Abstract

A study of inhomogeneous spectrum broadening in Nd3+-doped GdxY1xVO4 (x=0, 0.37, 0.47, 0.63, and 0.83) series crystals is reported for the first time, to the best of our knowledge. Due to the random placement of the Gd and Y ions in the lattice, the spectra are inhomogeneously broadened, a result that is favorable for Q-switching and mode locking. The fluorescence lifetime and stimulated emission cross-section of the F3/24 to F11/24 and F13/24 state transitions are calculated and measured as a function of increasing x and temperature. The variation of the spectrum anisotropy is also discussed as a function of different temperature and composition values. All the results indicate that the random placement of different cations at the same lattice site is an efficient technology for the modification of emission properties that fulfill different requirements of laser applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
    [CrossRef]
  2. M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphortellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
    [CrossRef]
  3. N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorge, “Performance of various diode-pumped Nd:laser materials: influence of inhomogeneous broadening,” IEEE J. Quantum Electron 28, 1179–1187 (1992).
    [CrossRef]
  4. J. T. Karpick and B. D. Bartolo, “Thermal dependence of the positions and widths of the fluorescence lines of Cr3+ and Er3+ in YAG,” Nuovo Cimento B 7, 62–70 (1972).
    [CrossRef]
  5. R. C. Powell, B. D. Bartolo, B. Birang, and C. S. Naiman, “Temperature dependence of the widths and positions of the R and N lines in heavily doped ruby,” J. Appl. Phys. 37, 4973–4978 (1966).
    [CrossRef]
  6. W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev. 136, A271–A283 (1964).
    [CrossRef]
  7. Y. Yu, J. Wang, H. Zhang, H. Yu, Z. Wang, M. Jiang, H. Xia, and R. I. Boughton, “Growth and characterization of Nd:YxGd1−xVO4 series laser crystals,” J. Opt. Soc. Am. B 25, 995–1001(2008).
    [CrossRef]
  8. H. Yu, Y. Yu, H. Zhang, Z. Wang, J. Wang, X. Cheng, Z. Shao, and M. Jiang, “Growth and laser characterization of mixed Nd:LuxGd1−xVO4 laser crystals,” J. Cryst. Growth 293, 394–397(2006).
    [CrossRef]
  9. L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. Sun, and X. G. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1−xVO4 series crystals,” AIP Adv. 1, 0421431 (2011).
    [CrossRef]
  10. J. Liu, X. Meng, Z. Shao, and M. Jiang, “Pulse energy enhancement in passive Q-switching operation with a class of Nd:GdxY1−xVO4 crystals,” Appl. Phys. Lett. 83, 1289–1291 (2003).
    [CrossRef]
  11. H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, D. Tang, G. Xie, H. Luo, and M. Jiang, “Passive mode-locking performance with a mixed Nd:Lu0.5Gd0.5VO4 crystal,” Opt. Express 17, 3264–3269 (2009).
    [CrossRef]
  12. T. Li, S. Zhao, B. Zhao, J. Zhao, Z. Zhuo, and K. Yang, “Passively mode-locked performance of a diode-pumped Nd:Lu0.15Y0.85VO4 laser,” J. Opt. Soc. Am. B 26, 2445–2448 (2009).
    [CrossRef]
  13. Y. F. Chen, M. L. Ku, L. Y. Tsai, and Y. C. Chen, “Diode-pumped passively Q-switched picosecond Nd:GdxY1−xVO4 self-stimulated Raman laser,” Opt. Lett. 29, 2279–2281 (2004).
    [CrossRef]
  14. M. Zuker, A. G. Szabo, L. Bramall, and D. T. Kraiacarski, “Delta function convolution method (DFCM) for fluorescence decay experiments,” Rev. Sci. Instrum. 56, 14–22 (1985).
    [CrossRef]
  15. O. Guillot-Noël, B. Viana, B. Bellamy, D. Gourier, G. B. Zogo-Mboulou, and S. Jandl, “Spectroscopic evidence of inhomogeneous distribution of Nd3+ in YVO4, YPO4 and YAsO4crystals,” Opt. Mater. 13, 427–437 (2000).
    [CrossRef]
  16. L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67, 549–553 (1998).
    [CrossRef]
  17. A. W. Tucker, M. Birnbaum, C. L. Fincher, and L. G. DeShazer, “Continuous-wave operation of Nd:YV04 at 1.06 and 1.34 μm,” J. Appl. Phys. 47, 232–234 (1976).
    [CrossRef]
  18. F. S. Ermeneux, C. Goutaudier, R. Moncorge, M. T. Cohen-Adad, M. Bettinelli, and E. Cavalli, “Comparative optical characterization of various Nd:YVO4 single crystals,” Opt. Mater. 13, 193–204 (1999).
    [CrossRef]
  19. J. G. Sliney, K. M. Leung, M. Birnbaum, and A. W. Tucker, “Lifetimes of the F3/24 state in Nd:YVO4,” J. Appl. Phys. 50, 3778–3779 (1979).
    [CrossRef]
  20. Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+Yb3+ energy transfer in Nd3+→Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 0831131 (2009).
    [CrossRef]
  21. Y. L. Mao, M. J. Huang, and C. S. Wang, “Temperature effect on emission lines and fluorescence lifetime of the F3/24 state of Nd:YVO4,” Chin. Opt. Lett. 2, 102–105 (2004).
  22. G. Turri, H. P. Jenssen, F. Cornacchia, M. Tonelli, and M. Bassi, “Temperature-dependent stimulated emission cross section in Nd:YVO4 crystals,” J. Opt. Soc. Am. B 26, 2084–2088 (2009).
    [CrossRef]
  23. D. Sardar and R. C. Powell, “Energy transfer processes in YVO4:Nd3+,” J. Appl. Phys. 51, 2829–2835 (1980).
    [CrossRef]
  24. X. Délen, F. Balembois, and P. Georges, “Temperature dependence of the emission cross section of Nd:YVO4 around 1064 nm and consequences on laser operation,” J. Opt. Soc. Am. B 28, 972–976 (2011).
    [CrossRef]
  25. D. K. Sardar and R. M. Yow, “Stark components of F3/24, I9/24and I11/24 manifold energy levels and effects of temperature on the laser transition of Nd3+ in YVO4,” Opt. Mater. 14, 5–11 (2000).
    [CrossRef]
  26. G. V. Vazquez, M. E. Sanchez-Morales, and E. B. Mejia, “Laser oscillation in Nd:YVO4 channel waveguides fabricated by ion implantation,” Proc. SPIE 7099, 709911 (2008).
    [CrossRef]
  27. B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).
    [CrossRef]
  28. A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erler, “Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4,” J. Appl. Phys. 48, 4907–4911 (1977).
    [CrossRef]
  29. K. Wu, B. Yao, H. J. Zhang, H. H. Yu, Z. P. Wang, J. Y. Wang, and M. H. Jiang, “Growth and properties of Nd:Lu3Gs5O12 laser crystal by floating-zone method,” J. Cryst. Growth 312, 3631–3636 (2010).
    [CrossRef]
  30. T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
    [CrossRef]
  31. Y. F. Chen, “Efficient 1521 nm Nd:GdVO4 Raman laser,” Opt. Lett. 29, 2632–2634 (2004).
    [CrossRef]
  32. Y. Sato and T. Taira, “Temperature dependencies of stimulated emission cross section for Nd-doped solid-state laser materials,” Opt. Mater. Express 2, 1076–1087 (2012).
    [CrossRef]

2012 (1)

2011 (2)

X. Délen, F. Balembois, and P. Georges, “Temperature dependence of the emission cross section of Nd:YVO4 around 1064 nm and consequences on laser operation,” J. Opt. Soc. Am. B 28, 972–976 (2011).
[CrossRef]

L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. Sun, and X. G. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1−xVO4 series crystals,” AIP Adv. 1, 0421431 (2011).
[CrossRef]

2010 (1)

K. Wu, B. Yao, H. J. Zhang, H. H. Yu, Z. P. Wang, J. Y. Wang, and M. H. Jiang, “Growth and properties of Nd:Lu3Gs5O12 laser crystal by floating-zone method,” J. Cryst. Growth 312, 3631–3636 (2010).
[CrossRef]

2009 (4)

2008 (2)

Y. Yu, J. Wang, H. Zhang, H. Yu, Z. Wang, M. Jiang, H. Xia, and R. I. Boughton, “Growth and characterization of Nd:YxGd1−xVO4 series laser crystals,” J. Opt. Soc. Am. B 25, 995–1001(2008).
[CrossRef]

G. V. Vazquez, M. E. Sanchez-Morales, and E. B. Mejia, “Laser oscillation in Nd:YVO4 channel waveguides fabricated by ion implantation,” Proc. SPIE 7099, 709911 (2008).
[CrossRef]

2006 (1)

H. Yu, Y. Yu, H. Zhang, Z. Wang, J. Wang, X. Cheng, Z. Shao, and M. Jiang, “Growth and laser characterization of mixed Nd:LuxGd1−xVO4 laser crystals,” J. Cryst. Growth 293, 394–397(2006).
[CrossRef]

2004 (3)

2003 (1)

J. Liu, X. Meng, Z. Shao, and M. Jiang, “Pulse energy enhancement in passive Q-switching operation with a class of Nd:GdxY1−xVO4 crystals,” Appl. Phys. Lett. 83, 1289–1291 (2003).
[CrossRef]

2000 (2)

O. Guillot-Noël, B. Viana, B. Bellamy, D. Gourier, G. B. Zogo-Mboulou, and S. Jandl, “Spectroscopic evidence of inhomogeneous distribution of Nd3+ in YVO4, YPO4 and YAsO4crystals,” Opt. Mater. 13, 427–437 (2000).
[CrossRef]

D. K. Sardar and R. M. Yow, “Stark components of F3/24, I9/24and I11/24 manifold energy levels and effects of temperature on the laser transition of Nd3+ in YVO4,” Opt. Mater. 14, 5–11 (2000).
[CrossRef]

1999 (1)

F. S. Ermeneux, C. Goutaudier, R. Moncorge, M. T. Cohen-Adad, M. Bettinelli, and E. Cavalli, “Comparative optical characterization of various Nd:YVO4 single crystals,” Opt. Mater. 13, 193–204 (1999).
[CrossRef]

1998 (1)

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67, 549–553 (1998).
[CrossRef]

1994 (1)

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
[CrossRef]

1992 (1)

N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorge, “Performance of various diode-pumped Nd:laser materials: influence of inhomogeneous broadening,” IEEE J. Quantum Electron 28, 1179–1187 (1992).
[CrossRef]

1985 (1)

M. Zuker, A. G. Szabo, L. Bramall, and D. T. Kraiacarski, “Delta function convolution method (DFCM) for fluorescence decay experiments,” Rev. Sci. Instrum. 56, 14–22 (1985).
[CrossRef]

1982 (1)

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).
[CrossRef]

1981 (1)

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphortellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

1980 (1)

D. Sardar and R. C. Powell, “Energy transfer processes in YVO4:Nd3+,” J. Appl. Phys. 51, 2829–2835 (1980).
[CrossRef]

1979 (1)

J. G. Sliney, K. M. Leung, M. Birnbaum, and A. W. Tucker, “Lifetimes of the F3/24 state in Nd:YVO4,” J. Appl. Phys. 50, 3778–3779 (1979).
[CrossRef]

1977 (1)

A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erler, “Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4,” J. Appl. Phys. 48, 4907–4911 (1977).
[CrossRef]

1976 (1)

A. W. Tucker, M. Birnbaum, C. L. Fincher, and L. G. DeShazer, “Continuous-wave operation of Nd:YV04 at 1.06 and 1.34 μm,” J. Appl. Phys. 47, 232–234 (1976).
[CrossRef]

1972 (1)

J. T. Karpick and B. D. Bartolo, “Thermal dependence of the positions and widths of the fluorescence lines of Cr3+ and Er3+ in YAG,” Nuovo Cimento B 7, 62–70 (1972).
[CrossRef]

1966 (1)

R. C. Powell, B. D. Bartolo, B. Birang, and C. S. Naiman, “Temperature dependence of the widths and positions of the R and N lines in heavily doped ruby,” J. Appl. Phys. 37, 4973–4978 (1966).
[CrossRef]

1964 (1)

W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev. 136, A271–A283 (1964).
[CrossRef]

1960 (1)

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[CrossRef]

Arcangeli, A.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+Yb3+ energy transfer in Nd3+→Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 0831131 (2009).
[CrossRef]

Aull, B. F.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).
[CrossRef]

Balembois, F.

Bartolo, B. D.

J. T. Karpick and B. D. Bartolo, “Thermal dependence of the positions and widths of the fluorescence lines of Cr3+ and Er3+ in YAG,” Nuovo Cimento B 7, 62–70 (1972).
[CrossRef]

R. C. Powell, B. D. Bartolo, B. Birang, and C. S. Naiman, “Temperature dependence of the widths and positions of the R and N lines in heavily doped ruby,” J. Appl. Phys. 37, 4973–4978 (1966).
[CrossRef]

Bassi, M.

Bellamy, B.

O. Guillot-Noël, B. Viana, B. Bellamy, D. Gourier, G. B. Zogo-Mboulou, and S. Jandl, “Spectroscopic evidence of inhomogeneous distribution of Nd3+ in YVO4, YPO4 and YAsO4crystals,” Opt. Mater. 13, 427–437 (2000).
[CrossRef]

Bettinelli, M.

F. S. Ermeneux, C. Goutaudier, R. Moncorge, M. T. Cohen-Adad, M. Bettinelli, and E. Cavalli, “Comparative optical characterization of various Nd:YVO4 single crystals,” Opt. Mater. 13, 193–204 (1999).
[CrossRef]

Birang, B.

R. C. Powell, B. D. Bartolo, B. Birang, and C. S. Naiman, “Temperature dependence of the widths and positions of the R and N lines in heavily doped ruby,” J. Appl. Phys. 37, 4973–4978 (1966).
[CrossRef]

Birnbaum, M.

J. G. Sliney, K. M. Leung, M. Birnbaum, and A. W. Tucker, “Lifetimes of the F3/24 state in Nd:YVO4,” J. Appl. Phys. 50, 3778–3779 (1979).
[CrossRef]

A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erler, “Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4,” J. Appl. Phys. 48, 4907–4911 (1977).
[CrossRef]

A. W. Tucker, M. Birnbaum, C. L. Fincher, and L. G. DeShazer, “Continuous-wave operation of Nd:YV04 at 1.06 and 1.34 μm,” J. Appl. Phys. 47, 232–234 (1976).
[CrossRef]

Blackburn, D. H.

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphortellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

Bonelli, L.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+Yb3+ energy transfer in Nd3+→Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 0831131 (2009).
[CrossRef]

Boughton, R. I.

Bramall, L.

M. Zuker, A. G. Szabo, L. Bramall, and D. T. Kraiacarski, “Delta function convolution method (DFCM) for fluorescence decay experiments,” Rev. Sci. Instrum. 56, 14–22 (1985).
[CrossRef]

Cavalli, E.

F. S. Ermeneux, C. Goutaudier, R. Moncorge, M. T. Cohen-Adad, M. Bettinelli, and E. Cavalli, “Comparative optical characterization of various Nd:YVO4 single crystals,” Opt. Mater. 13, 193–204 (1999).
[CrossRef]

Chai, B. H. T.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67, 549–553 (1998).
[CrossRef]

Chartier, I.

N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorge, “Performance of various diode-pumped Nd:laser materials: influence of inhomogeneous broadening,” IEEE J. Quantum Electron 28, 1179–1187 (1992).
[CrossRef]

Chen, L. J.

L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. Sun, and X. G. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1−xVO4 series crystals,” AIP Adv. 1, 0421431 (2011).
[CrossRef]

Chen, Y. C.

Chen, Y. F.

Cheng, X.

H. Yu, Y. Yu, H. Zhang, Z. Wang, J. Wang, X. Cheng, Z. Shao, and M. Jiang, “Growth and laser characterization of mixed Nd:LuxGd1−xVO4 laser crystals,” J. Cryst. Growth 293, 394–397(2006).
[CrossRef]

Cohen-Adad, M. T.

F. S. Ermeneux, C. Goutaudier, R. Moncorge, M. T. Cohen-Adad, M. Bettinelli, and E. Cavalli, “Comparative optical characterization of various Nd:YVO4 single crystals,” Opt. Mater. 13, 193–204 (1999).
[CrossRef]

Cornacchia, F.

Délen, X.

DeShazer, L. G.

A. W. Tucker, M. Birnbaum, C. L. Fincher, and L. G. DeShazer, “Continuous-wave operation of Nd:YV04 at 1.06 and 1.34 μm,” J. Appl. Phys. 47, 232–234 (1976).
[CrossRef]

Dong, C.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+Yb3+ energy transfer in Nd3+→Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 0831131 (2009).
[CrossRef]

Erler, J. W.

A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erler, “Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4,” J. Appl. Phys. 48, 4907–4911 (1977).
[CrossRef]

Ermeneux, F. S.

F. S. Ermeneux, C. Goutaudier, R. Moncorge, M. T. Cohen-Adad, M. Bettinelli, and E. Cavalli, “Comparative optical characterization of various Nd:YVO4 single crystals,” Opt. Mater. 13, 193–204 (1999).
[CrossRef]

Fincher, C. L.

A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erler, “Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4,” J. Appl. Phys. 48, 4907–4911 (1977).
[CrossRef]

A. W. Tucker, M. Birnbaum, C. L. Fincher, and L. G. DeShazer, “Continuous-wave operation of Nd:YV04 at 1.06 and 1.34 μm,” J. Appl. Phys. 47, 232–234 (1976).
[CrossRef]

Fornasiero, L.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67, 549–553 (1998).
[CrossRef]

Garapon, C.

N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorge, “Performance of various diode-pumped Nd:laser materials: influence of inhomogeneous broadening,” IEEE J. Quantum Electron 28, 1179–1187 (1992).
[CrossRef]

Georges, P.

Gourier, D.

O. Guillot-Noël, B. Viana, B. Bellamy, D. Gourier, G. B. Zogo-Mboulou, and S. Jandl, “Spectroscopic evidence of inhomogeneous distribution of Nd3+ in YVO4, YPO4 and YAsO4crystals,” Opt. Mater. 13, 427–437 (2000).
[CrossRef]

Goutaudier, C.

F. S. Ermeneux, C. Goutaudier, R. Moncorge, M. T. Cohen-Adad, M. Bettinelli, and E. Cavalli, “Comparative optical characterization of various Nd:YVO4 single crystals,” Opt. Mater. 13, 193–204 (1999).
[CrossRef]

Guillot-Noël, O.

O. Guillot-Noël, B. Viana, B. Bellamy, D. Gourier, G. B. Zogo-Mboulou, and S. Jandl, “Spectroscopic evidence of inhomogeneous distribution of Nd3+ in YVO4, YPO4 and YAsO4crystals,” Opt. Mater. 13, 427–437 (2000).
[CrossRef]

Guo, L.

L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. Sun, and X. G. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1−xVO4 series crystals,” AIP Adv. 1, 0421431 (2011).
[CrossRef]

Hu, D. W.

L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. Sun, and X. G. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1−xVO4 series crystals,” AIP Adv. 1, 0421431 (2011).
[CrossRef]

Huang, M. J.

Huber, G.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67, 549–553 (1998).
[CrossRef]

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
[CrossRef]

Jandl, S.

O. Guillot-Noël, B. Viana, B. Bellamy, D. Gourier, G. B. Zogo-Mboulou, and S. Jandl, “Spectroscopic evidence of inhomogeneous distribution of Nd3+ in YVO4, YPO4 and YAsO4crystals,” Opt. Mater. 13, 427–437 (2000).
[CrossRef]

Jensen, T.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67, 549–553 (1998).
[CrossRef]

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
[CrossRef]

Jenssen, H. P.

G. Turri, H. P. Jenssen, F. Cornacchia, M. Tonelli, and M. Bassi, “Temperature-dependent stimulated emission cross section in Nd:YVO4 crystals,” J. Opt. Soc. Am. B 26, 2084–2088 (2009).
[CrossRef]

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).
[CrossRef]

Jia, Z.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+Yb3+ energy transfer in Nd3+→Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 0831131 (2009).
[CrossRef]

Jiang, M.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+Yb3+ energy transfer in Nd3+→Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 0831131 (2009).
[CrossRef]

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, D. Tang, G. Xie, H. Luo, and M. Jiang, “Passive mode-locking performance with a mixed Nd:Lu0.5Gd0.5VO4 crystal,” Opt. Express 17, 3264–3269 (2009).
[CrossRef]

Y. Yu, J. Wang, H. Zhang, H. Yu, Z. Wang, M. Jiang, H. Xia, and R. I. Boughton, “Growth and characterization of Nd:YxGd1−xVO4 series laser crystals,” J. Opt. Soc. Am. B 25, 995–1001(2008).
[CrossRef]

H. Yu, Y. Yu, H. Zhang, Z. Wang, J. Wang, X. Cheng, Z. Shao, and M. Jiang, “Growth and laser characterization of mixed Nd:LuxGd1−xVO4 laser crystals,” J. Cryst. Growth 293, 394–397(2006).
[CrossRef]

J. Liu, X. Meng, Z. Shao, and M. Jiang, “Pulse energy enhancement in passive Q-switching operation with a class of Nd:GdxY1−xVO4 crystals,” Appl. Phys. Lett. 83, 1289–1291 (2003).
[CrossRef]

Jiang, M. H.

K. Wu, B. Yao, H. J. Zhang, H. H. Yu, Z. P. Wang, J. Y. Wang, and M. H. Jiang, “Growth and properties of Nd:Lu3Gs5O12 laser crystal by floating-zone method,” J. Cryst. Growth 312, 3631–3636 (2010).
[CrossRef]

Karpick, J. T.

J. T. Karpick and B. D. Bartolo, “Thermal dependence of the positions and widths of the fluorescence lines of Cr3+ and Er3+ in YAG,” Nuovo Cimento B 7, 62–70 (1972).
[CrossRef]

Kraiacarski, D. T.

M. Zuker, A. G. Szabo, L. Bramall, and D. T. Kraiacarski, “Delta function convolution method (DFCM) for fluorescence decay experiments,” Rev. Sci. Instrum. 56, 14–22 (1985).
[CrossRef]

Ku, M. L.

Kück, S.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67, 549–553 (1998).
[CrossRef]

Leung, K. M.

J. G. Sliney, K. M. Leung, M. Birnbaum, and A. W. Tucker, “Lifetimes of the F3/24 state in Nd:YVO4,” J. Appl. Phys. 50, 3778–3779 (1979).
[CrossRef]

Li, T.

Liu, J.

J. Liu, X. Meng, Z. Shao, and M. Jiang, “Pulse energy enhancement in passive Q-switching operation with a class of Nd:GdxY1−xVO4 crystals,” Appl. Phys. Lett. 83, 1289–1291 (2003).
[CrossRef]

Luo, H.

Maiman, T. H.

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[CrossRef]

Mao, Y. L.

Mejia, E. B.

G. V. Vazquez, M. E. Sanchez-Morales, and E. B. Mejia, “Laser oscillation in Nd:YVO4 channel waveguides fabricated by ion implantation,” Proc. SPIE 7099, 709911 (2008).
[CrossRef]

Meng, X.

J. Liu, X. Meng, Z. Shao, and M. Jiang, “Pulse energy enhancement in passive Q-switching operation with a class of Nd:GdxY1−xVO4 crystals,” Appl. Phys. Lett. 83, 1289–1291 (2003).
[CrossRef]

Mermilliod, N.

N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorge, “Performance of various diode-pumped Nd:laser materials: influence of inhomogeneous broadening,” IEEE J. Quantum Electron 28, 1179–1187 (1992).
[CrossRef]

Meyn, J. P.

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
[CrossRef]

Moncorge, R.

F. S. Ermeneux, C. Goutaudier, R. Moncorge, M. T. Cohen-Adad, M. Bettinelli, and E. Cavalli, “Comparative optical characterization of various Nd:YVO4 single crystals,” Opt. Mater. 13, 193–204 (1999).
[CrossRef]

N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorge, “Performance of various diode-pumped Nd:laser materials: influence of inhomogeneous broadening,” IEEE J. Quantum Electron 28, 1179–1187 (1992).
[CrossRef]

Myers, J. D.

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphortellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

Naiman, C. S.

R. C. Powell, B. D. Bartolo, B. Birang, and C. S. Naiman, “Temperature dependence of the widths and positions of the R and N lines in heavily doped ruby,” J. Appl. Phys. 37, 4973–4978 (1966).
[CrossRef]

Ostroumov, V. G.

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
[CrossRef]

Powell, R. C.

D. Sardar and R. C. Powell, “Energy transfer processes in YVO4:Nd3+,” J. Appl. Phys. 51, 2829–2835 (1980).
[CrossRef]

R. C. Powell, B. D. Bartolo, B. Birang, and C. S. Naiman, “Temperature dependence of the widths and positions of the R and N lines in heavily doped ruby,” J. Appl. Phys. 37, 4973–4978 (1966).
[CrossRef]

Romero, R.

N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorge, “Performance of various diode-pumped Nd:laser materials: influence of inhomogeneous broadening,” IEEE J. Quantum Electron 28, 1179–1187 (1992).
[CrossRef]

Sanchez-Morales, M. E.

G. V. Vazquez, M. E. Sanchez-Morales, and E. B. Mejia, “Laser oscillation in Nd:YVO4 channel waveguides fabricated by ion implantation,” Proc. SPIE 7099, 709911 (2008).
[CrossRef]

Sardar, D.

D. Sardar and R. C. Powell, “Energy transfer processes in YVO4:Nd3+,” J. Appl. Phys. 51, 2829–2835 (1980).
[CrossRef]

Sardar, D. K.

D. K. Sardar and R. M. Yow, “Stark components of F3/24, I9/24and I11/24 manifold energy levels and effects of temperature on the laser transition of Nd3+ in YVO4,” Opt. Mater. 14, 5–11 (2000).
[CrossRef]

Sato, Y.

Schawlow, A. L.

W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev. 136, A271–A283 (1964).
[CrossRef]

Scott, W. C.

W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev. 136, A271–A283 (1964).
[CrossRef]

Shao, Z.

H. Yu, Y. Yu, H. Zhang, Z. Wang, J. Wang, X. Cheng, Z. Shao, and M. Jiang, “Growth and laser characterization of mixed Nd:LuxGd1−xVO4 laser crystals,” J. Cryst. Growth 293, 394–397(2006).
[CrossRef]

J. Liu, X. Meng, Z. Shao, and M. Jiang, “Pulse energy enhancement in passive Q-switching operation with a class of Nd:GdxY1−xVO4 crystals,” Appl. Phys. Lett. 83, 1289–1291 (2003).
[CrossRef]

Shcherbakov, I. A.

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
[CrossRef]

Sliney, J. G.

J. G. Sliney, K. M. Leung, M. Birnbaum, and A. W. Tucker, “Lifetimes of the F3/24 state in Nd:YVO4,” J. Appl. Phys. 50, 3778–3779 (1979).
[CrossRef]

Sun, X.

L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. Sun, and X. G. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1−xVO4 series crystals,” AIP Adv. 1, 0421431 (2011).
[CrossRef]

Szabo, A. G.

M. Zuker, A. G. Szabo, L. Bramall, and D. T. Kraiacarski, “Delta function convolution method (DFCM) for fluorescence decay experiments,” Rev. Sci. Instrum. 56, 14–22 (1985).
[CrossRef]

Taira, T.

Tang, D.

Tao, X.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+Yb3+ energy transfer in Nd3+→Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 0831131 (2009).
[CrossRef]

Tonelli, M.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+Yb3+ energy transfer in Nd3+→Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 0831131 (2009).
[CrossRef]

G. Turri, H. P. Jenssen, F. Cornacchia, M. Tonelli, and M. Bassi, “Temperature-dependent stimulated emission cross section in Nd:YVO4 crystals,” J. Opt. Soc. Am. B 26, 2084–2088 (2009).
[CrossRef]

Tsai, L. Y.

Tucker, A. W.

J. G. Sliney, K. M. Leung, M. Birnbaum, and A. W. Tucker, “Lifetimes of the F3/24 state in Nd:YVO4,” J. Appl. Phys. 50, 3778–3779 (1979).
[CrossRef]

A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erler, “Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4,” J. Appl. Phys. 48, 4907–4911 (1977).
[CrossRef]

A. W. Tucker, M. Birnbaum, C. L. Fincher, and L. G. DeShazer, “Continuous-wave operation of Nd:YV04 at 1.06 and 1.34 μm,” J. Appl. Phys. 47, 232–234 (1976).
[CrossRef]

Turri, G.

Vazquez, G. V.

G. V. Vazquez, M. E. Sanchez-Morales, and E. B. Mejia, “Laser oscillation in Nd:YVO4 channel waveguides fabricated by ion implantation,” Proc. SPIE 7099, 709911 (2008).
[CrossRef]

Viana, B.

O. Guillot-Noël, B. Viana, B. Bellamy, D. Gourier, G. B. Zogo-Mboulou, and S. Jandl, “Spectroscopic evidence of inhomogeneous distribution of Nd3+ in YVO4, YPO4 and YAsO4crystals,” Opt. Mater. 13, 427–437 (2000).
[CrossRef]

Wang, C. S.

Wang, J.

Wang, J. Y.

K. Wu, B. Yao, H. J. Zhang, H. H. Yu, Z. P. Wang, J. Y. Wang, and M. H. Jiang, “Growth and properties of Nd:Lu3Gs5O12 laser crystal by floating-zone method,” J. Cryst. Growth 312, 3631–3636 (2010).
[CrossRef]

Wang, Z.

Wang, Z. P.

L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. Sun, and X. G. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1−xVO4 series crystals,” AIP Adv. 1, 0421431 (2011).
[CrossRef]

K. Wu, B. Yao, H. J. Zhang, H. H. Yu, Z. P. Wang, J. Y. Wang, and M. H. Jiang, “Growth and properties of Nd:Lu3Gs5O12 laser crystal by floating-zone method,” J. Cryst. Growth 312, 3631–3636 (2010).
[CrossRef]

Weber, M. J.

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphortellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

Wu, K.

K. Wu, B. Yao, H. J. Zhang, H. H. Yu, Z. P. Wang, J. Y. Wang, and M. H. Jiang, “Growth and properties of Nd:Lu3Gs5O12 laser crystal by floating-zone method,” J. Cryst. Growth 312, 3631–3636 (2010).
[CrossRef]

Xia, H.

Xie, G.

Xu, X. G.

L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. Sun, and X. G. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1−xVO4 series crystals,” AIP Adv. 1, 0421431 (2011).
[CrossRef]

Yang, K.

Yao, B.

K. Wu, B. Yao, H. J. Zhang, H. H. Yu, Z. P. Wang, J. Y. Wang, and M. H. Jiang, “Growth and properties of Nd:Lu3Gs5O12 laser crystal by floating-zone method,” J. Cryst. Growth 312, 3631–3636 (2010).
[CrossRef]

Yen, W. M.

W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev. 136, A271–A283 (1964).
[CrossRef]

Yow, R. M.

D. K. Sardar and R. M. Yow, “Stark components of F3/24, I9/24and I11/24 manifold energy levels and effects of temperature on the laser transition of Nd3+ in YVO4,” Opt. Mater. 14, 5–11 (2000).
[CrossRef]

Yu, H.

Yu, H. H.

L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. Sun, and X. G. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1−xVO4 series crystals,” AIP Adv. 1, 0421431 (2011).
[CrossRef]

K. Wu, B. Yao, H. J. Zhang, H. H. Yu, Z. P. Wang, J. Y. Wang, and M. H. Jiang, “Growth and properties of Nd:Lu3Gs5O12 laser crystal by floating-zone method,” J. Cryst. Growth 312, 3631–3636 (2010).
[CrossRef]

Yu, Y.

Zagumennyi, A. I.

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
[CrossRef]

Zhang, H.

Zhang, H. J.

K. Wu, B. Yao, H. J. Zhang, H. H. Yu, Z. P. Wang, J. Y. Wang, and M. H. Jiang, “Growth and properties of Nd:Lu3Gs5O12 laser crystal by floating-zone method,” J. Cryst. Growth 312, 3631–3636 (2010).
[CrossRef]

Zhang, J.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+Yb3+ energy transfer in Nd3+→Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 0831131 (2009).
[CrossRef]

Zhao, B.

Zhao, J.

Zhao, S.

Zhao, Y. G.

L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. Sun, and X. G. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1−xVO4 series crystals,” AIP Adv. 1, 0421431 (2011).
[CrossRef]

Zhuang, S. D.

L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. Sun, and X. G. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1−xVO4 series crystals,” AIP Adv. 1, 0421431 (2011).
[CrossRef]

Zhuo, Z.

Zogo-Mboulou, G. B.

O. Guillot-Noël, B. Viana, B. Bellamy, D. Gourier, G. B. Zogo-Mboulou, and S. Jandl, “Spectroscopic evidence of inhomogeneous distribution of Nd3+ in YVO4, YPO4 and YAsO4crystals,” Opt. Mater. 13, 427–437 (2000).
[CrossRef]

Zuker, M.

M. Zuker, A. G. Szabo, L. Bramall, and D. T. Kraiacarski, “Delta function convolution method (DFCM) for fluorescence decay experiments,” Rev. Sci. Instrum. 56, 14–22 (1985).
[CrossRef]

AIP Adv. (1)

L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. Sun, and X. G. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1−xVO4 series crystals,” AIP Adv. 1, 0421431 (2011).
[CrossRef]

Appl. Phys. B (2)

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67, 549–553 (1998).
[CrossRef]

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

J. Liu, X. Meng, Z. Shao, and M. Jiang, “Pulse energy enhancement in passive Q-switching operation with a class of Nd:GdxY1−xVO4 crystals,” Appl. Phys. Lett. 83, 1289–1291 (2003).
[CrossRef]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron (1)

N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorge, “Performance of various diode-pumped Nd:laser materials: influence of inhomogeneous broadening,” IEEE J. Quantum Electron 28, 1179–1187 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).
[CrossRef]

J. Appl. Phys. (7)

A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erler, “Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4,” J. Appl. Phys. 48, 4907–4911 (1977).
[CrossRef]

D. Sardar and R. C. Powell, “Energy transfer processes in YVO4:Nd3+,” J. Appl. Phys. 51, 2829–2835 (1980).
[CrossRef]

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphortellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

R. C. Powell, B. D. Bartolo, B. Birang, and C. S. Naiman, “Temperature dependence of the widths and positions of the R and N lines in heavily doped ruby,” J. Appl. Phys. 37, 4973–4978 (1966).
[CrossRef]

A. W. Tucker, M. Birnbaum, C. L. Fincher, and L. G. DeShazer, “Continuous-wave operation of Nd:YV04 at 1.06 and 1.34 μm,” J. Appl. Phys. 47, 232–234 (1976).
[CrossRef]

J. G. Sliney, K. M. Leung, M. Birnbaum, and A. W. Tucker, “Lifetimes of the F3/24 state in Nd:YVO4,” J. Appl. Phys. 50, 3778–3779 (1979).
[CrossRef]

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+Yb3+ energy transfer in Nd3+→Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 0831131 (2009).
[CrossRef]

J. Cryst. Growth (2)

H. Yu, Y. Yu, H. Zhang, Z. Wang, J. Wang, X. Cheng, Z. Shao, and M. Jiang, “Growth and laser characterization of mixed Nd:LuxGd1−xVO4 laser crystals,” J. Cryst. Growth 293, 394–397(2006).
[CrossRef]

K. Wu, B. Yao, H. J. Zhang, H. H. Yu, Z. P. Wang, J. Y. Wang, and M. H. Jiang, “Growth and properties of Nd:Lu3Gs5O12 laser crystal by floating-zone method,” J. Cryst. Growth 312, 3631–3636 (2010).
[CrossRef]

J. Opt. Soc. Am. B (4)

Nature (1)

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[CrossRef]

Nuovo Cimento B (1)

J. T. Karpick and B. D. Bartolo, “Thermal dependence of the positions and widths of the fluorescence lines of Cr3+ and Er3+ in YAG,” Nuovo Cimento B 7, 62–70 (1972).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. (3)

O. Guillot-Noël, B. Viana, B. Bellamy, D. Gourier, G. B. Zogo-Mboulou, and S. Jandl, “Spectroscopic evidence of inhomogeneous distribution of Nd3+ in YVO4, YPO4 and YAsO4crystals,” Opt. Mater. 13, 427–437 (2000).
[CrossRef]

D. K. Sardar and R. M. Yow, “Stark components of F3/24, I9/24and I11/24 manifold energy levels and effects of temperature on the laser transition of Nd3+ in YVO4,” Opt. Mater. 14, 5–11 (2000).
[CrossRef]

F. S. Ermeneux, C. Goutaudier, R. Moncorge, M. T. Cohen-Adad, M. Bettinelli, and E. Cavalli, “Comparative optical characterization of various Nd:YVO4 single crystals,” Opt. Mater. 13, 193–204 (1999).
[CrossRef]

Opt. Mater. Express (1)

Phys. Rev. (1)

W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev. 136, A271–A283 (1964).
[CrossRef]

Proc. SPIE (1)

G. V. Vazquez, M. E. Sanchez-Morales, and E. B. Mejia, “Laser oscillation in Nd:YVO4 channel waveguides fabricated by ion implantation,” Proc. SPIE 7099, 709911 (2008).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Zuker, A. G. Szabo, L. Bramall, and D. T. Kraiacarski, “Delta function convolution method (DFCM) for fluorescence decay experiments,” Rev. Sci. Instrum. 56, 14–22 (1985).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Decay curves of Nd:YVO4 and Nd:Gd0.63Y0.37VO4 at 300 K. Inset, fitting result of the Nd:Gd0.63Y0.37VO4 decay time curve.

Fig. 2.
Fig. 2.

Fluorescence lifetime of Nd:GdxY1xVO4 (x=0, 0.37, 0.47, 0.63, and 0.83) at different temperatures.

Fig. 3.
Fig. 3.

π-polarization (upper part) and σ-polarization (lower part) emission spectrum of Nd3+ F3/24I11/24 transition in Nd:Gd0.63Y0.37VO4 at temperatures of 77, 150, 230, and 300 K.

Fig. 4.
Fig. 4.

Peak emission wavelength (left) and the FWHM (right) of Nd:GdxY1xVO4 (x=0, 0.37, 0.47, 0.63, and 0.83) crystals versus Gd composition for π-polarization (upper part) and σ-polarization (lower part) at different temperatures.

Fig. 5.
Fig. 5.

π-polarization (upper part) and σ-polarization (lower part) emission spectra of Nd3+ F3/24I11/24 transition in YVO4, Gd0.63Y0.37VO4, and Gd0.83Y0.17VO4 at 77 K.

Fig. 6.
Fig. 6.

Stimulated emission cross section of Nd:GdxY1xVO4 (x=0, 0.37, 0.47, 0.63, and 0.83) crystals for π-polarization (upper part) and σ-polarization (lower part) emission of the F3/24I11/24 transition versus composition x (left) and temperatures (right).

Fig. 7.
Fig. 7.

π-polarization emission spectra of Nd3+ F3/24I13/24 transition in Nd:Gd0.63Y0.37VO4 crystal at temperatures of 77, 150, 230, and 300 K. Inset: π-polarization and σ-polarization emission spectra of Nd:Gd0.63Y0.37VO4 at 77 K.

Fig. 8.
Fig. 8.

FWHM (left) and stimulated emission cross-section (right) of π-polarization Nd3+ F3/24I13/24 transition in Nd:GdxY1xVO4 (x=0, 0.37, 0.47, 0.63 and 0.83) crystals at different temperatures.

Tables (1)

Tables Icon

Table 1. Comparison of Spectroscopic Parameters of Nd:YVO4, Nd:Gd0.63Y0.37VO4 and Nd:GdVO4 Crystals at the Temperature of 300 K

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

F(τ)=A+j=1iBj×e(t/τj),
τ(T)=1+exp(ΔE/kT)(1/τ1)+(1/τ2)exp(ΔE/kT),
Δν=Δν0+¯(TTD)70TD/Tx6exdx(ex1)2+j<iβij(eΔEij/kTeΔEij/kT1)+j>iβij(1eΔEji/kT1),
Δν=Δν0+ΔνT,
σe(λ)=λ4I(λ)8πcn2τI(λ)dλ,
σe(T)λ2(T)(Δλ0+ΔλT)·τ(T),

Metrics