surgery after holmium: YAG laser thermal keratoplasty,” J. Cataract. Refract. Surg. 28, 1864–1868 (2002).
[CrossRef]

P. Janda, R. Sroka, C. S. Betz, G. Grevers, and A. Leunig, “Ho:YAG and diode laser treatment of hyperplastic inferior nasal turbinates,” Laryngo-Rhino-Otologie 81, 484–490 (2002).

2000 (1)

C. Jacinto, M. T. de Araujo, E. A. Gouveia, and A. S. Gouveia-Neto, “Thermal effect on multiphonon-assisted anti-Stokes excited upconversion fluorescence emission in Yb3+-sensitized Er3+-doped optical fiber,” Appl. Phys. B 70, 185–188 (2000).

1999 (4)

A. Leunig, P. Janda, R. Sroka, R. Baumgartner, and G. Grevers, “Ho:YAG laser treatment of hyperplastic inferior nasal turbinates,” Laryngoscope 109, 1690–1695 (1999).
[CrossRef]

M. C. Pierce, S. D. Jackson, M. R. Dickinson, and T. A. King, “Laser-tissue interaction with a high-power 2 μm fiber laser: preliminary studies with soft tissue,” Lasers Surg. Med. 25, 407–413 (1999).
[CrossRef]

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses,” Appl. Phys. Lett. 74, 908–910 (1999).
[CrossRef]

C. Jacinto, M. T. de Araujo, E. A. Gouveia, and A. S. Gouveia-Neto, “Fourfold output power enhancement and threshold reduction through thermal effects in an Er3+/Yb3+-codoped optical fiber laser excited at 1.064 μm,” Opt. Lett. 24, 1287–1289 (1999).
[CrossRef]

1998 (1)

T. Rothacher, W. Luthy, and H. P. Weber, “Diode pumping and laser properties of Yb:Ho:YAG,” Opt. Commun. 155, 68–72 (1998).
[CrossRef]

1992 (1)

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
[CrossRef]

1991 (1)

1990 (1)

D. C. Hanna, R. M. Percival, R. G. Smart, and A. C. Tropper, “Efficient and tunable operation of a Tm-doped fiber laser,” Opt. Commun. 75, 283–286 (1990).
[CrossRef]

1987 (1)

Aita, M.

B. H. Wand, R. F. Kotmel, M. Aita, and G. Samson, “Percutaneous myocardial revascularisation method for heart myocardium|irradiating inner wall of heart with laser energy emitted from distal end of laser to form channel extending from inner surface of myocardium,” in US Patent No. 5389096-A, (14February1995).

Andrade, A. A.

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: thermal and optical properties of laser glasses—a review,” J. Non-Cryst. Solids 352, 3582–3597 (2006).
[CrossRef]

Andrade, L. H. C.

Y. Guyot, A. Steimacher, M. P. Belancon, A. N. Medina, M. L. Baesso, S. M. Lima, L. H. C. Andrade, A. Brenier, A. M. Jurdyc, and G. Boulon, “Spectroscopic properties, concentration quenching, and laser investigations of Yb3+-doped calcium aluminosilicate glasses,” J. Opt. Soc. Am. B 28, 2510–2517 (2011).
[CrossRef]

L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100, 027402 (2008).

Astrath, F. B. G.

Astrath, N. G. C.

L. C. Malacarne, N. G. C. Astrath, A. N. Medina, L. S. Herculano, M. L. Baesso, P. R. B. Pedreira, J. Shen, Q. Wen, K. H. Michaelian, and C. Fairbridge, “Soret effect and photochemical reaction in liquids with laser-induced local heating,” Opt. Express 19, 4047–4058 (2011).
[CrossRef]

L. S. Herculano, N. G. C. Astrath, L. C. Malacarne, J. H. Rohling, S. T. Tanimoto, and M. L. Baesso, “Laser-induced chemical reaction characterization in photosensitive aqueous solutions,” J. Phys. Chem. B 115, 9417–9420 (2011).
[CrossRef]

W. F. Silva, G. S. N. Eliel, P. V. dos Santos, M. T. de Araujo, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Color tunability with temperature and pump intensity in Yb3+/Tm3+ codoped aluminosilicate glass under anti-Stokes excitation,” J. Chem. Phys. 133, 034507 (2010).
[CrossRef]

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Q. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, A. N. Medina, and M. L. Baesso, “Thermal-lens study of photochemical reaction kinetics,” Opt. Lett. 34, 3460–3462 (2009).
[CrossRef]

L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100, 027402 (2008).

C. Jacinto, M. V. D. Vermelho, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, A. C. Bento, T. Catunda, and M. L. Baesso, “Thermal lens study of energy transfer in Yb3+/Tm3+-codoped glasses,” Opt. Express 15, 9232–9238 (2007).
[CrossRef]

C. Jacinto, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, and M. L. Baesso, “Pump-power-controlled luminescence switching in Yb3+/Tm3+ codoped water-free low silica calcium aluminosilicate glasses,” Appl. Phys. Lett. 91, 071102 (2007).
[CrossRef]

Baesso, M. L.

Y. Guyot, A. Steimacher, M. P. Belancon, A. N. Medina, M. L. Baesso, S. M. Lima, L. H. C. Andrade, A. Brenier, A. M. Jurdyc, and G. Boulon, “Spectroscopic properties, concentration quenching, and laser investigations of Yb3+-doped calcium aluminosilicate glasses,” J. Opt. Soc. Am. B 28, 2510–2517 (2011).
[CrossRef]

L. S. Herculano, N. G. C. Astrath, L. C. Malacarne, J. H. Rohling, S. T. Tanimoto, and M. L. Baesso, “Laser-induced chemical reaction characterization in photosensitive aqueous solutions,” J. Phys. Chem. B 115, 9417–9420 (2011).
[CrossRef]

L. C. Malacarne, N. G. C. Astrath, A. N. Medina, L. S. Herculano, M. L. Baesso, P. R. B. Pedreira, J. Shen, Q. Wen, K. H. Michaelian, and C. Fairbridge, “Soret effect and photochemical reaction in liquids with laser-induced local heating,” Opt. Express 19, 4047–4058 (2011).
[CrossRef]

W. F. Silva, G. S. N. Eliel, P. V. dos Santos, M. T. de Araujo, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Color tunability with temperature and pump intensity in Yb3+/Tm3+ codoped aluminosilicate glass under anti-Stokes excitation,” J. Chem. Phys. 133, 034507 (2010).
[CrossRef]

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Q. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, A. N. Medina, and M. L. Baesso, “Thermal-lens study of photochemical reaction kinetics,” Opt. Lett. 34, 3460–3462 (2009).
[CrossRef]

L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100, 027402 (2008).

C. Jacinto, M. V. D. Vermelho, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, A. C. Bento, T. Catunda, and M. L. Baesso, “Thermal lens study of energy transfer in Yb3+/Tm3+-codoped glasses,” Opt. Express 15, 9232–9238 (2007).
[CrossRef]

C. Jacinto, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, and M. L. Baesso, “Pump-power-controlled luminescence switching in Yb3+/Tm3+ codoped water-free low silica calcium aluminosilicate glasses,” Appl. Phys. Lett. 91, 071102 (2007).
[CrossRef]

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: thermal and optical properties of laser glasses—a review,” J. Non-Cryst. Solids 352, 3582–3597 (2006).
[CrossRef]

J. A. Sampaio, S. Gama, M. L. Baesso, and T. Catunda, “Fluorescence quantum efficiency of Er3+ in low silica calcium aluminate glasses determined by mode-mismatched thermal lens spectrometry,” J. Non-Cryst. Solids 351, 1594–1602 (2005).
[CrossRef]

D. F. De Sousa, L. A. O. Nunes, J. H. Rohling, and M. L. Baesso, “Laser emission at 1077 nm in Nd3+-doped calcium aluminosilicate glass,” Appl. Phys. B 77, 59–63 (2003).
[CrossRef]

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses,” Appl. Phys. Lett. 74, 908–910 (1999).
[CrossRef]

Bar, S.

H. Scheife, G. Huber, E. Heumann, S. Bar, and E. Osiac, “Advances in up-conversion lasers based on Er3+ and Pr3+,” Opt. Mater. 26, 365–374 (2004).

Baumgartner, R.

A. Leunig, P. Janda, R. Sroka, R. Baumgartner, and G. Grevers, “Ho:YAG laser treatment of hyperplastic inferior nasal turbinates,” Laryngoscope 109, 1690–1695 (1999).
[CrossRef]

Bausa, L. E.

M. O. Ramirez, D. Jaque, and L. E. Bausa, “Intracavity thermal loading measurements and evaluation of the intrinsic fluorescence quantum efficiency in Yb3+:LiNbO3:MgO lasers,” Appl. Phys. Lett. 89, 091122 (2006).
[CrossRef]

Belancon, M. P.

Bell, M. J. V.

D. N. Messias, C. Jacinto, M. J. V. Bell, and T. Catunda, “Thermal and optical properties of Yb3+- and Nd3+-doped phosphate glasses determined by thermal lens technique,” IEEE J. Quantum Electron. 43, 751–757 (2007).
[CrossRef]

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100, 113103 (2006).
[CrossRef]

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Thermal lens study of the OH- influence on the fluorescence efficiency of Yb3+-doped phosphate glasses,” Appl. Phys. Lett. 86, 071911 (2005).
[CrossRef]

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses,” Appl. Phys. Lett. 74, 908–910 (1999).
[CrossRef]

Bento, A. C.

L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100, 027402 (2008).

C. Jacinto, M. V. D. Vermelho, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, A. C. Bento, T. Catunda, and M. L. Baesso, “Thermal lens study of energy transfer in Yb3+/Tm3+-codoped glasses,” Opt. Express 15, 9232–9238 (2007).
[CrossRef]

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses,” Appl. Phys. Lett. 74, 908–910 (1999).
[CrossRef]

Betz, C. S.

R. Sroka, P. Janda, T. Killian, F. Vaz, C. S. Betz, and A. Leunig, “Comparison of long term results after Ho:YAG and diode laser treatment of hyperplastic inferior nasal turbinates,” Lasers Surg. Med. 39, 324–331 (2007).
[CrossRef]

P. Janda, R. Sroka, C. S. Betz, G. Grevers, and A. Leunig, “Ho:YAG and diode laser treatment of hyperplastic inferior nasal turbinates,” Laryngo-Rhino-Otologie 81, 484–490 (2002).

Boulon, G.

Y. Guyot, A. Steimacher, M. P. Belancon, A. N. Medina, M. L. Baesso, S. M. Lima, L. H. C. Andrade, A. Brenier, A. M. Jurdyc, and G. Boulon, “Spectroscopic properties, concentration quenching, and laser investigations of Yb3+-doped calcium aluminosilicate glasses,” J. Opt. Soc. Am. B 28, 2510–2517 (2011).
[CrossRef]

L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100, 027402 (2008).

Bramwell, D.

S. K. Doumouchtsis, F. Y. K. Lee, D. Bramwell, and M. M. Fynes, “Evaluation of holmium laser for managing mesh/suture complications of continence surgery,” BJU Int. 108, 1472–1478 (2011).
[CrossRef]

Brenier, A.

Byer, R. L.

Capobianco, J. A.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodriguez, J. A. Capobianco, F. Vetrone, A. Juarranz de la Fuente, F. Sanz-Rodriguez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha, and J. Garcia Sole, “Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[CrossRef]

Catunda, T.

D. N. Messias, C. Jacinto, M. J. V. Bell, and T. Catunda, “Thermal and optical properties of Yb3+- and Nd3+-doped phosphate glasses determined by thermal lens technique,” IEEE J. Quantum Electron. 43, 751–757 (2007).
[CrossRef]

C. Jacinto, M. V. D. Vermelho, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, A. C. Bento, T. Catunda, and M. L. Baesso, “Thermal lens study of energy transfer in Yb3+/Tm3+-codoped glasses,” Opt. Express 15, 9232–9238 (2007).
[CrossRef]

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: thermal and optical properties of laser glasses—a review,” J. Non-Cryst. Solids 352, 3582–3597 (2006).
[CrossRef]

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100, 113103 (2006).
[CrossRef]

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Thermal lens study of the OH- influence on the fluorescence efficiency of Yb3+-doped phosphate glasses,” Appl. Phys. Lett. 86, 071911 (2005).
[CrossRef]

J. A. Sampaio, S. Gama, M. L. Baesso, and T. Catunda, “Fluorescence quantum efficiency of Er3+ in low silica calcium aluminate glasses determined by mode-mismatched thermal lens spectrometry,” J. Non-Cryst. Solids 351, 1594–1602 (2005).
[CrossRef]

Chavez-Pirson, A.

J. F. Wu, Z. D. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. R. Yu, “Single frequency fiber laser at 2.05 μm based on Ho-doped germanate glass fiber,” in Proc. SPIE 7195, 71951K (2009).
[CrossRef]

Chen, G. Z.

H. Y. Peng, K. Zhang, L. H. Zhang, Y. Hang, J. Q. Xu, Y. L. Tang, Y. Cheng, J. Xiong, C. C. Zhao, G. Z. Chen, and X. M. He, “Spectroscopic properties of Tm, Ho: LiLuF4,” Chinese Opt. Lett. 8, 63–65 (2010).
[CrossRef]

Cheng, Y.

H. Y. Peng, K. Zhang, L. H. Zhang, Y. Hang, J. Q. Xu, Y. L. Tang, Y. Cheng, J. Xiong, C. C. Zhao, G. Z. Chen, and X. M. He, “Spectroscopic properties of Tm, Ho: LiLuF4,” Chinese Opt. Lett. 8, 63–65 (2010).
[CrossRef]

de Araujo, M. T.

W. F. Silva, G. S. N. Eliel, P. V. dos Santos, M. T. de Araujo, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Color tunability with temperature and pump intensity in Yb3+/Tm3+ codoped aluminosilicate glass under anti-Stokes excitation,” J. Chem. Phys. 133, 034507 (2010).
[CrossRef]

C. Jacinto, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, and M. L. Baesso, “Pump-power-controlled luminescence switching in Yb3+/Tm3+ codoped water-free low silica calcium aluminosilicate glasses,” Appl. Phys. Lett. 91, 071102 (2007).
[CrossRef]

C. Jacinto, M. V. D. Vermelho, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, A. C. Bento, T. Catunda, and M. L. Baesso, “Thermal lens study of energy transfer in Yb3+/Tm3+-codoped glasses,” Opt. Express 15, 9232–9238 (2007).
[CrossRef]

C. Jacinto, M. T. de Araujo, E. A. Gouveia, and A. S. Gouveia-Neto, “Thermal effect on multiphonon-assisted anti-Stokes excited upconversion fluorescence emission in Yb3+-sensitized Er3+-doped optical fiber,” Appl. Phys. B 70, 185–188 (2000).

C. Jacinto, M. T. de Araujo, E. A. Gouveia, and A. S. Gouveia-Neto, “Fourfold output power enhancement and threshold reduction through thermal effects in an Er3+/Yb3+-codoped optical fiber laser excited at 1.064 μm,” Opt. Lett. 24, 1287–1289 (1999).
[CrossRef]

De Sousa, D. F.

D. F. De Sousa, L. A. O. Nunes, J. H. Rohling, and M. L. Baesso, “Laser emission at 1077 nm in Nd3+-doped calcium aluminosilicate glass,” Appl. Phys. B 77, 59–63 (2003).
[CrossRef]

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses,” Appl. Phys. Lett. 74, 908–910 (1999).
[CrossRef]

Dickinson, M. R.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, and T. A. King, “Laser-tissue interaction with a high-power 2 μm fiber laser: preliminary studies with soft tissue,” Lasers Surg. Med. 25, 407–413 (1999).
[CrossRef]

dos Santos, P. V.

W. F. Silva, G. S. N. Eliel, P. V. dos Santos, M. T. de Araujo, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Color tunability with temperature and pump intensity in Yb3+/Tm3+ codoped aluminosilicate glass under anti-Stokes excitation,” J. Chem. Phys. 133, 034507 (2010).
[CrossRef]

Doumouchtsis, S. K.

S. K. Doumouchtsis, F. Y. K. Lee, D. Bramwell, and M. M. Fynes, “Evaluation of holmium laser for managing mesh/suture complications of continence surgery,” BJU Int. 108, 1472–1478 (2011).
[CrossRef]

Eliel, G. S. N.

W. F. Silva, G. S. N. Eliel, P. V. dos Santos, M. T. de Araujo, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Color tunability with temperature and pump intensity in Yb3+/Tm3+ codoped aluminosilicate glass under anti-Stokes excitation,” J. Chem. Phys. 133, 034507 (2010).
[CrossRef]

Ernest, P. H.

P. H. Ernest, “Cataract surgery after holmium: YAG laser thermal keratoplasty,” J. Cataract. Refract. Surg. 28, 1864–1868 (2002).
[CrossRef]

Escudero, E.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodriguez, J. A. Capobianco, F. Vetrone, A. Juarranz de la Fuente, F. Sanz-Rodriguez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha, and J. Garcia Sole, “Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[CrossRef]

Fairbridge, C.

Fan, T. Y.

Fayad, A. S. E.

A. S. E. Fayad, “Retrograde holmium: YAG laser disintegration of stones in pelvic ectopic kidneys: does it minimize the risk of surgery?,” J. Endourol. 22, 919–922 (2008).

Feng, J. X.

J. X. Feng, X. T. Tian, Y. M. Li, and K. S. Zhang, “Generation of a squeezing vacuum at a telecommunication wavelength with periodically poled LiNbO(3),” Appl. Phys. Lett. 92, 221102 (2008).
[CrossRef]

Fynes, M. M.

S. K. Doumouchtsis, F. Y. K. Lee, D. Bramwell, and M. M. Fynes, “Evaluation of holmium laser for managing mesh/suture complications of continence surgery,” BJU Int. 108, 1472–1478 (2011).
[CrossRef]

Gama, S.

J. A. Sampaio, S. Gama, M. L. Baesso, and T. Catunda, “Fluorescence quantum efficiency of Er3+ in low silica calcium aluminate glasses determined by mode-mismatched thermal lens spectrometry,” J. Non-Cryst. Solids 351, 1594–1602 (2005).
[CrossRef]

Garcia Sole, J.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodriguez, J. A. Capobianco, F. Vetrone, A. Juarranz de la Fuente, F. Sanz-Rodriguez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha, and J. Garcia Sole, “Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[CrossRef]

Gomes, L.

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[CrossRef]

Gouveia, E. A.

C. Jacinto, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, and M. L. Baesso, “Pump-power-controlled luminescence switching in Yb3+/Tm3+ codoped water-free low silica calcium aluminosilicate glasses,” Appl. Phys. Lett. 91, 071102 (2007).
[CrossRef]

C. Jacinto, M. T. de Araujo, E. A. Gouveia, and A. S. Gouveia-Neto, “Thermal effect on multiphonon-assisted anti-Stokes excited upconversion fluorescence emission in Yb3+-sensitized Er3+-doped optical fiber,” Appl. Phys. B 70, 185–188 (2000).

C. Jacinto, M. T. de Araujo, E. A. Gouveia, and A. S. Gouveia-Neto, “Fourfold output power enhancement and threshold reduction through thermal effects in an Er3+/Yb3+-codoped optical fiber laser excited at 1.064 μm,” Opt. Lett. 24, 1287–1289 (1999).
[CrossRef]

Gouveia-Neto, A. S.

C. Jacinto, M. T. de Araujo, E. A. Gouveia, and A. S. Gouveia-Neto, “Thermal effect on multiphonon-assisted anti-Stokes excited upconversion fluorescence emission in Yb3+-sensitized Er3+-doped optical fiber,” Appl. Phys. B 70, 185–188 (2000).

C. Jacinto, M. T. de Araujo, E. A. Gouveia, and A. S. Gouveia-Neto, “Fourfold output power enhancement and threshold reduction through thermal effects in an Er3+/Yb3+-codoped optical fiber laser excited at 1.064 μm,” Opt. Lett. 24, 1287–1289 (1999).
[CrossRef]

Grevers, G.

P. Janda, R. Sroka, C. S. Betz, G. Grevers, and A. Leunig, “Ho:YAG and diode laser treatment of hyperplastic inferior nasal turbinates,” Laryngo-Rhino-Otologie 81, 484–490 (2002).

A. Leunig, P. Janda, R. Sroka, R. Baumgartner, and G. Grevers, “Ho:YAG laser treatment of hyperplastic inferior nasal turbinates,” Laryngoscope 109, 1690–1695 (1999).
[CrossRef]

Guyot, Y.

Y. Guyot, A. Steimacher, M. P. Belancon, A. N. Medina, M. L. Baesso, S. M. Lima, L. H. C. Andrade, A. Brenier, A. M. Jurdyc, and G. Boulon, “Spectroscopic properties, concentration quenching, and laser investigations of Yb3+-doped calcium aluminosilicate glasses,” J. Opt. Soc. Am. B 28, 2510–2517 (2011).
[CrossRef]

L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100, 027402 (2008).

Hale, C. P.

Hang, Y.

H. Y. Peng, K. Zhang, L. H. Zhang, Y. Hang, J. Q. Xu, Y. L. Tang, Y. Cheng, J. Xiong, C. C. Zhao, G. Z. Chen, and X. M. He, “Spectroscopic properties of Tm, Ho: LiLuF4,” Chinese Opt. Lett. 8, 63–65 (2010).
[CrossRef]

Hanna, D. C.

D. C. Hanna, R. M. Percival, R. G. Smart, and A. C. Tropper, “Efficient and tunable operation of a Tm-doped fiber laser,” Opt. Commun. 75, 283–286 (1990).
[CrossRef]

He, X. M.

H. Y. Peng, K. Zhang, L. H. Zhang, Y. Hang, J. Q. Xu, Y. L. Tang, Y. Cheng, J. Xiong, C. C. Zhao, G. Z. Chen, and X. M. He, “Spectroscopic properties of Tm, Ho: LiLuF4,” Chinese Opt. Lett. 8, 63–65 (2010).
[CrossRef]

Henderson, S. W.

Herculano, L. S.

L. S. Herculano, N. G. C. Astrath, L. C. Malacarne, J. H. Rohling, S. T. Tanimoto, and M. L. Baesso, “Laser-induced chemical reaction characterization in photosensitive aqueous solutions,” J. Phys. Chem. B 115, 9417–9420 (2011).
[CrossRef]

L. C. Malacarne, N. G. C. Astrath, A. N. Medina, L. S. Herculano, M. L. Baesso, P. R. B. Pedreira, J. Shen, Q. Wen, K. H. Michaelian, and C. Fairbridge, “Soret effect and photochemical reaction in liquids with laser-induced local heating,” Opt. Express 19, 4047–4058 (2011).
[CrossRef]

Heumann, E.

H. Scheife, G. Huber, E. Heumann, S. Bar, and E. Osiac, “Advances in up-conversion lasers based on Er3+ and Pr3+,” Opt. Mater. 26, 365–374 (2004).

Huber, G.

H. Scheife, G. Huber, E. Heumann, S. Bar, and E. Osiac, “Advances in up-conversion lasers based on Er3+ and Pr3+,” Opt. Mater. 26, 365–374 (2004).

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Continuous-wave operation at 2.1 μm of a diode-laser-pumped, Tm-sensitized Ho-Y3Al5O12 laser at 300 K,” Opt. Lett. 12, 678–680 (1987).
[CrossRef]

Huffaker, A. V.

Iglesias-de la Cruz, M. C.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodriguez, J. A. Capobianco, F. Vetrone, A. Juarranz de la Fuente, F. Sanz-Rodriguez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha, and J. Garcia Sole, “Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[CrossRef]

Jacinto, C.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodriguez, J. A. Capobianco, F. Vetrone, A. Juarranz de la Fuente, F. Sanz-Rodriguez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha, and J. Garcia Sole, “Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[CrossRef]

W. F. Silva, G. S. N. Eliel, P. V. dos Santos, M. T. de Araujo, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Color tunability with temperature and pump intensity in Yb3+/Tm3+ codoped aluminosilicate glass under anti-Stokes excitation,” J. Chem. Phys. 133, 034507 (2010).
[CrossRef]

D. N. Messias, C. Jacinto, M. J. V. Bell, and T. Catunda, “Thermal and optical properties of Yb3+- and Nd3+-doped phosphate glasses determined by thermal lens technique,” IEEE J. Quantum Electron. 43, 751–757 (2007).
[CrossRef]

C. Jacinto, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, and M. L. Baesso, “Pump-power-controlled luminescence switching in Yb3+/Tm3+ codoped water-free low silica calcium aluminosilicate glasses,” Appl. Phys. Lett. 91, 071102 (2007).
[CrossRef]

C. Jacinto, M. V. D. Vermelho, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, A. C. Bento, T. Catunda, and M. L. Baesso, “Thermal lens study of energy transfer in Yb3+/Tm3+-codoped glasses,” Opt. Express 15, 9232–9238 (2007).
[CrossRef]

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: thermal and optical properties of laser glasses—a review,” J. Non-Cryst. Solids 352, 3582–3597 (2006).
[CrossRef]

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100, 113103 (2006).
[CrossRef]

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Thermal lens study of the OH- influence on the fluorescence efficiency of Yb3+-doped phosphate glasses,” Appl. Phys. Lett. 86, 071911 (2005).
[CrossRef]

C. Jacinto, M. T. de Araujo, E. A. Gouveia, and A. S. Gouveia-Neto, “Thermal effect on multiphonon-assisted anti-Stokes excited upconversion fluorescence emission in Yb3+-sensitized Er3+-doped optical fiber,” Appl. Phys. B 70, 185–188 (2000).

C. Jacinto, M. T. de Araujo, E. A. Gouveia, and A. S. Gouveia-Neto, “Fourfold output power enhancement and threshold reduction through thermal effects in an Er3+/Yb3+-codoped optical fiber laser excited at 1.064 μm,” Opt. Lett. 24, 1287–1289 (1999).
[CrossRef]

Jackson, S. D.

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[CrossRef]

M. C. Pierce, S. D. Jackson, M. R. Dickinson, and T. A. King, “Laser-tissue interaction with a high-power 2 μm fiber laser: preliminary studies with soft tissue,” Lasers Surg. Med. 25, 407–413 (1999).
[CrossRef]

Jagosich, F. H.

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[CrossRef]

Janda, P.

R. Sroka, P. Janda, T. Killian, F. Vaz, C. S. Betz, and A. Leunig, “Comparison of long term results after Ho:YAG and diode laser treatment of hyperplastic inferior nasal turbinates,” Lasers Surg. Med. 39, 324–331 (2007).
[CrossRef]

P. Janda, R. Sroka, C. S. Betz, G. Grevers, and A. Leunig, “Ho:YAG and diode laser treatment of hyperplastic inferior nasal turbinates,” Laryngo-Rhino-Otologie 81, 484–490 (2002).

A. Leunig, P. Janda, R. Sroka, R. Baumgartner, and G. Grevers, “Ho:YAG laser treatment of hyperplastic inferior nasal turbinates,” Laryngoscope 109, 1690–1695 (1999).
[CrossRef]

Janker, B.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[CrossRef]

Jaque, D.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodriguez, J. A. Capobianco, F. Vetrone, A. Juarranz de la Fuente, F. Sanz-Rodriguez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha, and J. Garcia Sole, “Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[CrossRef]

M. O. Ramirez, D. Jaque, and L. E. Bausa, “Intracavity thermal loading measurements and evaluation of the intrinsic fluorescence quantum efficiency in Yb3+:LiNbO3:MgO lasers,” Appl. Phys. Lett. 89, 091122 (2006).
[CrossRef]

Juarranz de la Fuente, A.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodriguez, J. A. Capobianco, F. Vetrone, A. Juarranz de la Fuente, F. Sanz-Rodriguez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha, and J. Garcia Sole, “Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[CrossRef]

Jurdyc, A. M.

Kavaya, M. J.

Killian, T.

R. Sroka, P. Janda, T. Killian, F. Vaz, C. S. Betz, and A. Leunig, “Comparison of long term results after Ho:YAG and diode laser treatment of hyperplastic inferior nasal turbinates,” Lasers Surg. Med. 39, 324–331 (2007).
[CrossRef]

King, T. A.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, and T. A. King, “Laser-tissue interaction with a high-power 2 μm fiber laser: preliminary studies with soft tissue,” Lasers Surg. Med. 25, 407–413 (1999).
[CrossRef]

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[CrossRef]

Kotmel, R. F.

B. H. Wand, R. F. Kotmel, M. Aita, and G. Samson, “Percutaneous myocardial revascularisation method for heart myocardium|irradiating inner wall of heart with laser energy emitted from distal end of laser to form channel extending from inner surface of myocardium,” in US Patent No. 5389096-A, (14February1995).

Kuntz, R. M.

R. M. Kuntz, “Current role of lasers in the treatment of benign prostatic hyperplasia (BPH),” Eur. Urol. 49, 961–969 (2006).

Lee, F. Y. K.

S. K. Doumouchtsis, F. Y. K. Lee, D. Bramwell, and M. M. Fynes, “Evaluation of holmium laser for managing mesh/suture complications of continence surgery,” BJU Int. 108, 1472–1478 (2011).
[CrossRef]

Leunig, A.

R. Sroka, P. Janda, T. Killian, F. Vaz, C. S. Betz, and A. Leunig, “Comparison of long term results after Ho:YAG and diode laser treatment of hyperplastic inferior nasal turbinates,” Lasers Surg. Med. 39, 324–331 (2007).
[CrossRef]

P. Janda, R. Sroka, C. S. Betz, G. Grevers, and A. Leunig, “Ho:YAG and diode laser treatment of hyperplastic inferior nasal turbinates,” Laryngo-Rhino-Otologie 81, 484–490 (2002).

A. Leunig, P. Janda, R. Sroka, R. Baumgartner, and G. Grevers, “Ho:YAG laser treatment of hyperplastic inferior nasal turbinates,” Laryngoscope 109, 1690–1695 (1999).
[CrossRef]

Li, J. F.

F. G. Yang, F. P. Yan, Z. Y. You, C. Y. Tu, C. L. Sun, Y. Wang, Z. J. Zhu, and J. F. Li, “End-pumping Tm, Ho, Ce:NaY(WO4)(2) crystal laser at 2.07 μm and the up-conversion repressed,” Laser Phys. Lett. 7, 867–869 (2010).
[CrossRef]

Li, Y. M.

J. X. Feng, X. T. Tian, Y. M. Li, and K. S. Zhang, “Generation of a squeezing vacuum at a telecommunication wavelength with periodically poled LiNbO(3),” Appl. Phys. Lett. 92, 221102 (2008).
[CrossRef]

Librantz, A. F. H.

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[CrossRef]

Lima, S. M.

Y. Guyot, A. Steimacher, M. P. Belancon, A. N. Medina, M. L. Baesso, S. M. Lima, L. H. C. Andrade, A. Brenier, A. M. Jurdyc, and G. Boulon, “Spectroscopic properties, concentration quenching, and laser investigations of Yb3+-doped calcium aluminosilicate glasses,” J. Opt. Soc. Am. B 28, 2510–2517 (2011).
[CrossRef]

L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100, 027402 (2008).

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: thermal and optical properties of laser glasses—a review,” J. Non-Cryst. Solids 352, 3582–3597 (2006).
[CrossRef]

Lowe, R. D.

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
[CrossRef]

Luthy, W.

T. Rothacher, W. Luthy, and H. P. Weber, “Diode pumping and laser properties of Yb:Ho:YAG,” Opt. Commun. 155, 68–72 (1998).
[CrossRef]

Maestro, L. M.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodriguez, J. A. Capobianco, F. Vetrone, A. Juarranz de la Fuente, F. Sanz-Rodriguez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha, and J. Garcia Sole, “Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[CrossRef]

Magee, J. R.

Malacarne, L. C.

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[CrossRef]

McManus, J. B.

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
[CrossRef]

Medina, A. N.

Messaddeq, Y.

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[CrossRef]

Messias, D. N.

D. N. Messias, C. Jacinto, M. J. V. Bell, and T. Catunda, “Thermal and optical properties of Yb3+- and Nd3+-doped phosphate glasses determined by thermal lens technique,” IEEE J. Quantum Electron. 43, 751–757 (2007).
[CrossRef]

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: thermal and optical properties of laser glasses—a review,” J. Non-Cryst. Solids 352, 3582–3597 (2006).
[CrossRef]

Michaelian, K. H.

Miranda, L. C. M.

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses,” Appl. Phys. Lett. 74, 908–910 (1999).
[CrossRef]

Mitzscherlich, P.

Mucke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[CrossRef]

Nelson, D. D.

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
[CrossRef]

Novatski, A.

L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100, 027402 (2008).

Nunes, L. A. O.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100, 113103 (2006).
[CrossRef]

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Thermal lens study of the OH- influence on the fluorescence efficiency of Yb3+-doped phosphate glasses,” Appl. Phys. Lett. 86, 071911 (2005).
[CrossRef]

D. F. De Sousa, L. A. O. Nunes, J. H. Rohling, and M. L. Baesso, “Laser emission at 1077 nm in Nd3+-doped calcium aluminosilicate glass,” Appl. Phys. B 77, 59–63 (2003).
[CrossRef]

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses,” Appl. Phys. Lett. 74, 908–910 (1999).
[CrossRef]

Oliveira, S. L.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100, 113103 (2006).
[CrossRef]

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Thermal lens study of the OH- influence on the fluorescence efficiency of Yb3+-doped phosphate glasses,” Appl. Phys. Lett. 86, 071911 (2005).
[CrossRef]

Osiac, E.

H. Scheife, G. Huber, E. Heumann, S. Bar, and E. Osiac, “Advances in up-conversion lasers based on Er3+ and Pr3+,” Opt. Mater. 26, 365–374 (2004).

Pedreira, P. R. B.

Peng, H. Y.

H. Y. Peng, K. Zhang, L. H. Zhang, Y. Hang, J. Q. Xu, Y. L. Tang, Y. Cheng, J. Xiong, C. C. Zhao, G. Z. Chen, and X. M. He, “Spectroscopic properties of Tm, Ho: LiLuF4,” Chinese Opt. Lett. 8, 63–65 (2010).
[CrossRef]

Percival, R. M.

D. C. Hanna, R. M. Percival, R. G. Smart, and A. C. Tropper, “Efficient and tunable operation of a Tm-doped fiber laser,” Opt. Commun. 75, 283–286 (1990).
[CrossRef]

Peyghambarian, N.

J. F. Wu, Z. D. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. R. Yu, “Single frequency fiber laser at 2.05 μm based on Ho-doped germanate glass fiber,” in Proc. SPIE 7195, 71951K (2009).
[CrossRef]

Pierce, M. C.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, and T. A. King, “Laser-tissue interaction with a high-power 2 μm fiber laser: preliminary studies with soft tissue,” Lasers Surg. Med. 25, 407–413 (1999).
[CrossRef]

Poirier, G.

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[CrossRef]

Ramirez, M. O.

M. O. Ramirez, D. Jaque, and L. E. Bausa, “Intracavity thermal loading measurements and evaluation of the intrinsic fluorescence quantum efficiency in Yb3+:LiNbO3:MgO lasers,” Appl. Phys. Lett. 89, 091122 (2006).
[CrossRef]

Ribeiro, S. J. L.

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[CrossRef]

Rocha, U.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodriguez, J. A. Capobianco, F. Vetrone, A. Juarranz de la Fuente, F. Sanz-Rodriguez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha, and J. Garcia Sole, “Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[CrossRef]

Rodriguez, E. M.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodriguez, J. A. Capobianco, F. Vetrone, A. Juarranz de la Fuente, F. Sanz-Rodriguez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha, and J. Garcia Sole, “Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[CrossRef]

Rohling, J. H.

L. S. Herculano, N. G. C. Astrath, L. C. Malacarne, J. H. Rohling, S. T. Tanimoto, and M. L. Baesso, “Laser-induced chemical reaction characterization in photosensitive aqueous solutions,” J. Phys. Chem. B 115, 9417–9420 (2011).
[CrossRef]

D. F. De Sousa, L. A. O. Nunes, J. H. Rohling, and M. L. Baesso, “Laser emission at 1077 nm in Nd3+-doped calcium aluminosilicate glass,” Appl. Phys. B 77, 59–63 (2003).
[CrossRef]

Rothacher, T.

T. Rothacher, W. Luthy, and H. P. Weber, “Diode pumping and laser properties of Yb:Ho:YAG,” Opt. Commun. 155, 68–72 (1998).
[CrossRef]

Sampaio, J. A.

J. A. Sampaio, S. Gama, M. L. Baesso, and T. Catunda, “Fluorescence quantum efficiency of Er3+ in low silica calcium aluminate glasses determined by mode-mismatched thermal lens spectrometry,” J. Non-Cryst. Solids 351, 1594–1602 (2005).
[CrossRef]

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses,” Appl. Phys. Lett. 74, 908–910 (1999).
[CrossRef]

Samson, G.

B. H. Wand, R. F. Kotmel, M. Aita, and G. Samson, “Percutaneous myocardial revascularisation method for heart myocardium|irradiating inner wall of heart with laser energy emitted from distal end of laser to form channel extending from inner surface of myocardium,” in US Patent No. 5389096-A, (14February1995).

Sanz-Rodriguez, F.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodriguez, J. A. Capobianco, F. Vetrone, A. Juarranz de la Fuente, F. Sanz-Rodriguez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha, and J. Garcia Sole, “Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[CrossRef]

Scheife, H.

H. Scheife, G. Huber, E. Heumann, S. Bar, and E. Osiac, “Advances in up-conversion lasers based on Er3+ and Pr3+,” Opt. Mater. 26, 365–374 (2004).

Shen, J.

Shorter, J. H.

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
[CrossRef]

Silva, W. F.

W. F. Silva, G. S. N. Eliel, P. V. dos Santos, M. T. de Araujo, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Color tunability with temperature and pump intensity in Yb3+/Tm3+ codoped aluminosilicate glass under anti-Stokes excitation,” J. Chem. Phys. 133, 034507 (2010).
[CrossRef]

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[CrossRef]

Smart, R. G.

D. C. Hanna, R. M. Percival, R. G. Smart, and A. C. Tropper, “Efficient and tunable operation of a Tm-doped fiber laser,” Opt. Commun. 75, 283–286 (1990).
[CrossRef]

Snook, R. D.

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
[CrossRef]

Sroka, R.

R. Sroka, P. Janda, T. Killian, F. Vaz, C. S. Betz, and A. Leunig, “Comparison of long term results after Ho:YAG and diode laser treatment of hyperplastic inferior nasal turbinates,” Lasers Surg. Med. 39, 324–331 (2007).
[CrossRef]

P. Janda, R. Sroka, C. S. Betz, G. Grevers, and A. Leunig, “Ho:YAG and diode laser treatment of hyperplastic inferior nasal turbinates,” Laryngo-Rhino-Otologie 81, 484–490 (2002).

A. Leunig, P. Janda, R. Sroka, R. Baumgartner, and G. Grevers, “Ho:YAG laser treatment of hyperplastic inferior nasal turbinates,” Laryngoscope 109, 1690–1695 (1999).
[CrossRef]

Steimacher, A.

Sun, C. L.

F. G. Yang, F. P. Yan, Z. Y. You, C. Y. Tu, C. L. Sun, Y. Wang, Z. J. Zhu, and J. F. Li, “End-pumping Tm, Ho, Ce:NaY(WO4)(2) crystal laser at 2.07 μm and the up-conversion repressed,” Laser Phys. Lett. 7, 867–869 (2010).
[CrossRef]

Tang, Y. L.

H. Y. Peng, K. Zhang, L. H. Zhang, Y. Hang, J. Q. Xu, Y. L. Tang, Y. Cheng, J. Xiong, C. C. Zhao, G. Z. Chen, and X. M. He, “Spectroscopic properties of Tm, Ho: LiLuF4,” Chinese Opt. Lett. 8, 63–65 (2010).
[CrossRef]

Tanimoto, S. T.

L. S. Herculano, N. G. C. Astrath, L. C. Malacarne, J. H. Rohling, S. T. Tanimoto, and M. L. Baesso, “Laser-induced chemical reaction characterization in photosensitive aqueous solutions,” J. Phys. Chem. B 115, 9417–9420 (2011).
[CrossRef]

Tian, X. T.

J. X. Feng, X. T. Tian, Y. M. Li, and K. S. Zhang, “Generation of a squeezing vacuum at a telecommunication wavelength with periodically poled LiNbO(3),” Appl. Phys. Lett. 92, 221102 (2008).
[CrossRef]

Tropper, A. C.

D. C. Hanna, R. M. Percival, R. G. Smart, and A. C. Tropper, “Efficient and tunable operation of a Tm-doped fiber laser,” Opt. Commun. 75, 283–286 (1990).
[CrossRef]

Tu, C. Y.

F. G. Yang, F. P. Yan, Z. Y. You, C. Y. Tu, C. L. Sun, Y. Wang, Z. J. Zhu, and J. F. Li, “End-pumping Tm, Ho, Ce:NaY(WO4)(2) crystal laser at 2.07 μm and the up-conversion repressed,” Laser Phys. Lett. 7, 867–869 (2010).
[CrossRef]

Udo, P. T.

W. F. Silva, G. S. N. Eliel, P. V. dos Santos, M. T. de Araujo, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Color tunability with temperature and pump intensity in Yb3+/Tm3+ codoped aluminosilicate glass under anti-Stokes excitation,” J. Chem. Phys. 133, 034507 (2010).
[CrossRef]

L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100, 027402 (2008).

C. Jacinto, M. V. D. Vermelho, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, A. C. Bento, T. Catunda, and M. L. Baesso, “Thermal lens study of energy transfer in Yb3+/Tm3+-codoped glasses,” Opt. Express 15, 9232–9238 (2007).
[CrossRef]

C. Jacinto, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, and M. L. Baesso, “Pump-power-controlled luminescence switching in Yb3+/Tm3+ codoped water-free low silica calcium aluminosilicate glasses,” Appl. Phys. Lett. 91, 071102 (2007).
[CrossRef]

Vaz, F.

R. Sroka, P. Janda, T. Killian, F. Vaz, C. S. Betz, and A. Leunig, “Comparison of long term results after Ho:YAG and diode laser treatment of hyperplastic inferior nasal turbinates,” Lasers Surg. Med. 39, 324–331 (2007).
[CrossRef]

Vermelho, M. V. D.

W. F. Silva, G. S. N. Eliel, P. V. dos Santos, M. T. de Araujo, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Color tunability with temperature and pump intensity in Yb3+/Tm3+ codoped aluminosilicate glass under anti-Stokes excitation,” J. Chem. Phys. 133, 034507 (2010).
[CrossRef]

C. Jacinto, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, and M. L. Baesso, “Pump-power-controlled luminescence switching in Yb3+/Tm3+ codoped water-free low silica calcium aluminosilicate glasses,” Appl. Phys. Lett. 91, 071102 (2007).
[CrossRef]

C. Jacinto, M. V. D. Vermelho, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, A. C. Bento, T. Catunda, and M. L. Baesso, “Thermal lens study of energy transfer in Yb3+/Tm3+-codoped glasses,” Opt. Express 15, 9232–9238 (2007).
[CrossRef]

Vetrone, F.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodriguez, J. A. Capobianco, F. Vetrone, A. Juarranz de la Fuente, F. Sanz-Rodriguez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha, and J. Garcia Sole, “Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[CrossRef]

Walsh, B. M.

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19, 855–866 (2009).
[CrossRef]

Wand, B. H.

B. H. Wand, R. F. Kotmel, M. Aita, and G. Samson, “Percutaneous myocardial revascularisation method for heart myocardium|irradiating inner wall of heart with laser energy emitted from distal end of laser to form channel extending from inner surface of myocardium,” in US Patent No. 5389096-A, (14February1995).

Wang, Y.

F. G. Yang, F. P. Yan, Z. Y. You, C. Y. Tu, C. L. Sun, Y. Wang, Z. J. Zhu, and J. F. Li, “End-pumping Tm, Ho, Ce:NaY(WO4)(2) crystal laser at 2.07 μm and the up-conversion repressed,” Laser Phys. Lett. 7, 867–869 (2010).
[CrossRef]

Weber, H. P.

T. Rothacher, W. Luthy, and H. P. Weber, “Diode pumping and laser properties of Yb:Ho:YAG,” Opt. Commun. 155, 68–72 (1998).
[CrossRef]

Wen, Q.

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[CrossRef]

Wu, J. F.

J. F. Wu, Z. D. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. R. Yu, “Single frequency fiber laser at 2.05 μm based on Ho-doped germanate glass fiber,” in Proc. SPIE 7195, 71951K (2009).
[CrossRef]

Xiong, J.

H. Y. Peng, K. Zhang, L. H. Zhang, Y. Hang, J. Q. Xu, Y. L. Tang, Y. Cheng, J. Xiong, C. C. Zhao, G. Z. Chen, and X. M. He, “Spectroscopic properties of Tm, Ho: LiLuF4,” Chinese Opt. Lett. 8, 63–65 (2010).
[CrossRef]

Xu, J. Q.

H. Y. Peng, K. Zhang, L. H. Zhang, Y. Hang, J. Q. Xu, Y. L. Tang, Y. Cheng, J. Xiong, C. C. Zhao, G. Z. Chen, and X. M. He, “Spectroscopic properties of Tm, Ho: LiLuF4,” Chinese Opt. Lett. 8, 63–65 (2010).
[CrossRef]

Yan, F. P.

F. G. Yang, F. P. Yan, Z. Y. You, C. Y. Tu, C. L. Sun, Y. Wang, Z. J. Zhu, and J. F. Li, “End-pumping Tm, Ho, Ce:NaY(WO4)(2) crystal laser at 2.07 μm and the up-conversion repressed,” Laser Phys. Lett. 7, 867–869 (2010).
[CrossRef]

Yang, F. G.

F. G. Yang, F. P. Yan, Z. Y. You, C. Y. Tu, C. L. Sun, Y. Wang, Z. J. Zhu, and J. F. Li, “End-pumping Tm, Ho, Ce:NaY(WO4)(2) crystal laser at 2.07 μm and the up-conversion repressed,” Laser Phys. Lett. 7, 867–869 (2010).
[CrossRef]

Yao, Z. D.

J. F. Wu, Z. D. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. R. Yu, “Single frequency fiber laser at 2.05 μm based on Ho-doped germanate glass fiber,” in Proc. SPIE 7195, 71951K (2009).
[CrossRef]

You, Z. Y.

F. G. Yang, F. P. Yan, Z. Y. You, C. Y. Tu, C. L. Sun, Y. Wang, Z. J. Zhu, and J. F. Li, “End-pumping Tm, Ho, Ce:NaY(WO4)(2) crystal laser at 2.07 μm and the up-conversion repressed,” Laser Phys. Lett. 7, 867–869 (2010).
[CrossRef]

Yu, J. R.

J. F. Wu, Z. D. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. R. Yu, “Single frequency fiber laser at 2.05 μm based on Ho-doped germanate glass fiber,” in Proc. SPIE 7195, 71951K (2009).
[CrossRef]

Zahniser, M. S.

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
[CrossRef]

Zang, Z. G.

Z. G. Zang and Y. J. Zhang, “Low-switching power (<45  mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59, 161–165 (2012).
[CrossRef]

Z. G. Zang and Y. J. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt. 51, 3424–3430 (2012).
[CrossRef]

Zhang, K.

H. Y. Peng, K. Zhang, L. H. Zhang, Y. Hang, J. Q. Xu, Y. L. Tang, Y. Cheng, J. Xiong, C. C. Zhao, G. Z. Chen, and X. M. He, “Spectroscopic properties of Tm, Ho: LiLuF4,” Chinese Opt. Lett. 8, 63–65 (2010).
[CrossRef]

Zhang, K. S.

J. X. Feng, X. T. Tian, Y. M. Li, and K. S. Zhang, “Generation of a squeezing vacuum at a telecommunication wavelength with periodically poled LiNbO(3),” Appl. Phys. Lett. 92, 221102 (2008).
[CrossRef]

Zhang, L. H.

H. Y. Peng, K. Zhang, L. H. Zhang, Y. Hang, J. Q. Xu, Y. L. Tang, Y. Cheng, J. Xiong, C. C. Zhao, G. Z. Chen, and X. M. He, “Spectroscopic properties of Tm, Ho: LiLuF4,” Chinese Opt. Lett. 8, 63–65 (2010).
[CrossRef]

Zhang, Y. J.

Z. G. Zang and Y. J. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt. 51, 3424–3430 (2012).
[CrossRef]

Z. G. Zang and Y. J. Zhang, “Low-switching power (<45  mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59, 161–165 (2012).
[CrossRef]

Zhao, C. C.

H. Y. Peng, K. Zhang, L. H. Zhang, Y. Hang, J. Q. Xu, Y. L. Tang, Y. Cheng, J. Xiong, C. C. Zhao, G. Z. Chen, and X. M. He, “Spectroscopic properties of Tm, Ho: LiLuF4,” Chinese Opt. Lett. 8, 63–65 (2010).
[CrossRef]

Zhou, J. Q.

Zhu, Z. J.

F. G. Yang, F. P. Yan, Z. Y. You, C. Y. Tu, C. L. Sun, Y. Wang, Z. J. Zhu, and J. F. Li, “End-pumping Tm, Ho, Ce:NaY(WO4)(2) crystal laser at 2.07 μm and the up-conversion repressed,” Laser Phys. Lett. 7, 867–869 (2010).
[CrossRef]

Zonetti, L. F. C.

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses,” Appl. Phys. Lett. 74, 908–910 (1999).
[CrossRef]

Zong, J.

J. F. Wu, Z. D. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. R. Yu, “Single frequency fiber laser at 2.05 μm based on Ho-doped germanate glass fiber,” in Proc. SPIE 7195, 71951K (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (3)

D. F. De Sousa, L. A. O. Nunes, J. H. Rohling, and M. L. Baesso, “Laser emission at 1077 nm in Nd3+-doped calcium aluminosilicate glass,” Appl. Phys. B 77, 59–63 (2003).
[CrossRef]

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
[CrossRef]

C. Jacinto, M. T. de Araujo, E. A. Gouveia, and A. S. Gouveia-Neto, “Thermal effect on multiphonon-assisted anti-Stokes excited upconversion fluorescence emission in Yb3+-sensitized Er3+-doped optical fiber,” Appl. Phys. B 70, 185–188 (2000).

Appl. Phys. Lett. (5)

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Thermal lens study of the OH- influence on the fluorescence efficiency of Yb3+-doped phosphate glasses,” Appl. Phys. Lett. 86, 071911 (2005).
[CrossRef]

J. X. Feng, X. T. Tian, Y. M. Li, and K. S. Zhang, “Generation of a squeezing vacuum at a telecommunication wavelength with periodically poled LiNbO(3),” Appl. Phys. Lett. 92, 221102 (2008).
[CrossRef]

C. Jacinto, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, and M. L. Baesso, “Pump-power-controlled luminescence switching in Yb3+/Tm3+ codoped water-free low silica calcium aluminosilicate glasses,” Appl. Phys. Lett. 91, 071102 (2007).
[CrossRef]

M. O. Ramirez, D. Jaque, and L. E. Bausa, “Intracavity thermal loading measurements and evaluation of the intrinsic fluorescence quantum efficiency in Yb3+:LiNbO3:MgO lasers,” Appl. Phys. Lett. 89, 091122 (2006).
[CrossRef]

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses,” Appl. Phys. Lett. 74, 908–910 (1999).
[CrossRef]

BJU Int. (1)

S. K. Doumouchtsis, F. Y. K. Lee, D. Bramwell, and M. M. Fynes, “Evaluation of holmium laser for managing mesh/suture complications of continence surgery,” BJU Int. 108, 1472–1478 (2011).
[CrossRef]

Chem. Phys. (1)

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
[CrossRef]

Chinese Opt. Lett. (1)

H. Y. Peng, K. Zhang, L. H. Zhang, Y. Hang, J. Q. Xu, Y. L. Tang, Y. Cheng, J. Xiong, C. C. Zhao, G. Z. Chen, and X. M. He, “Spectroscopic properties of Tm, Ho: LiLuF4,” Chinese Opt. Lett. 8, 63–65 (2010).
[CrossRef]

Eur. Urol. (1)

R. M. Kuntz, “Current role of lasers in the treatment of benign prostatic hyperplasia (BPH),” Eur. Urol. 49, 961–969 (2006).

IEEE J. Quantum Electron. (1)

D. N. Messias, C. Jacinto, M. J. V. Bell, and T. Catunda, “Thermal and optical properties of Yb3+- and Nd3+-doped phosphate glasses determined by thermal lens technique,” IEEE J. Quantum Electron. 43, 751–757 (2007).
[CrossRef]

J. Appl. Phys. (2)

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[CrossRef]

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100, 113103 (2006).
[CrossRef]

J. Cataract. Refract. Surg. (1)

P. H. Ernest, “Cataract surgery after holmium: YAG laser thermal keratoplasty,” J. Cataract. Refract. Surg. 28, 1864–1868 (2002).
[CrossRef]

J. Chem. Phys. (1)

W. F. Silva, G. S. N. Eliel, P. V. dos Santos, M. T. de Araujo, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Color tunability with temperature and pump intensity in Yb3+/Tm3+ codoped aluminosilicate glass under anti-Stokes excitation,” J. Chem. Phys. 133, 034507 (2010).
[CrossRef]

J. Endourol. (1)

A. S. E. Fayad, “Retrograde holmium: YAG laser disintegration of stones in pelvic ectopic kidneys: does it minimize the risk of surgery?,” J. Endourol. 22, 919–922 (2008).

J. Lumin. (1)

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodriguez, J. A. Capobianco, F. Vetrone, A. Juarranz de la Fuente, F. Sanz-Rodriguez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha, and J. Garcia Sole, “Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[CrossRef]

J. Mod. Opt. (1)

Z. G. Zang and Y. J. Zhang, “Low-switching power (<45  mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59, 161–165 (2012).
[CrossRef]

J. Non-Cryst. Solids (2)

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: thermal and optical properties of laser glasses—a review,” J. Non-Cryst. Solids 352, 3582–3597 (2006).
[CrossRef]

J. A. Sampaio, S. Gama, M. L. Baesso, and T. Catunda, “Fluorescence quantum efficiency of Er3+ in low silica calcium aluminate glasses determined by mode-mismatched thermal lens spectrometry,” J. Non-Cryst. Solids 351, 1594–1602 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

L. S. Herculano, N. G. C. Astrath, L. C. Malacarne, J. H. Rohling, S. T. Tanimoto, and M. L. Baesso, “Laser-induced chemical reaction characterization in photosensitive aqueous solutions,” J. Phys. Chem. B 115, 9417–9420 (2011).
[CrossRef]

Laryngo-Rhino-Otologie (1)

P. Janda, R. Sroka, C. S. Betz, G. Grevers, and A. Leunig, “Ho:YAG and diode laser treatment of hyperplastic inferior nasal turbinates,” Laryngo-Rhino-Otologie 81, 484–490 (2002).

Laryngoscope (1)

A. Leunig, P. Janda, R. Sroka, R. Baumgartner, and G. Grevers, “Ho:YAG laser treatment of hyperplastic inferior nasal turbinates,” Laryngoscope 109, 1690–1695 (1999).
[CrossRef]

Laser Phys. (1)

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19, 855–866 (2009).
[CrossRef]

Laser Phys. Lett. (1)

F. G. Yang, F. P. Yan, Z. Y. You, C. Y. Tu, C. L. Sun, Y. Wang, Z. J. Zhu, and J. F. Li, “End-pumping Tm, Ho, Ce:NaY(WO4)(2) crystal laser at 2.07 μm and the up-conversion repressed,” Laser Phys. Lett. 7, 867–869 (2010).
[CrossRef]

Lasers Surg. Med. (2)

M. C. Pierce, S. D. Jackson, M. R. Dickinson, and T. A. King, “Laser-tissue interaction with a high-power 2 μm fiber laser: preliminary studies with soft tissue,” Lasers Surg. Med. 25, 407–413 (1999).
[CrossRef]

R. Sroka, P. Janda, T. Killian, F. Vaz, C. S. Betz, and A. Leunig, “Comparison of long term results after Ho:YAG and diode laser treatment of hyperplastic inferior nasal turbinates,” Lasers Surg. Med. 39, 324–331 (2007).
[CrossRef]

Opt. Commun. (2)

D. C. Hanna, R. M. Percival, R. G. Smart, and A. C. Tropper, “Efficient and tunable operation of a Tm-doped fiber laser,” Opt. Commun. 75, 283–286 (1990).
[CrossRef]

T. Rothacher, W. Luthy, and H. P. Weber, “Diode pumping and laser properties of Yb:Ho:YAG,” Opt. Commun. 155, 68–72 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lasers Eng. (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[CrossRef]

Opt. Lett. (4)

Opt. Mater. (1)

H. Scheife, G. Huber, E. Heumann, S. Bar, and E. Osiac, “Advances in up-conversion lasers based on Er3+ and Pr3+,” Opt. Mater. 26, 365–374 (2004).

Phys. Rev. Lett. (1)

L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100, 027402 (2008).

Proc. SPIE (1)

J. F. Wu, Z. D. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. R. Yu, “Single frequency fiber laser at 2.05 μm based on Ho-doped germanate glass fiber,” in Proc. SPIE 7195, 71951K (2009).
[CrossRef]

Other (1)

B. H. Wand, R. F. Kotmel, M. Aita, and G. Samson, “Percutaneous myocardial revascularisation method for heart myocardium|irradiating inner wall of heart with laser energy emitted from distal end of laser to form channel extending from inner surface of myocardium,” in US Patent No. 5389096-A, (14February1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Absorption spectra of the Yb3+/Ho3+ codoped LSCAS samples for different Ho3+ concentration and a same sample thickness and (b) typical emission spectrum of the Yb3+/Ho3+ codoped LSCAS sample under excitation at 0.976 μm and using a hot filter in front of the detector. The inset in (b) is the spectrum without the filter and (c) simplified energy level diagram of Yb3+/Ho3+-codoped LSCAS under excitation at 0.976 μm.

Fig. 2.
Fig. 2.

(a) Lifetime and (b) ET efficiency (ηET) and fluorescence quantum yield (ηe) of the F5/22 level as a function of Ho2O3 concentration in LSCAS glass. (c) Yb3+Ho3+ ET rate as a function of Ho2O3 concentration.

Fig. 3.
Fig. 3.

Top—schematic drawing of the experimental setup used for TL spectroscopy measurements. Bottom—typical on-axis transient obtained for the probe beam in our experimental setup for the LSCAS:2Yb/2.5Ho sample under 30 mW of excitation power.

Fig. 4.
Fig. 4.

Fractional thermal load of the Yb/Ho:LSCAS glass as a function of Ho2O3 concentration under 0.976 μm excitation wavelength. The Yb2O3 concentration is fixed at 2.0 wt. %.

Fig. 5.
Fig. 5.

(a) Lifetime and fluorescence quantum efficiency of the level emitting at 2.0μm (η1) and (b) ratio of emitted photons at 2μm per pump absorbed photons (Np,2μm/Np,abs) and Np,2μm/Np,abs divided by the thermal load, in Yb/Ho:LSCAS glass, as a function of Ho2O3 concentration.

Fig. 6.
Fig. 6.

Fractional thermal load, obtained from TL, versus the ET efficiency, obtained from lifetime measurements, for Yb/Ho:LSCAS system.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Θ=θPabs=1KλpdsdTφ,
n˙e=RPngneτe,
n˙1=W21mpn2n1τ1,
n˙2=WETnen2τ2,
ne=RPngτe,
n1=Wijmpn2τ1,
n2=WETneτ2,
Q=RPng(EexcEeg)+WETne(EegE20)+W21mpn2E21+W10mpn1E10.
η1=W1radW1=1W10mpW1,
WETτe=ηET=1ηe,
φ=1ηeλexcλegη1(1ηe)λexcλ10,
φ=1λexcλeg+ηET(λexcλegη1λexcλ10).

Metrics