Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Polarization-insensitive self-collimation and beam splitter based on triangular-lattice annular photonic crystals

Not Accessible

Your library or personal account may give you access

Abstract

This paper systematically investigates the self-collimation behavior in silicon-based triangular-lattice annular photonic crystals (PCs). It is found that, in comparison with normal air-hole PCs, annular PCs more easily suppress the separation between TE-2 and TM-2 bands along the Γ-M direction by increasing the inner radius of annular air rings. Such a feature is quite beneficial in the formation of a flat equi-frequency contour for both polarizations at the same frequency, which means a polarization-insensitive self-collimation (PISC) effect. Further analysis has shown that, to support PISC, the minimum ratio between the inner and outer radii of annular air rings will gradually increase as the outer radius changes from 0.25a to 0.49a. When the ratio is fixed, the annular air rings with larger outer radius will provide wider common frequency area to realize PISC. We have also investigated the transmission feature for different annular PCs and chosen an optimal structure to illustrate the PISC effect. Finally, a polarization beam splitter has been proposed and demonstrated based on the unique PISC and band-gap feature in triangular-lattice annular PCs.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
High-efficiency polarization beam splitter based on a self-collimating photonic crystal

Jong-Moon Park, Sun-Goo Lee, Hae-Ryeong Park, and Myung-Hyun Lee
J. Opt. Soc. Am. B 27(11) 2247-2254 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved