Abstract

The polarization effects in the diffraction-induced pulse splitting (DIPS) observed under the dynamical Bragg diffraction in the Laue geometry in linear one-dimensional photonic crystals (PCs) are studied theoretically and experimentally. It is demonstrated that the characteristic length of the laser pulse path in a PC, or splitting length, used to describe the temporal pulse splitting, as well as the number of the outgoing femtosecond pulses, are influenced significantly by the polarization of the incident laser pulse. We have observed that the characteristic splitting time in porous quartz PCs for the s-polarized probe pulse is approximately 1.5 times smaller as compared with that measured for the p-polarized radiation. These results are supported by the theoretical description and ensure that the polarization sensitivity of the DIPS effect is due to a large lattice-induced dispersion of the PC. It is also shown that the number of output pulses can be varied from two up to four in both transmission and diffraction directions depending on the polarization of incident femtosecond pulses.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (49)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription