Abstract

Focused femtosecond lasers are known for their ability to modify transparent materials well below the surface with 3D selectivity, but spherical aberration causes degraded focal intensity and undesirable absorption conditions as focal depth increases. To eliminate such effects we have implemented an aberration correction procedure that accounts for multiple refracting layers in order to crystallize LaBGeO5 glass inside a temperature-controlled microscope stage via irradiation through a silica glass window. The correction, applied by a spatial light modulator, was effective at removing the focal depth-dependent degradation and achieving consistent heating conditions at different depths, an important consideration for patterning single-crystal architecture in 3D. Additional effects are noted, which produce a range of crystal cross-section shapes and varying degrees of partial crystallization of the melt.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25, 408–410 (2000).
    [CrossRef]
  2. Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351, 885–892 (2005).
    [CrossRef]
  3. Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
    [CrossRef]
  4. B. Zhu, Y. Dai, H. Ma, S. Zhang, G. Lin, and J. Qiu, “Femtosecond laser induced space-selective precipitation of nonlinear optical crystals in rare-earth-doped glasses,” Opt. Express 15, 6069–6074 (2007).
    [CrossRef]
  5. B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation,” Appl. Phys. A 101, 19–25 (2010).
    [CrossRef]
  6. C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express 15, 10303–10317 (2007).
    [CrossRef]
  7. A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids 356, 3059–3065 (2010).
    [CrossRef]
  8. A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Unexpected influence of focal depth on nucleation during femtosecond laser crystallization of glass,” Opt. Mater. Express 1, 990–994 (2011).
    [CrossRef]
  9. H. Itoh, N. Matsumoto, and T. Inoue, “Spherical aberration correction suitable for a wavefront controller,” Opt. Express 17, 14367–14373 (2009).
    [CrossRef]
  10. V. N. Sigaev, S. Y. Stefanovich, P. D. Sarkisov, and E. V. Lopatina, “Lanthanum borogermanate glasses and crystallization of stillwellite LaBGeO5: I. Specific features of synthesis and physicochemical properties of glasses,” Glass Phys. Chem. 20, 392–397 (1994).
  11. M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 260 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).
    [CrossRef]
  12. B. L. Thiel and M. Toth, “Secondary electron contrast in low-vacuum/environmental scanning electron microscopy of dielectrics,” J. Appl. Phys 97, 051101 (2005).
    [CrossRef]
  13. K. Robertson, R. Gauvin, and J. Finch, “Application of charge contrast imaging in mineral characterization,” Minerals Eng. 18, 343–352 (2005).
    [CrossRef]
  14. G. R. Watt, B. J. Griffin, and P. D. Kinny, “Charge contrast imaging of geological materials in the environmental scanning electron microscope,” Am. Mineralogist 85, 1784–1794(2000).
  15. A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express 17, 23284–23289 (2009).
    [CrossRef]

2011 (1)

2010 (2)

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation,” Appl. Phys. A 101, 19–25 (2010).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids 356, 3059–3065 (2010).
[CrossRef]

2009 (2)

2008 (1)

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 260 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

2007 (3)

2005 (3)

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351, 885–892 (2005).
[CrossRef]

B. L. Thiel and M. Toth, “Secondary electron contrast in low-vacuum/environmental scanning electron microscopy of dielectrics,” J. Appl. Phys 97, 051101 (2005).
[CrossRef]

K. Robertson, R. Gauvin, and J. Finch, “Application of charge contrast imaging in mineral characterization,” Minerals Eng. 18, 343–352 (2005).
[CrossRef]

2000 (2)

G. R. Watt, B. J. Griffin, and P. D. Kinny, “Charge contrast imaging of geological materials in the environmental scanning electron microscope,” Am. Mineralogist 85, 1784–1794(2000).

K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25, 408–410 (2000).
[CrossRef]

1994 (1)

V. N. Sigaev, S. Y. Stefanovich, P. D. Sarkisov, and E. V. Lopatina, “Lanthanum borogermanate glasses and crystallization of stillwellite LaBGeO5: I. Specific features of synthesis and physicochemical properties of glasses,” Glass Phys. Chem. 20, 392–397 (1994).

Araki, R.

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351, 885–892 (2005).
[CrossRef]

Arnold, C. L.

Brenk, O.

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation,” Appl. Phys. A 101, 19–25 (2010).
[CrossRef]

Cao, S.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[CrossRef]

Dai, Y.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[CrossRef]

B. Zhu, Y. Dai, H. Ma, S. Zhang, G. Lin, and J. Qiu, “Femtosecond laser induced space-selective precipitation of nonlinear optical crystals in rare-earth-doped glasses,” Opt. Express 15, 6069–6074 (2007).
[CrossRef]

Dierolf, V.

Ertmer, W.

Finch, J.

K. Robertson, R. Gauvin, and J. Finch, “Application of charge contrast imaging in mineral characterization,” Minerals Eng. 18, 343–352 (2005).
[CrossRef]

Fujita, K.

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351, 885–892 (2005).
[CrossRef]

Gauvin, R.

K. Robertson, R. Gauvin, and J. Finch, “Application of charge contrast imaging in mineral characterization,” Minerals Eng. 18, 343–352 (2005).
[CrossRef]

Griffin, B. J.

G. R. Watt, B. J. Griffin, and P. D. Kinny, “Charge contrast imaging of geological materials in the environmental scanning electron microscope,” Am. Mineralogist 85, 1784–1794(2000).

Gupta, P.

Heisterkamp, A.

Hirao, K.

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Unexpected influence of focal depth on nucleation during femtosecond laser crystallization of glass,” Opt. Mater. Express 1, 990–994 (2011).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids 356, 3059–3065 (2010).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express 17, 23284–23289 (2009).
[CrossRef]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 260 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351, 885–892 (2005).
[CrossRef]

K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25, 408–410 (2000).
[CrossRef]

Hoffmann, D. H. H.

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation,” Appl. Phys. A 101, 19–25 (2010).
[CrossRef]

Inoue, T.

Itoh, H.

Jain, H.

Kinny, P. D.

G. R. Watt, B. J. Griffin, and P. D. Kinny, “Charge contrast imaging of geological materials in the environmental scanning electron microscope,” Am. Mineralogist 85, 1784–1794(2000).

Krutsch, H.

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation,” Appl. Phys. A 101, 19–25 (2010).
[CrossRef]

Lin, G.

Lopatina, E. V.

V. N. Sigaev, S. Y. Stefanovich, P. D. Sarkisov, and E. V. Lopatina, “Lanthanum borogermanate glasses and crystallization of stillwellite LaBGeO5: I. Specific features of synthesis and physicochemical properties of glasses,” Glass Phys. Chem. 20, 392–397 (1994).

Lu, B.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[CrossRef]

Lubatschowski, H.

Ma, H.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[CrossRef]

B. Zhu, Y. Dai, H. Ma, S. Zhang, G. Lin, and J. Qiu, “Femtosecond laser induced space-selective precipitation of nonlinear optical crystals in rare-earth-doped glasses,” Opt. Express 15, 6069–6074 (2007).
[CrossRef]

Matsumoto, N.

Medvedev, N.

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation,” Appl. Phys. A 101, 19–25 (2010).
[CrossRef]

Mitsuyu, T.

Miura, K.

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Unexpected influence of focal depth on nucleation during femtosecond laser crystallization of glass,” Opt. Mater. Express 1, 990–994 (2011).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids 356, 3059–3065 (2010).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express 17, 23284–23289 (2009).
[CrossRef]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 260 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351, 885–892 (2005).
[CrossRef]

K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25, 408–410 (2000).
[CrossRef]

Qiu, J.

Rethfeld, B.

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation,” Appl. Phys. A 101, 19–25 (2010).
[CrossRef]

Robertson, K.

K. Robertson, R. Gauvin, and J. Finch, “Application of charge contrast imaging in mineral characterization,” Minerals Eng. 18, 343–352 (2005).
[CrossRef]

Sakakura, M.

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Unexpected influence of focal depth on nucleation during femtosecond laser crystallization of glass,” Opt. Mater. Express 1, 990–994 (2011).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids 356, 3059–3065 (2010).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express 17, 23284–23289 (2009).
[CrossRef]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 260 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

Sarkisov, P. D.

V. N. Sigaev, S. Y. Stefanovich, P. D. Sarkisov, and E. V. Lopatina, “Lanthanum borogermanate glasses and crystallization of stillwellite LaBGeO5: I. Specific features of synthesis and physicochemical properties of glasses,” Glass Phys. Chem. 20, 392–397 (1994).

Shimizu, M.

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 260 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

Shimotsuma, Y.

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Unexpected influence of focal depth on nucleation during femtosecond laser crystallization of glass,” Opt. Mater. Express 1, 990–994 (2011).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids 356, 3059–3065 (2010).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express 17, 23284–23289 (2009).
[CrossRef]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 260 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

Sigaev, V. N.

V. N. Sigaev, S. Y. Stefanovich, P. D. Sarkisov, and E. V. Lopatina, “Lanthanum borogermanate glasses and crystallization of stillwellite LaBGeO5: I. Specific features of synthesis and physicochemical properties of glasses,” Glass Phys. Chem. 20, 392–397 (1994).

Stefanovich, S. Y.

V. N. Sigaev, S. Y. Stefanovich, P. D. Sarkisov, and E. V. Lopatina, “Lanthanum borogermanate glasses and crystallization of stillwellite LaBGeO5: I. Specific features of synthesis and physicochemical properties of glasses,” Glass Phys. Chem. 20, 392–397 (1994).

Stone, A.

Stone, G.

Thiel, B. L.

B. L. Thiel and M. Toth, “Secondary electron contrast in low-vacuum/environmental scanning electron microscopy of dielectrics,” J. Appl. Phys 97, 051101 (2005).
[CrossRef]

Toth, M.

B. L. Thiel and M. Toth, “Secondary electron contrast in low-vacuum/environmental scanning electron microscopy of dielectrics,” J. Appl. Phys 97, 051101 (2005).
[CrossRef]

Watt, G. R.

G. R. Watt, B. J. Griffin, and P. D. Kinny, “Charge contrast imaging of geological materials in the environmental scanning electron microscope,” Am. Mineralogist 85, 1784–1794(2000).

Yonesaki, Y.

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351, 885–892 (2005).
[CrossRef]

Yu, B.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[CrossRef]

Zhang, S.

Zhu, B.

B. Zhu, Y. Dai, H. Ma, S. Zhang, G. Lin, and J. Qiu, “Femtosecond laser induced space-selective precipitation of nonlinear optical crystals in rare-earth-doped glasses,” Opt. Express 15, 6069–6074 (2007).
[CrossRef]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[CrossRef]

Am. Mineralogist (1)

G. R. Watt, B. J. Griffin, and P. D. Kinny, “Charge contrast imaging of geological materials in the environmental scanning electron microscope,” Am. Mineralogist 85, 1784–1794(2000).

Appl. Phys. A (1)

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation,” Appl. Phys. A 101, 19–25 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[CrossRef]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 260 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

Glass Phys. Chem. (1)

V. N. Sigaev, S. Y. Stefanovich, P. D. Sarkisov, and E. V. Lopatina, “Lanthanum borogermanate glasses and crystallization of stillwellite LaBGeO5: I. Specific features of synthesis and physicochemical properties of glasses,” Glass Phys. Chem. 20, 392–397 (1994).

J. Appl. Phys (1)

B. L. Thiel and M. Toth, “Secondary electron contrast in low-vacuum/environmental scanning electron microscopy of dielectrics,” J. Appl. Phys 97, 051101 (2005).
[CrossRef]

J. Non-Cryst. Solids (2)

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351, 885–892 (2005).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids 356, 3059–3065 (2010).
[CrossRef]

Minerals Eng. (1)

K. Robertson, R. Gauvin, and J. Finch, “Application of charge contrast imaging in mineral characterization,” Minerals Eng. 18, 343–352 (2005).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. Express (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of laser optics. Average power is modulated by a graduated neutral-density (GND) filter, the beam diameter is expanded by telescope, a half-wave plate (HWP) rotates the beam polarization for SLM alignment, the SLM imparts customized phase shifts, the objective lens focuses the beam inside the glass sample, and the sample stage allows heating and XYZ mobility.

Fig. 2.
Fig. 2.

Focusing geometry used in aberration correction (see Section 2.A for a discussion of terms).

Fig. 3.
Fig. 3.

Effect of aberration correction, in order of increasing aberration from (a) to (d). Laser heat-modification profiles (laser incident vertically from above) were produced at room temperature by 30 s, 300 mW irradiation focused in the bare sample at (a) 0.5 mm and (b) 1 mm below the surface, and focused through the silica glass window at (c) 0.5 mm and (d) 1 mm below the sample surface. Each frame compares uncorrected and aberration-corrected irradiations (left and right, respectively), with the corresponding aberration correction pattern and its phase profile (varying from 0 to 2π) shown below.

Fig. 4.
Fig. 4.

LC-PolScope and transmission optical micrographs of crystal lines and their cross sections, respectively, written under various conditions. Lines are oriented with the cut surface near the bottom of the image. Average laser power and scanning speed of the focus are indicated below each cross section, and the color wheel indicates the orientations of the fast or slow axes in the LC-PolScope images. Groups (a), (c), and (d) were written at a 500 μm depth, and (b) and (e) at a 1000 μm depth. Groups (a), (b), and (c) were aberration-corrected; (d) and (e) were not. White arrows indicate crystals, and black arrows indicate laser-modified glass.

Fig. 5.
Fig. 5.

SEM crystal orientation data from the cross section of the first line in Fig. 4(a). (a) The ESED image reveals light and dark regions within the crystal, but these do not correspond to any features in the crystal orientation IPF maps. (b) An as-collected map for the TV direction shows a primary orientation near [21¯1¯0] containing scattered pixels of a secondary orientation near [12¯10], which can be attributed to pseudosymmetry artifacts. (c) The color correspondence and reference geometry. (d) Pseudosymmetry-corrected IPF maps for three orthogonal reference directions (TV, TH, and L) unambiguously reveal a single crystal with longitudinal orientation near [0001]. (e) The GAOD map shows only random noise, with relative misorientations of less than 1° and no evidence of distinct low-angle grain boundaries.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Φ(θ)=n1|AB|+n2|BC|+n3|CD|+n4|DE|=i=1Nnidicosθi=i=1Nni2dini2n12sin2θ1.
sin(θ)=n1sinθ1fi=1Ndini2n12sin2θ1.
d1=fcosθ+dNdfi=2Ndi.
sin(θθ1)=n1sinθ1f(dNdf+i=2Ndicosθ1ni2n12sin2θ1di).
Φ ( θ ) = f cos θ d f d w cos θ 1 + n w 2 d w n w 2 sin 2 θ 1 + n s 2 d s n s 2 sin 2 θ 1 ,
sin ( θ θ 1 ) = sin ( 2 θ 1 ) 2 f × ( d w n w 2 sin 2 θ 1 + d n s 2 sin 2 θ 1 d f + d w cos θ 1 ) .

Metrics