Abstract

We provide a methodology for the study of a photonic crystal microcavity and a quantum well (QW) in the strong coupling regime by finite difference in the time domain. Numerical results for an InP L7 photonic crystal microcavity coupled to an ideal QW are provided. A comparison of the time analysis processed by the discrete Fourier transform, the Padé approximant, and harmonic inversion is presented to optimize the computation time. We present a method to solve the uncertainty of the frequency spectrum depending on the starting time used in the spectral analysis. The influence of polarization anisotropy on strong coupling is studied. The Rabi splitting is exactly zero only when the induced polarization in the QW is aligned with a field component incompatible with the symmetry of the mode.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
    [CrossRef]
  2. B. Deveaud, The Physics of Semiconductor Microcavities(Wiley-VCH, 2007).
  3. D. Sanvitto and V. Timofeev, Exciton Polaritons in Microcavities: New Frontiers, Springer Series in Solid-State Sciences (Springer, 2012), Vol. 172.
  4. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House Antennas and Propagation Library (Artech House, 2000).
  5. D. Gerace, M. Agio, and L. C. Andreani, “Quantum theory of photonic crystal polaritons,” Phys. Status Solidi B 1, 446–449 (2004).
    [CrossRef]
  6. M. Sugawara, T. Fujii, S. Yamazaki, and K. Nakajima, “Optical characteristics of excitons in In1−xGaxAsyP1−y/InP quantum wells,” Phys. Rev. B 44, 1782–1791 (1991).
    [CrossRef]
  7. Y. Sidor, B. Partoens, F. M. Peeters, J. Maes, M. Hayne, D. Fuster, Y. González, L. González, and V. V. Moshchalkov, “Exciton confinement in InAs/InP quantum wires and quantum wells in the presence of a magnetic field,” Phys. Rev. B 76, 195320 (2007).
    [CrossRef]
  8. T. Gutbrod, M. Bayer, A. Forchel, J. P. Reithmaier, T. L. Reinecke, S. Rudin, and P. A. Knipp, “Weak and strong coupling of photons and excitons in photonic dots,” Phys. Rev. B 57, 9950–9956 (1998).
    [CrossRef]
  9. G. Panzarini and L. C. Andreani, “Quantum theory of exciton polaritons in cylindrical semiconductor microcavities,” Phys. Rev. B 60, 16799–16806 (1999).
    [CrossRef]
  10. R. Houdré, C. Weisbuch, R. P. Stanley, U. Oesterle, P. Pellandini, and M. Ilegems, “Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments,” Phys. Rev. Lett. 73, 2043–2046 (1994).
    [CrossRef]
  11. R. Houdré, R. P. Stanley, U. Oesterle, M. Ilegems, and C. Weisbuch, “Room-temperature cavity polaritons in a semiconductor microcavity,” Phys. Rev. B 49, 16761–16764 (1994).
    [CrossRef]
  12. E. L. Ivchenko and G. Pikus, Superlattices and Other Heterostructures: Symmetry and Optical Phenomena, Springer Series in Solid-State Sciences (Springer, 1997), Vol. 110.
  13. R. Shimada, A. Yablonskii, S. Tikhodeev, and T. Ishihara, “Transmission properties of a two-dimensional photonic crystal slab with an excitonic resonance,” IEEE J. Quantum Electron. 38, 872–879 (2002).
    [CrossRef]
  14. L. Andreani, D. Gerace, and M. Agio, “Exciton-polaritons and nanoscale cavities in photonic crystal slabs,” Phys. Status Solidi B 242, 2197–2209 (2005).
    [CrossRef]
  15. M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided bloch surface wave polaritons,” Appl. Phys. Lett. 98, 121118 (2011).
    [CrossRef]
  16. G. Tarel and V. Savona, “Linear spectrum of a quantum dot coupled to a nanocavity,” Phys. Rev. B 81, 075305 (2010).
    [CrossRef]
  17. S. Hughes and H. Kamada, “Single-quantum-dot strong coupling in a semiconductor photonic crystal nanocavity side coupled to a waveguide,” Phys. Rev. B 70, 195313 (2004).
    [CrossRef]
  18. L. A. Dunbar, R. P. Stanley, M. Lynch, J. Hegarty, U. Oesterle, R. Houdré, and M. Ilegems, “Excitation-induced coherence in a semiconductor microcavity,” Phys. Rev. B 66, 195307 (2002).
    [CrossRef]
  19. M. S. Skolnick, P. R. Tapster, S. J. Bass, A. D. Pitt, N. Apsley, and S. P. Aldred, “Investigation of InGaAs-InP quantum wells by optical spectroscopy,” Semicond. Sci. Technol. 1, 29–40(1986).
    [CrossRef]
  20. M. S. Skolnick, K. J. Nash, M. K. Saker, S. J. Bass, P. A. Claxton, and J. S. Roberts, “Free-carrier effects on luminescence linewidths in quantum wells,” Appl. Phys. Lett. 50, 1885–1887 (1987).
    [CrossRef]
  21. FDTD Solutions ver. 7.0. Lumerical Solutions, Inc., Vancouver, BC, Canada (2009).
  22. J. Vučković, O. Painter, Y. Xu, A. Yariv, and A. Scherer, “Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities,” IEEE J. Quantum Electron. 35, 1168–1175 (1999).
    [CrossRef]
  23. G. Slavcheva, J. Arnold, and R. Ziolkowski, “FDTD simulation of the nonlinear gain dynamics in active optical waveguides and semiconductor microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1052–1062 (2004).
    [CrossRef]
  24. H. Taniyama, H. Sumikura, and M. Notomi, “Finite-difference time-domain analysis of photonic crystal slab cavities with two-level systems,” Opt. Express 19, 23067 (2011).
    [CrossRef]
  25. V. Mandelshtam and H. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107, 6756 (1997).
    [CrossRef]
  26. V. Savona, Z. Hradil, A. Quattropani, and P. Schwendimann, “Quantum theory of quantum-well polaritons in semiconductor microcavities,” Phys. Rev. B 49, 8774–8779 (1994).
    [CrossRef]
  27. A. Kavokin and G. Malpuech, Cavity Polaritons, Thin Films and Nanostructures (Academic, 2003) Vol. 32.
  28. K. Cho, Optical Response of Nanostructures: Microscopic Nonlocal Theory (Springer, 2003).
  29. Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
    [CrossRef]
  30. L. C. Andreani, “Exciton-polaritons in superlattices,” Phys. Lett. A 192, 99–109 (1994).
    [CrossRef]
  31. D. Bajoni, “Polariton lasers. Hybrid light-matter lasers without inversion,” J. Phys. D 45, 313001 (2012).
    [CrossRef]
  32. B. Deveaud-Plédran, “On the condensation of polaritons,” J. Opt. Soc. Am. B 29, A138–A145 (2012).
    [CrossRef]
  33. R. P. Stanley, S. Pau, U. Oesterle, R. Houdré, and M. Ilegems, “Resonant photoluminescence of semiconductor microcavities: the role of acoustic phonons in polariton relaxation,” Phys. Rev. B 55, R4867–R4870 (1997).
    [CrossRef]
  34. G. Cassabois, A. L. C. Triques, F. Bogani, C. Delalande, P. Roussignol, and C. Piermarocchi, “Polariton–acoustic-phonon interaction in a semiconductor microcavity,” Phys. Rev. B 61, 1696–1699 (2000).
  35. H. M. Gibbs, G. Khitrova, and S. W. Koch, “Exciton-polariton light-semiconductor coupling effects,” Nat. Photonics 5, 273 (2011).
    [CrossRef]
  36. M. Kira and S. Koch, “Many-body correlations and excitonic effects in semiconductor spectroscopy,” Prog. Quantum Electron. 30, 155–296 (2006).
    [CrossRef]
  37. K. Böhringer and O. Hess, “A full-time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation,” Prog. Quantum Electron. 32, 159–246 (2008).
    [CrossRef]
  38. S.-H. Chang and A. Taflove, “Finite-difference time-domain model of lasing action in a four-level two-electron atomic system,” Opt. Express 12, 3827–3833 (2004).
    [CrossRef]
  39. Y. Huang and S.-T. Ho, “Computational model of solid-state, molecular, or atomic media for FDTD simulation based on a multi-level multi-electron system governed by pauli exclusion and Fermi-Dirac thermalization with application to semiconductor photonics,” Opt. Express 14, 3569–3587 (2006).
    [CrossRef]
  40. S. G. Johnson, “ http://ab-initio.mit.edu/wiki/index.php/Harminv .”
  41. Y. Zeng, Y. Fu, M. Bengtsson, X. Chen, W. Lu, and H. Ågren, “Finite-difference time-domain simulations of exciton-polariton resonances in quantum-dot arrays,” Opt. Express 16, 4507–4519 (2008).
    [CrossRef]
  42. J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems,” IEEE Trans. Evol. Comput. 10, 646–657 (2006).
    [CrossRef]
  43. F. Biscani, D. Izzo, and C. H. Yam, “A global optimisation toolbox for massively parallel engineering optimisation,” in 4th International Conference on Astrodynamics Tools and Techniques (ICATT), Madrid, Spain, 3–6 May2010. (arXiv:1004.3824v1)
  44. L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express 17, 14993–15000 (2009).
    [CrossRef]
  45. E. Palik, Handbook of Optical Constants of Solids, Academic Press Handbook Series (Academic, 1985) Vol. 1.
  46. D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lemaître, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B 80, 201308 (2009).
    [CrossRef]
  47. S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett. 99, 111106 (2011).
    [CrossRef]
  48. Y. Zhang, W. Zheng, M. Xing, G. Ren, H. Wang, and L. Chen, “Application of fast Padé approximation in simulating photonic crystal nanocavities by FDTD technology,” Opt. Commun. 281, 2774–2778 (2008).
    [CrossRef]
  49. F. P. Laussy, E. del Valle, and C. Tejedor, “Luminescence spectra of quantum dots in microcavities. I. Bosons,” Phys. Rev. B 79, 235325 (2009).
    [CrossRef]
  50. C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics, Vol. 1 (Wiley, 1992), pp. 337–405.
  51. R. Houdré, R. P. Stanley, U. Oesterle, M. Ilegems, and C. Weisbuch, “Room temperature exciton-photon Rabi splitting in a semiconductor microcavity,” Le Journal de Physique IV 3, 51–58 (1993).
  52. C. Weisbuch and B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic, 1991).
  53. C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
    [CrossRef]
  54. D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108, 093604 (2012).
    [CrossRef]

2012 (3)

D. Bajoni, “Polariton lasers. Hybrid light-matter lasers without inversion,” J. Phys. D 45, 313001 (2012).
[CrossRef]

B. Deveaud-Plédran, “On the condensation of polaritons,” J. Opt. Soc. Am. B 29, A138–A145 (2012).
[CrossRef]

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108, 093604 (2012).
[CrossRef]

2011 (4)

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett. 99, 111106 (2011).
[CrossRef]

H. Taniyama, H. Sumikura, and M. Notomi, “Finite-difference time-domain analysis of photonic crystal slab cavities with two-level systems,” Opt. Express 19, 23067 (2011).
[CrossRef]

H. M. Gibbs, G. Khitrova, and S. W. Koch, “Exciton-polariton light-semiconductor coupling effects,” Nat. Photonics 5, 273 (2011).
[CrossRef]

M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided bloch surface wave polaritons,” Appl. Phys. Lett. 98, 121118 (2011).
[CrossRef]

2010 (1)

G. Tarel and V. Savona, “Linear spectrum of a quantum dot coupled to a nanocavity,” Phys. Rev. B 81, 075305 (2010).
[CrossRef]

2009 (3)

L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express 17, 14993–15000 (2009).
[CrossRef]

D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lemaître, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B 80, 201308 (2009).
[CrossRef]

F. P. Laussy, E. del Valle, and C. Tejedor, “Luminescence spectra of quantum dots in microcavities. I. Bosons,” Phys. Rev. B 79, 235325 (2009).
[CrossRef]

2008 (3)

Y. Zhang, W. Zheng, M. Xing, G. Ren, H. Wang, and L. Chen, “Application of fast Padé approximation in simulating photonic crystal nanocavities by FDTD technology,” Opt. Commun. 281, 2774–2778 (2008).
[CrossRef]

Y. Zeng, Y. Fu, M. Bengtsson, X. Chen, W. Lu, and H. Ågren, “Finite-difference time-domain simulations of exciton-polariton resonances in quantum-dot arrays,” Opt. Express 16, 4507–4519 (2008).
[CrossRef]

K. Böhringer and O. Hess, “A full-time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation,” Prog. Quantum Electron. 32, 159–246 (2008).
[CrossRef]

2007 (2)

Y. Sidor, B. Partoens, F. M. Peeters, J. Maes, M. Hayne, D. Fuster, Y. González, L. González, and V. V. Moshchalkov, “Exciton confinement in InAs/InP quantum wires and quantum wells in the presence of a magnetic field,” Phys. Rev. B 76, 195320 (2007).
[CrossRef]

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
[CrossRef]

2006 (3)

Y. Huang and S.-T. Ho, “Computational model of solid-state, molecular, or atomic media for FDTD simulation based on a multi-level multi-electron system governed by pauli exclusion and Fermi-Dirac thermalization with application to semiconductor photonics,” Opt. Express 14, 3569–3587 (2006).
[CrossRef]

M. Kira and S. Koch, “Many-body correlations and excitonic effects in semiconductor spectroscopy,” Prog. Quantum Electron. 30, 155–296 (2006).
[CrossRef]

J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems,” IEEE Trans. Evol. Comput. 10, 646–657 (2006).
[CrossRef]

2005 (1)

L. Andreani, D. Gerace, and M. Agio, “Exciton-polaritons and nanoscale cavities in photonic crystal slabs,” Phys. Status Solidi B 242, 2197–2209 (2005).
[CrossRef]

2004 (4)

G. Slavcheva, J. Arnold, and R. Ziolkowski, “FDTD simulation of the nonlinear gain dynamics in active optical waveguides and semiconductor microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1052–1062 (2004).
[CrossRef]

S. Hughes and H. Kamada, “Single-quantum-dot strong coupling in a semiconductor photonic crystal nanocavity side coupled to a waveguide,” Phys. Rev. B 70, 195313 (2004).
[CrossRef]

D. Gerace, M. Agio, and L. C. Andreani, “Quantum theory of photonic crystal polaritons,” Phys. Status Solidi B 1, 446–449 (2004).
[CrossRef]

S.-H. Chang and A. Taflove, “Finite-difference time-domain model of lasing action in a four-level two-electron atomic system,” Opt. Express 12, 3827–3833 (2004).
[CrossRef]

2002 (2)

R. Shimada, A. Yablonskii, S. Tikhodeev, and T. Ishihara, “Transmission properties of a two-dimensional photonic crystal slab with an excitonic resonance,” IEEE J. Quantum Electron. 38, 872–879 (2002).
[CrossRef]

L. A. Dunbar, R. P. Stanley, M. Lynch, J. Hegarty, U. Oesterle, R. Houdré, and M. Ilegems, “Excitation-induced coherence in a semiconductor microcavity,” Phys. Rev. B 66, 195307 (2002).
[CrossRef]

2000 (1)

G. Cassabois, A. L. C. Triques, F. Bogani, C. Delalande, P. Roussignol, and C. Piermarocchi, “Polariton–acoustic-phonon interaction in a semiconductor microcavity,” Phys. Rev. B 61, 1696–1699 (2000).

1999 (2)

J. Vučković, O. Painter, Y. Xu, A. Yariv, and A. Scherer, “Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities,” IEEE J. Quantum Electron. 35, 1168–1175 (1999).
[CrossRef]

G. Panzarini and L. C. Andreani, “Quantum theory of exciton polaritons in cylindrical semiconductor microcavities,” Phys. Rev. B 60, 16799–16806 (1999).
[CrossRef]

1998 (1)

T. Gutbrod, M. Bayer, A. Forchel, J. P. Reithmaier, T. L. Reinecke, S. Rudin, and P. A. Knipp, “Weak and strong coupling of photons and excitons in photonic dots,” Phys. Rev. B 57, 9950–9956 (1998).
[CrossRef]

1997 (2)

R. P. Stanley, S. Pau, U. Oesterle, R. Houdré, and M. Ilegems, “Resonant photoluminescence of semiconductor microcavities: the role of acoustic phonons in polariton relaxation,” Phys. Rev. B 55, R4867–R4870 (1997).
[CrossRef]

V. Mandelshtam and H. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107, 6756 (1997).
[CrossRef]

1994 (4)

V. Savona, Z. Hradil, A. Quattropani, and P. Schwendimann, “Quantum theory of quantum-well polaritons in semiconductor microcavities,” Phys. Rev. B 49, 8774–8779 (1994).
[CrossRef]

L. C. Andreani, “Exciton-polaritons in superlattices,” Phys. Lett. A 192, 99–109 (1994).
[CrossRef]

R. Houdré, C. Weisbuch, R. P. Stanley, U. Oesterle, P. Pellandini, and M. Ilegems, “Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments,” Phys. Rev. Lett. 73, 2043–2046 (1994).
[CrossRef]

R. Houdré, R. P. Stanley, U. Oesterle, M. Ilegems, and C. Weisbuch, “Room-temperature cavity polaritons in a semiconductor microcavity,” Phys. Rev. B 49, 16761–16764 (1994).
[CrossRef]

1993 (1)

R. Houdré, R. P. Stanley, U. Oesterle, M. Ilegems, and C. Weisbuch, “Room temperature exciton-photon Rabi splitting in a semiconductor microcavity,” Le Journal de Physique IV 3, 51–58 (1993).

1992 (1)

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[CrossRef]

1991 (1)

M. Sugawara, T. Fujii, S. Yamazaki, and K. Nakajima, “Optical characteristics of excitons in In1−xGaxAsyP1−y/InP quantum wells,” Phys. Rev. B 44, 1782–1791 (1991).
[CrossRef]

1990 (1)

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
[CrossRef]

1987 (1)

M. S. Skolnick, K. J. Nash, M. K. Saker, S. J. Bass, P. A. Claxton, and J. S. Roberts, “Free-carrier effects on luminescence linewidths in quantum wells,” Appl. Phys. Lett. 50, 1885–1887 (1987).
[CrossRef]

1986 (1)

M. S. Skolnick, P. R. Tapster, S. J. Bass, A. D. Pitt, N. Apsley, and S. P. Aldred, “Investigation of InGaAs-InP quantum wells by optical spectroscopy,” Semicond. Sci. Technol. 1, 29–40(1986).
[CrossRef]

Agio, M.

L. Andreani, D. Gerace, and M. Agio, “Exciton-polaritons and nanoscale cavities in photonic crystal slabs,” Phys. Status Solidi B 242, 2197–2209 (2005).
[CrossRef]

D. Gerace, M. Agio, and L. C. Andreani, “Quantum theory of photonic crystal polaritons,” Phys. Status Solidi B 1, 446–449 (2004).
[CrossRef]

Ågren, H.

Aldred, S. P.

M. S. Skolnick, P. R. Tapster, S. J. Bass, A. D. Pitt, N. Apsley, and S. P. Aldred, “Investigation of InGaAs-InP quantum wells by optical spectroscopy,” Semicond. Sci. Technol. 1, 29–40(1986).
[CrossRef]

Alén, B.

Andreani, L.

L. Andreani, D. Gerace, and M. Agio, “Exciton-polaritons and nanoscale cavities in photonic crystal slabs,” Phys. Status Solidi B 242, 2197–2209 (2005).
[CrossRef]

Andreani, L. C.

D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lemaître, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B 80, 201308 (2009).
[CrossRef]

D. Gerace, M. Agio, and L. C. Andreani, “Quantum theory of photonic crystal polaritons,” Phys. Status Solidi B 1, 446–449 (2004).
[CrossRef]

G. Panzarini and L. C. Andreani, “Quantum theory of exciton polaritons in cylindrical semiconductor microcavities,” Phys. Rev. B 60, 16799–16806 (1999).
[CrossRef]

L. C. Andreani, “Exciton-polaritons in superlattices,” Phys. Lett. A 192, 99–109 (1994).
[CrossRef]

Apsley, N.

M. S. Skolnick, P. R. Tapster, S. J. Bass, A. D. Pitt, N. Apsley, and S. P. Aldred, “Investigation of InGaAs-InP quantum wells by optical spectroscopy,” Semicond. Sci. Technol. 1, 29–40(1986).
[CrossRef]

Arakawa, Y.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[CrossRef]

Arnold, J.

G. Slavcheva, J. Arnold, and R. Ziolkowski, “FDTD simulation of the nonlinear gain dynamics in active optical waveguides and semiconductor microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1052–1062 (2004).
[CrossRef]

Awschalom, D. D.

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
[CrossRef]

Azzini, S.

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett. 99, 111106 (2011).
[CrossRef]

Bajcsy, M.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108, 093604 (2012).
[CrossRef]

Bajoni, D.

D. Bajoni, “Polariton lasers. Hybrid light-matter lasers without inversion,” J. Phys. D 45, 313001 (2012).
[CrossRef]

M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided bloch surface wave polaritons,” Appl. Phys. Lett. 98, 121118 (2011).
[CrossRef]

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett. 99, 111106 (2011).
[CrossRef]

D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lemaître, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B 80, 201308 (2009).
[CrossRef]

Bass, S. J.

M. S. Skolnick, K. J. Nash, M. K. Saker, S. J. Bass, P. A. Claxton, and J. S. Roberts, “Free-carrier effects on luminescence linewidths in quantum wells,” Appl. Phys. Lett. 50, 1885–1887 (1987).
[CrossRef]

M. S. Skolnick, P. R. Tapster, S. J. Bass, A. D. Pitt, N. Apsley, and S. P. Aldred, “Investigation of InGaAs-InP quantum wells by optical spectroscopy,” Semicond. Sci. Technol. 1, 29–40(1986).
[CrossRef]

Bayer, M.

T. Gutbrod, M. Bayer, A. Forchel, J. P. Reithmaier, T. L. Reinecke, S. Rudin, and P. A. Knipp, “Weak and strong coupling of photons and excitons in photonic dots,” Phys. Rev. B 57, 9950–9956 (1998).
[CrossRef]

Bengtsson, M.

Biscani, F.

F. Biscani, D. Izzo, and C. H. Yam, “A global optimisation toolbox for massively parallel engineering optimisation,” in 4th International Conference on Astrodynamics Tools and Techniques (ICATT), Madrid, Spain, 3–6 May2010. (arXiv:1004.3824v1)

Bloch, J.

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett. 99, 111106 (2011).
[CrossRef]

D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lemaître, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B 80, 201308 (2009).
[CrossRef]

Bogani, F.

G. Cassabois, A. L. C. Triques, F. Bogani, C. Delalande, P. Roussignol, and C. Piermarocchi, “Polariton–acoustic-phonon interaction in a semiconductor microcavity,” Phys. Rev. B 61, 1696–1699 (2000).

Böhringer, K.

K. Böhringer and O. Hess, “A full-time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation,” Prog. Quantum Electron. 32, 159–246 (2008).
[CrossRef]

Boskovic, B.

J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems,” IEEE Trans. Evol. Comput. 10, 646–657 (2006).
[CrossRef]

Braive, R.

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett. 99, 111106 (2011).
[CrossRef]

D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lemaître, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B 80, 201308 (2009).
[CrossRef]

Brest, J.

J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems,” IEEE Trans. Evol. Comput. 10, 646–657 (2006).
[CrossRef]

Butler, J. E.

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
[CrossRef]

Carmichael, H. J.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
[CrossRef]

Cassabois, G.

G. Cassabois, A. L. C. Triques, F. Bogani, C. Delalande, P. Roussignol, and C. Piermarocchi, “Polariton–acoustic-phonon interaction in a semiconductor microcavity,” Phys. Rev. B 61, 1696–1699 (2000).

Chang, S.-H.

Chen, L.

Y. Zhang, W. Zheng, M. Xing, G. Ren, H. Wang, and L. Chen, “Application of fast Padé approximation in simulating photonic crystal nanocavities by FDTD technology,” Opt. Commun. 281, 2774–2778 (2008).
[CrossRef]

Chen, X.

Cho, K.

K. Cho, Optical Response of Nanostructures: Microscopic Nonlocal Theory (Springer, 2003).

Claxton, P. A.

M. S. Skolnick, K. J. Nash, M. K. Saker, S. J. Bass, P. A. Claxton, and J. S. Roberts, “Free-carrier effects on luminescence linewidths in quantum wells,” Appl. Phys. Lett. 50, 1885–1887 (1987).
[CrossRef]

Cohen-Tannoudji, C.

C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics, Vol. 1 (Wiley, 1992), pp. 337–405.

del Valle, E.

F. P. Laussy, E. del Valle, and C. Tejedor, “Luminescence spectra of quantum dots in microcavities. I. Bosons,” Phys. Rev. B 79, 235325 (2009).
[CrossRef]

Delalande, C.

G. Cassabois, A. L. C. Triques, F. Bogani, C. Delalande, P. Roussignol, and C. Piermarocchi, “Polariton–acoustic-phonon interaction in a semiconductor microcavity,” Phys. Rev. B 61, 1696–1699 (2000).

Deveaud, B.

B. Deveaud, The Physics of Semiconductor Microcavities(Wiley-VCH, 2007).

Deveaud-Plédran, B.

Diu, B.

C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics, Vol. 1 (Wiley, 1992), pp. 337–405.

Dotor, M. L.

Dunbar, L. A.

L. A. Dunbar, R. P. Stanley, M. Lynch, J. Hegarty, U. Oesterle, R. Houdré, and M. Ilegems, “Excitation-induced coherence in a semiconductor microcavity,” Phys. Rev. B 66, 195307 (2002).
[CrossRef]

Englund, D.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108, 093604 (2012).
[CrossRef]

Faraon, A.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108, 093604 (2012).
[CrossRef]

Feygelson, T.

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
[CrossRef]

Forchel, A.

T. Gutbrod, M. Bayer, A. Forchel, J. P. Reithmaier, T. L. Reinecke, S. Rudin, and P. A. Knipp, “Weak and strong coupling of photons and excitons in photonic dots,” Phys. Rev. B 57, 9950–9956 (1998).
[CrossRef]

Fu, Y.

Fujii, T.

M. Sugawara, T. Fujii, S. Yamazaki, and K. Nakajima, “Optical characteristics of excitons in In1−xGaxAsyP1−y/InP quantum wells,” Phys. Rev. B 44, 1782–1791 (1991).
[CrossRef]

Fuster, D.

L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express 17, 14993–15000 (2009).
[CrossRef]

Y. Sidor, B. Partoens, F. M. Peeters, J. Maes, M. Hayne, D. Fuster, Y. González, L. González, and V. V. Moshchalkov, “Exciton confinement in InAs/InP quantum wires and quantum wells in the presence of a magnetic field,” Phys. Rev. B 76, 195320 (2007).
[CrossRef]

Galli, M.

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett. 99, 111106 (2011).
[CrossRef]

D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lemaître, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B 80, 201308 (2009).
[CrossRef]

Gauthier, D. J.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
[CrossRef]

Gerace, D.

M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided bloch surface wave polaritons,” Appl. Phys. Lett. 98, 121118 (2011).
[CrossRef]

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett. 99, 111106 (2011).
[CrossRef]

D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lemaître, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B 80, 201308 (2009).
[CrossRef]

L. Andreani, D. Gerace, and M. Agio, “Exciton-polaritons and nanoscale cavities in photonic crystal slabs,” Phys. Status Solidi B 242, 2197–2209 (2005).
[CrossRef]

D. Gerace, M. Agio, and L. C. Andreani, “Quantum theory of photonic crystal polaritons,” Phys. Status Solidi B 1, 446–449 (2004).
[CrossRef]

Gibbs, H. M.

H. M. Gibbs, G. Khitrova, and S. W. Koch, “Exciton-polariton light-semiconductor coupling effects,” Nat. Photonics 5, 273 (2011).
[CrossRef]

González, L.

L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express 17, 14993–15000 (2009).
[CrossRef]

Y. Sidor, B. Partoens, F. M. Peeters, J. Maes, M. Hayne, D. Fuster, Y. González, L. González, and V. V. Moshchalkov, “Exciton confinement in InAs/InP quantum wires and quantum wells in the presence of a magnetic field,” Phys. Rev. B 76, 195320 (2007).
[CrossRef]

González, Y.

L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express 17, 14993–15000 (2009).
[CrossRef]

Y. Sidor, B. Partoens, F. M. Peeters, J. Maes, M. Hayne, D. Fuster, Y. González, L. González, and V. V. Moshchalkov, “Exciton confinement in InAs/InP quantum wires and quantum wells in the presence of a magnetic field,” Phys. Rev. B 76, 195320 (2007).
[CrossRef]

Greiner, S.

J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems,” IEEE Trans. Evol. Comput. 10, 646–657 (2006).
[CrossRef]

Gutbrod, T.

T. Gutbrod, M. Bayer, A. Forchel, J. P. Reithmaier, T. L. Reinecke, S. Rudin, and P. A. Knipp, “Weak and strong coupling of photons and excitons in photonic dots,” Phys. Rev. B 57, 9950–9956 (1998).
[CrossRef]

Hagness, S.

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House Antennas and Propagation Library (Artech House, 2000).

Hanson, R.

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
[CrossRef]

Hayne, M.

Y. Sidor, B. Partoens, F. M. Peeters, J. Maes, M. Hayne, D. Fuster, Y. González, L. González, and V. V. Moshchalkov, “Exciton confinement in InAs/InP quantum wires and quantum wells in the presence of a magnetic field,” Phys. Rev. B 76, 195320 (2007).
[CrossRef]

Hegarty, J.

L. A. Dunbar, R. P. Stanley, M. Lynch, J. Hegarty, U. Oesterle, R. Houdré, and M. Ilegems, “Excitation-induced coherence in a semiconductor microcavity,” Phys. Rev. B 66, 195307 (2002).
[CrossRef]

Hess, O.

K. Böhringer and O. Hess, “A full-time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation,” Prog. Quantum Electron. 32, 159–246 (2008).
[CrossRef]

Ho, S.-T.

Houdré, R.

L. A. Dunbar, R. P. Stanley, M. Lynch, J. Hegarty, U. Oesterle, R. Houdré, and M. Ilegems, “Excitation-induced coherence in a semiconductor microcavity,” Phys. Rev. B 66, 195307 (2002).
[CrossRef]

R. P. Stanley, S. Pau, U. Oesterle, R. Houdré, and M. Ilegems, “Resonant photoluminescence of semiconductor microcavities: the role of acoustic phonons in polariton relaxation,” Phys. Rev. B 55, R4867–R4870 (1997).
[CrossRef]

R. Houdré, R. P. Stanley, U. Oesterle, M. Ilegems, and C. Weisbuch, “Room-temperature cavity polaritons in a semiconductor microcavity,” Phys. Rev. B 49, 16761–16764 (1994).
[CrossRef]

R. Houdré, C. Weisbuch, R. P. Stanley, U. Oesterle, P. Pellandini, and M. Ilegems, “Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments,” Phys. Rev. Lett. 73, 2043–2046 (1994).
[CrossRef]

R. Houdré, R. P. Stanley, U. Oesterle, M. Ilegems, and C. Weisbuch, “Room temperature exciton-photon Rabi splitting in a semiconductor microcavity,” Le Journal de Physique IV 3, 51–58 (1993).

Hradil, Z.

V. Savona, Z. Hradil, A. Quattropani, and P. Schwendimann, “Quantum theory of quantum-well polaritons in semiconductor microcavities,” Phys. Rev. B 49, 8774–8779 (1994).
[CrossRef]

Hu, E. L.

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
[CrossRef]

Huang, Y.

Hughes, S.

S. Hughes and H. Kamada, “Single-quantum-dot strong coupling in a semiconductor photonic crystal nanocavity side coupled to a waveguide,” Phys. Rev. B 70, 195313 (2004).
[CrossRef]

Ilegems, M.

L. A. Dunbar, R. P. Stanley, M. Lynch, J. Hegarty, U. Oesterle, R. Houdré, and M. Ilegems, “Excitation-induced coherence in a semiconductor microcavity,” Phys. Rev. B 66, 195307 (2002).
[CrossRef]

R. P. Stanley, S. Pau, U. Oesterle, R. Houdré, and M. Ilegems, “Resonant photoluminescence of semiconductor microcavities: the role of acoustic phonons in polariton relaxation,” Phys. Rev. B 55, R4867–R4870 (1997).
[CrossRef]

R. Houdré, C. Weisbuch, R. P. Stanley, U. Oesterle, P. Pellandini, and M. Ilegems, “Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments,” Phys. Rev. Lett. 73, 2043–2046 (1994).
[CrossRef]

R. Houdré, R. P. Stanley, U. Oesterle, M. Ilegems, and C. Weisbuch, “Room-temperature cavity polaritons in a semiconductor microcavity,” Phys. Rev. B 49, 16761–16764 (1994).
[CrossRef]

R. Houdré, R. P. Stanley, U. Oesterle, M. Ilegems, and C. Weisbuch, “Room temperature exciton-photon Rabi splitting in a semiconductor microcavity,” Le Journal de Physique IV 3, 51–58 (1993).

Ishihara, T.

R. Shimada, A. Yablonskii, S. Tikhodeev, and T. Ishihara, “Transmission properties of a two-dimensional photonic crystal slab with an excitonic resonance,” IEEE J. Quantum Electron. 38, 872–879 (2002).
[CrossRef]

Ishikawa, A.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[CrossRef]

Ivchenko, E. L.

E. L. Ivchenko and G. Pikus, Superlattices and Other Heterostructures: Symmetry and Optical Phenomena, Springer Series in Solid-State Sciences (Springer, 1997), Vol. 110.

Izzo, D.

F. Biscani, D. Izzo, and C. H. Yam, “A global optimisation toolbox for massively parallel engineering optimisation,” in 4th International Conference on Astrodynamics Tools and Techniques (ICATT), Madrid, Spain, 3–6 May2010. (arXiv:1004.3824v1)

Kamada, H.

S. Hughes and H. Kamada, “Single-quantum-dot strong coupling in a semiconductor photonic crystal nanocavity side coupled to a waveguide,” Phys. Rev. B 70, 195313 (2004).
[CrossRef]

Kavokin, A.

A. Kavokin and G. Malpuech, Cavity Polaritons, Thin Films and Nanostructures (Academic, 2003) Vol. 32.

Khitrova, G.

H. M. Gibbs, G. Khitrova, and S. W. Koch, “Exciton-polariton light-semiconductor coupling effects,” Nat. Photonics 5, 273 (2011).
[CrossRef]

Kira, M.

M. Kira and S. Koch, “Many-body correlations and excitonic effects in semiconductor spectroscopy,” Prog. Quantum Electron. 30, 155–296 (2006).
[CrossRef]

Knipp, P. A.

T. Gutbrod, M. Bayer, A. Forchel, J. P. Reithmaier, T. L. Reinecke, S. Rudin, and P. A. Knipp, “Weak and strong coupling of photons and excitons in photonic dots,” Phys. Rev. B 57, 9950–9956 (1998).
[CrossRef]

Koch, S.

M. Kira and S. Koch, “Many-body correlations and excitonic effects in semiconductor spectroscopy,” Prog. Quantum Electron. 30, 155–296 (2006).
[CrossRef]

Koch, S. W.

H. M. Gibbs, G. Khitrova, and S. W. Koch, “Exciton-polariton light-semiconductor coupling effects,” Nat. Photonics 5, 273 (2011).
[CrossRef]

Laloe, F.

C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics, Vol. 1 (Wiley, 1992), pp. 337–405.

Laussy, F. P.

F. P. Laussy, E. del Valle, and C. Tejedor, “Luminescence spectra of quantum dots in microcavities. I. Bosons,” Phys. Rev. B 79, 235325 (2009).
[CrossRef]

Lemaître, A.

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett. 99, 111106 (2011).
[CrossRef]

D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lemaître, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B 80, 201308 (2009).
[CrossRef]

Liscidini, M.

M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided bloch surface wave polaritons,” Appl. Phys. Lett. 98, 121118 (2011).
[CrossRef]

Lu, W.

Lynch, M.

L. A. Dunbar, R. P. Stanley, M. Lynch, J. Hegarty, U. Oesterle, R. Houdré, and M. Ilegems, “Excitation-induced coherence in a semiconductor microcavity,” Phys. Rev. B 66, 195307 (2002).
[CrossRef]

Maes, J.

Y. Sidor, B. Partoens, F. M. Peeters, J. Maes, M. Hayne, D. Fuster, Y. González, L. González, and V. V. Moshchalkov, “Exciton confinement in InAs/InP quantum wires and quantum wells in the presence of a magnetic field,” Phys. Rev. B 76, 195320 (2007).
[CrossRef]

Majumdar, A.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108, 093604 (2012).
[CrossRef]

Malpuech, G.

A. Kavokin and G. Malpuech, Cavity Polaritons, Thin Films and Nanostructures (Academic, 2003) Vol. 32.

Mandelshtam, V.

V. Mandelshtam and H. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107, 6756 (1997).
[CrossRef]

Martínez, L. J.

Mernik, M.

J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems,” IEEE Trans. Evol. Comput. 10, 646–657 (2006).
[CrossRef]

Miard, A.

D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lemaître, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B 80, 201308 (2009).
[CrossRef]

Morin, S. E.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
[CrossRef]

Moshchalkov, V. V.

Y. Sidor, B. Partoens, F. M. Peeters, J. Maes, M. Hayne, D. Fuster, Y. González, L. González, and V. V. Moshchalkov, “Exciton confinement in InAs/InP quantum wires and quantum wells in the presence of a magnetic field,” Phys. Rev. B 76, 195320 (2007).
[CrossRef]

Mossberg, T. W.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
[CrossRef]

Nakajima, K.

M. Sugawara, T. Fujii, S. Yamazaki, and K. Nakajima, “Optical characteristics of excitons in In1−xGaxAsyP1−y/InP quantum wells,” Phys. Rev. B 44, 1782–1791 (1991).
[CrossRef]

Nash, K. J.

M. S. Skolnick, K. J. Nash, M. K. Saker, S. J. Bass, P. A. Claxton, and J. S. Roberts, “Free-carrier effects on luminescence linewidths in quantum wells,” Appl. Phys. Lett. 50, 1885–1887 (1987).
[CrossRef]

Nishioka, M.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[CrossRef]

Notomi, M.

Oesterle, U.

L. A. Dunbar, R. P. Stanley, M. Lynch, J. Hegarty, U. Oesterle, R. Houdré, and M. Ilegems, “Excitation-induced coherence in a semiconductor microcavity,” Phys. Rev. B 66, 195307 (2002).
[CrossRef]

R. P. Stanley, S. Pau, U. Oesterle, R. Houdré, and M. Ilegems, “Resonant photoluminescence of semiconductor microcavities: the role of acoustic phonons in polariton relaxation,” Phys. Rev. B 55, R4867–R4870 (1997).
[CrossRef]

R. Houdré, R. P. Stanley, U. Oesterle, M. Ilegems, and C. Weisbuch, “Room-temperature cavity polaritons in a semiconductor microcavity,” Phys. Rev. B 49, 16761–16764 (1994).
[CrossRef]

R. Houdré, C. Weisbuch, R. P. Stanley, U. Oesterle, P. Pellandini, and M. Ilegems, “Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments,” Phys. Rev. Lett. 73, 2043–2046 (1994).
[CrossRef]

R. Houdré, R. P. Stanley, U. Oesterle, M. Ilegems, and C. Weisbuch, “Room temperature exciton-photon Rabi splitting in a semiconductor microcavity,” Le Journal de Physique IV 3, 51–58 (1993).

Painter, O.

J. Vučković, O. Painter, Y. Xu, A. Yariv, and A. Scherer, “Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities,” IEEE J. Quantum Electron. 35, 1168–1175 (1999).
[CrossRef]

Palik, E.

E. Palik, Handbook of Optical Constants of Solids, Academic Press Handbook Series (Academic, 1985) Vol. 1.

Panzarini, G.

G. Panzarini and L. C. Andreani, “Quantum theory of exciton polaritons in cylindrical semiconductor microcavities,” Phys. Rev. B 60, 16799–16806 (1999).
[CrossRef]

Partoens, B.

Y. Sidor, B. Partoens, F. M. Peeters, J. Maes, M. Hayne, D. Fuster, Y. González, L. González, and V. V. Moshchalkov, “Exciton confinement in InAs/InP quantum wires and quantum wells in the presence of a magnetic field,” Phys. Rev. B 76, 195320 (2007).
[CrossRef]

Patrini, M.

D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lemaître, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B 80, 201308 (2009).
[CrossRef]

Pau, S.

R. P. Stanley, S. Pau, U. Oesterle, R. Houdré, and M. Ilegems, “Resonant photoluminescence of semiconductor microcavities: the role of acoustic phonons in polariton relaxation,” Phys. Rev. B 55, R4867–R4870 (1997).
[CrossRef]

Peeters, F. M.

Y. Sidor, B. Partoens, F. M. Peeters, J. Maes, M. Hayne, D. Fuster, Y. González, L. González, and V. V. Moshchalkov, “Exciton confinement in InAs/InP quantum wires and quantum wells in the presence of a magnetic field,” Phys. Rev. B 76, 195320 (2007).
[CrossRef]

Pellandini, P.

R. Houdré, C. Weisbuch, R. P. Stanley, U. Oesterle, P. Pellandini, and M. Ilegems, “Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments,” Phys. Rev. Lett. 73, 2043–2046 (1994).
[CrossRef]

Petroff, P.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108, 093604 (2012).
[CrossRef]

Piermarocchi, C.

G. Cassabois, A. L. C. Triques, F. Bogani, C. Delalande, P. Roussignol, and C. Piermarocchi, “Polariton–acoustic-phonon interaction in a semiconductor microcavity,” Phys. Rev. B 61, 1696–1699 (2000).

Pikus, G.

E. L. Ivchenko and G. Pikus, Superlattices and Other Heterostructures: Symmetry and Optical Phenomena, Springer Series in Solid-State Sciences (Springer, 1997), Vol. 110.

Pitt, A. D.

M. S. Skolnick, P. R. Tapster, S. J. Bass, A. D. Pitt, N. Apsley, and S. P. Aldred, “Investigation of InGaAs-InP quantum wells by optical spectroscopy,” Semicond. Sci. Technol. 1, 29–40(1986).
[CrossRef]

Postigo, P. A.

Prieto, I.

Quattropani, A.

V. Savona, Z. Hradil, A. Quattropani, and P. Schwendimann, “Quantum theory of quantum-well polaritons in semiconductor microcavities,” Phys. Rev. B 49, 8774–8779 (1994).
[CrossRef]

Reinecke, T. L.

T. Gutbrod, M. Bayer, A. Forchel, J. P. Reithmaier, T. L. Reinecke, S. Rudin, and P. A. Knipp, “Weak and strong coupling of photons and excitons in photonic dots,” Phys. Rev. B 57, 9950–9956 (1998).
[CrossRef]

Reithmaier, J. P.

T. Gutbrod, M. Bayer, A. Forchel, J. P. Reithmaier, T. L. Reinecke, S. Rudin, and P. A. Knipp, “Weak and strong coupling of photons and excitons in photonic dots,” Phys. Rev. B 57, 9950–9956 (1998).
[CrossRef]

Ren, G.

Y. Zhang, W. Zheng, M. Xing, G. Ren, H. Wang, and L. Chen, “Application of fast Padé approximation in simulating photonic crystal nanocavities by FDTD technology,” Opt. Commun. 281, 2774–2778 (2008).
[CrossRef]

Roberts, J. S.

M. S. Skolnick, K. J. Nash, M. K. Saker, S. J. Bass, P. A. Claxton, and J. S. Roberts, “Free-carrier effects on luminescence linewidths in quantum wells,” Appl. Phys. Lett. 50, 1885–1887 (1987).
[CrossRef]

Roussignol, P.

G. Cassabois, A. L. C. Triques, F. Bogani, C. Delalande, P. Roussignol, and C. Piermarocchi, “Polariton–acoustic-phonon interaction in a semiconductor microcavity,” Phys. Rev. B 61, 1696–1699 (2000).

Rudin, S.

T. Gutbrod, M. Bayer, A. Forchel, J. P. Reithmaier, T. L. Reinecke, S. Rudin, and P. A. Knipp, “Weak and strong coupling of photons and excitons in photonic dots,” Phys. Rev. B 57, 9950–9956 (1998).
[CrossRef]

Sagnes, I.

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett. 99, 111106 (2011).
[CrossRef]

D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lemaître, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B 80, 201308 (2009).
[CrossRef]

Saker, M. K.

M. S. Skolnick, K. J. Nash, M. K. Saker, S. J. Bass, P. A. Claxton, and J. S. Roberts, “Free-carrier effects on luminescence linewidths in quantum wells,” Appl. Phys. Lett. 50, 1885–1887 (1987).
[CrossRef]

Sanvitto, D.

M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided bloch surface wave polaritons,” Appl. Phys. Lett. 98, 121118 (2011).
[CrossRef]

D. Sanvitto and V. Timofeev, Exciton Polaritons in Microcavities: New Frontiers, Springer Series in Solid-State Sciences (Springer, 2012), Vol. 172.

Savona, V.

G. Tarel and V. Savona, “Linear spectrum of a quantum dot coupled to a nanocavity,” Phys. Rev. B 81, 075305 (2010).
[CrossRef]

V. Savona, Z. Hradil, A. Quattropani, and P. Schwendimann, “Quantum theory of quantum-well polaritons in semiconductor microcavities,” Phys. Rev. B 49, 8774–8779 (1994).
[CrossRef]

Scherer, A.

J. Vučković, O. Painter, Y. Xu, A. Yariv, and A. Scherer, “Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities,” IEEE J. Quantum Electron. 35, 1168–1175 (1999).
[CrossRef]

Schwendimann, P.

V. Savona, Z. Hradil, A. Quattropani, and P. Schwendimann, “Quantum theory of quantum-well polaritons in semiconductor microcavities,” Phys. Rev. B 49, 8774–8779 (1994).
[CrossRef]

Shimada, R.

R. Shimada, A. Yablonskii, S. Tikhodeev, and T. Ishihara, “Transmission properties of a two-dimensional photonic crystal slab with an excitonic resonance,” IEEE J. Quantum Electron. 38, 872–879 (2002).
[CrossRef]

Sidor, Y.

Y. Sidor, B. Partoens, F. M. Peeters, J. Maes, M. Hayne, D. Fuster, Y. González, L. González, and V. V. Moshchalkov, “Exciton confinement in InAs/InP quantum wires and quantum wells in the presence of a magnetic field,” Phys. Rev. B 76, 195320 (2007).
[CrossRef]

Skolnick, M. S.

M. S. Skolnick, K. J. Nash, M. K. Saker, S. J. Bass, P. A. Claxton, and J. S. Roberts, “Free-carrier effects on luminescence linewidths in quantum wells,” Appl. Phys. Lett. 50, 1885–1887 (1987).
[CrossRef]

M. S. Skolnick, P. R. Tapster, S. J. Bass, A. D. Pitt, N. Apsley, and S. P. Aldred, “Investigation of InGaAs-InP quantum wells by optical spectroscopy,” Semicond. Sci. Technol. 1, 29–40(1986).
[CrossRef]

Slavcheva, G.

G. Slavcheva, J. Arnold, and R. Ziolkowski, “FDTD simulation of the nonlinear gain dynamics in active optical waveguides and semiconductor microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1052–1062 (2004).
[CrossRef]

Stanley, R. P.

L. A. Dunbar, R. P. Stanley, M. Lynch, J. Hegarty, U. Oesterle, R. Houdré, and M. Ilegems, “Excitation-induced coherence in a semiconductor microcavity,” Phys. Rev. B 66, 195307 (2002).
[CrossRef]

R. P. Stanley, S. Pau, U. Oesterle, R. Houdré, and M. Ilegems, “Resonant photoluminescence of semiconductor microcavities: the role of acoustic phonons in polariton relaxation,” Phys. Rev. B 55, R4867–R4870 (1997).
[CrossRef]

R. Houdré, C. Weisbuch, R. P. Stanley, U. Oesterle, P. Pellandini, and M. Ilegems, “Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments,” Phys. Rev. Lett. 73, 2043–2046 (1994).
[CrossRef]

R. Houdré, R. P. Stanley, U. Oesterle, M. Ilegems, and C. Weisbuch, “Room-temperature cavity polaritons in a semiconductor microcavity,” Phys. Rev. B 49, 16761–16764 (1994).
[CrossRef]

R. Houdré, R. P. Stanley, U. Oesterle, M. Ilegems, and C. Weisbuch, “Room temperature exciton-photon Rabi splitting in a semiconductor microcavity,” Le Journal de Physique IV 3, 51–58 (1993).

Sugawara, M.

M. Sugawara, T. Fujii, S. Yamazaki, and K. Nakajima, “Optical characteristics of excitons in In1−xGaxAsyP1−y/InP quantum wells,” Phys. Rev. B 44, 1782–1791 (1991).
[CrossRef]

Sumikura, H.

Taflove, A.

S.-H. Chang and A. Taflove, “Finite-difference time-domain model of lasing action in a four-level two-electron atomic system,” Opt. Express 12, 3827–3833 (2004).
[CrossRef]

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House Antennas and Propagation Library (Artech House, 2000).

Taniyama, H.

Tapster, P. R.

M. S. Skolnick, P. R. Tapster, S. J. Bass, A. D. Pitt, N. Apsley, and S. P. Aldred, “Investigation of InGaAs-InP quantum wells by optical spectroscopy,” Semicond. Sci. Technol. 1, 29–40(1986).
[CrossRef]

Tarel, G.

G. Tarel and V. Savona, “Linear spectrum of a quantum dot coupled to a nanocavity,” Phys. Rev. B 81, 075305 (2010).
[CrossRef]

Taylor, H.

V. Mandelshtam and H. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107, 6756 (1997).
[CrossRef]

Tejedor, C.

F. P. Laussy, E. del Valle, and C. Tejedor, “Luminescence spectra of quantum dots in microcavities. I. Bosons,” Phys. Rev. B 79, 235325 (2009).
[CrossRef]

Tikhodeev, S.

R. Shimada, A. Yablonskii, S. Tikhodeev, and T. Ishihara, “Transmission properties of a two-dimensional photonic crystal slab with an excitonic resonance,” IEEE J. Quantum Electron. 38, 872–879 (2002).
[CrossRef]

Timofeev, V.

D. Sanvitto and V. Timofeev, Exciton Polaritons in Microcavities: New Frontiers, Springer Series in Solid-State Sciences (Springer, 2012), Vol. 172.

Triques, A. L. C.

G. Cassabois, A. L. C. Triques, F. Bogani, C. Delalande, P. Roussignol, and C. Piermarocchi, “Polariton–acoustic-phonon interaction in a semiconductor microcavity,” Phys. Rev. B 61, 1696–1699 (2000).

Vinter, B.

C. Weisbuch and B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic, 1991).

Vuckovic, J.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108, 093604 (2012).
[CrossRef]

J. Vučković, O. Painter, Y. Xu, A. Yariv, and A. Scherer, “Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities,” IEEE J. Quantum Electron. 35, 1168–1175 (1999).
[CrossRef]

Wang, C. F.

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
[CrossRef]

Wang, H.

Y. Zhang, W. Zheng, M. Xing, G. Ren, H. Wang, and L. Chen, “Application of fast Padé approximation in simulating photonic crystal nanocavities by FDTD technology,” Opt. Commun. 281, 2774–2778 (2008).
[CrossRef]

Weisbuch, C.

R. Houdré, C. Weisbuch, R. P. Stanley, U. Oesterle, P. Pellandini, and M. Ilegems, “Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments,” Phys. Rev. Lett. 73, 2043–2046 (1994).
[CrossRef]

R. Houdré, R. P. Stanley, U. Oesterle, M. Ilegems, and C. Weisbuch, “Room-temperature cavity polaritons in a semiconductor microcavity,” Phys. Rev. B 49, 16761–16764 (1994).
[CrossRef]

R. Houdré, R. P. Stanley, U. Oesterle, M. Ilegems, and C. Weisbuch, “Room temperature exciton-photon Rabi splitting in a semiconductor microcavity,” Le Journal de Physique IV 3, 51–58 (1993).

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[CrossRef]

C. Weisbuch and B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic, 1991).

Wu, Q.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
[CrossRef]

Xing, M.

Y. Zhang, W. Zheng, M. Xing, G. Ren, H. Wang, and L. Chen, “Application of fast Padé approximation in simulating photonic crystal nanocavities by FDTD technology,” Opt. Commun. 281, 2774–2778 (2008).
[CrossRef]

Xu, Y.

J. Vučković, O. Painter, Y. Xu, A. Yariv, and A. Scherer, “Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities,” IEEE J. Quantum Electron. 35, 1168–1175 (1999).
[CrossRef]

Yablonskii, A.

R. Shimada, A. Yablonskii, S. Tikhodeev, and T. Ishihara, “Transmission properties of a two-dimensional photonic crystal slab with an excitonic resonance,” IEEE J. Quantum Electron. 38, 872–879 (2002).
[CrossRef]

Yam, C. H.

F. Biscani, D. Izzo, and C. H. Yam, “A global optimisation toolbox for massively parallel engineering optimisation,” in 4th International Conference on Astrodynamics Tools and Techniques (ICATT), Madrid, Spain, 3–6 May2010. (arXiv:1004.3824v1)

Yamazaki, S.

M. Sugawara, T. Fujii, S. Yamazaki, and K. Nakajima, “Optical characteristics of excitons in In1−xGaxAsyP1−y/InP quantum wells,” Phys. Rev. B 44, 1782–1791 (1991).
[CrossRef]

Yang, J.

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
[CrossRef]

Yariv, A.

J. Vučković, O. Painter, Y. Xu, A. Yariv, and A. Scherer, “Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities,” IEEE J. Quantum Electron. 35, 1168–1175 (1999).
[CrossRef]

Zeng, Y.

Zhang, Y.

Y. Zhang, W. Zheng, M. Xing, G. Ren, H. Wang, and L. Chen, “Application of fast Padé approximation in simulating photonic crystal nanocavities by FDTD technology,” Opt. Commun. 281, 2774–2778 (2008).
[CrossRef]

Zheng, W.

Y. Zhang, W. Zheng, M. Xing, G. Ren, H. Wang, and L. Chen, “Application of fast Padé approximation in simulating photonic crystal nanocavities by FDTD technology,” Opt. Commun. 281, 2774–2778 (2008).
[CrossRef]

Zhu, Y.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
[CrossRef]

Ziolkowski, R.

G. Slavcheva, J. Arnold, and R. Ziolkowski, “FDTD simulation of the nonlinear gain dynamics in active optical waveguides and semiconductor microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1052–1062 (2004).
[CrossRef]

Zumer, V.

J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems,” IEEE Trans. Evol. Comput. 10, 646–657 (2006).
[CrossRef]

Appl. Phys. Lett. (4)

M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided bloch surface wave polaritons,” Appl. Phys. Lett. 98, 121118 (2011).
[CrossRef]

M. S. Skolnick, K. J. Nash, M. K. Saker, S. J. Bass, P. A. Claxton, and J. S. Roberts, “Free-carrier effects on luminescence linewidths in quantum wells,” Appl. Phys. Lett. 50, 1885–1887 (1987).
[CrossRef]

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett. 99, 111106 (2011).
[CrossRef]

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. Vučković, O. Painter, Y. Xu, A. Yariv, and A. Scherer, “Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities,” IEEE J. Quantum Electron. 35, 1168–1175 (1999).
[CrossRef]

R. Shimada, A. Yablonskii, S. Tikhodeev, and T. Ishihara, “Transmission properties of a two-dimensional photonic crystal slab with an excitonic resonance,” IEEE J. Quantum Electron. 38, 872–879 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Slavcheva, J. Arnold, and R. Ziolkowski, “FDTD simulation of the nonlinear gain dynamics in active optical waveguides and semiconductor microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1052–1062 (2004).
[CrossRef]

IEEE Trans. Evol. Comput. (1)

J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems,” IEEE Trans. Evol. Comput. 10, 646–657 (2006).
[CrossRef]

J. Chem. Phys. (1)

V. Mandelshtam and H. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107, 6756 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

D. Bajoni, “Polariton lasers. Hybrid light-matter lasers without inversion,” J. Phys. D 45, 313001 (2012).
[CrossRef]

Le Journal de Physique IV (1)

R. Houdré, R. P. Stanley, U. Oesterle, M. Ilegems, and C. Weisbuch, “Room temperature exciton-photon Rabi splitting in a semiconductor microcavity,” Le Journal de Physique IV 3, 51–58 (1993).

Nat. Photonics (1)

H. M. Gibbs, G. Khitrova, and S. W. Koch, “Exciton-polariton light-semiconductor coupling effects,” Nat. Photonics 5, 273 (2011).
[CrossRef]

Opt. Commun. (1)

Y. Zhang, W. Zheng, M. Xing, G. Ren, H. Wang, and L. Chen, “Application of fast Padé approximation in simulating photonic crystal nanocavities by FDTD technology,” Opt. Commun. 281, 2774–2778 (2008).
[CrossRef]

Opt. Express (5)

Phys. Lett. A (1)

L. C. Andreani, “Exciton-polaritons in superlattices,” Phys. Lett. A 192, 99–109 (1994).
[CrossRef]

Phys. Rev. B (13)

R. P. Stanley, S. Pau, U. Oesterle, R. Houdré, and M. Ilegems, “Resonant photoluminescence of semiconductor microcavities: the role of acoustic phonons in polariton relaxation,” Phys. Rev. B 55, R4867–R4870 (1997).
[CrossRef]

G. Cassabois, A. L. C. Triques, F. Bogani, C. Delalande, P. Roussignol, and C. Piermarocchi, “Polariton–acoustic-phonon interaction in a semiconductor microcavity,” Phys. Rev. B 61, 1696–1699 (2000).

V. Savona, Z. Hradil, A. Quattropani, and P. Schwendimann, “Quantum theory of quantum-well polaritons in semiconductor microcavities,” Phys. Rev. B 49, 8774–8779 (1994).
[CrossRef]

R. Houdré, R. P. Stanley, U. Oesterle, M. Ilegems, and C. Weisbuch, “Room-temperature cavity polaritons in a semiconductor microcavity,” Phys. Rev. B 49, 16761–16764 (1994).
[CrossRef]

G. Tarel and V. Savona, “Linear spectrum of a quantum dot coupled to a nanocavity,” Phys. Rev. B 81, 075305 (2010).
[CrossRef]

S. Hughes and H. Kamada, “Single-quantum-dot strong coupling in a semiconductor photonic crystal nanocavity side coupled to a waveguide,” Phys. Rev. B 70, 195313 (2004).
[CrossRef]

L. A. Dunbar, R. P. Stanley, M. Lynch, J. Hegarty, U. Oesterle, R. Houdré, and M. Ilegems, “Excitation-induced coherence in a semiconductor microcavity,” Phys. Rev. B 66, 195307 (2002).
[CrossRef]

M. Sugawara, T. Fujii, S. Yamazaki, and K. Nakajima, “Optical characteristics of excitons in In1−xGaxAsyP1−y/InP quantum wells,” Phys. Rev. B 44, 1782–1791 (1991).
[CrossRef]

Y. Sidor, B. Partoens, F. M. Peeters, J. Maes, M. Hayne, D. Fuster, Y. González, L. González, and V. V. Moshchalkov, “Exciton confinement in InAs/InP quantum wires and quantum wells in the presence of a magnetic field,” Phys. Rev. B 76, 195320 (2007).
[CrossRef]

T. Gutbrod, M. Bayer, A. Forchel, J. P. Reithmaier, T. L. Reinecke, S. Rudin, and P. A. Knipp, “Weak and strong coupling of photons and excitons in photonic dots,” Phys. Rev. B 57, 9950–9956 (1998).
[CrossRef]

G. Panzarini and L. C. Andreani, “Quantum theory of exciton polaritons in cylindrical semiconductor microcavities,” Phys. Rev. B 60, 16799–16806 (1999).
[CrossRef]

D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lemaître, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B 80, 201308 (2009).
[CrossRef]

F. P. Laussy, E. del Valle, and C. Tejedor, “Luminescence spectra of quantum dots in microcavities. I. Bosons,” Phys. Rev. B 79, 235325 (2009).
[CrossRef]

Phys. Rev. Lett. (4)

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108, 093604 (2012).
[CrossRef]

R. Houdré, C. Weisbuch, R. P. Stanley, U. Oesterle, P. Pellandini, and M. Ilegems, “Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments,” Phys. Rev. Lett. 73, 2043–2046 (1994).
[CrossRef]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[CrossRef]

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
[CrossRef]

Phys. Status Solidi B (2)

D. Gerace, M. Agio, and L. C. Andreani, “Quantum theory of photonic crystal polaritons,” Phys. Status Solidi B 1, 446–449 (2004).
[CrossRef]

L. Andreani, D. Gerace, and M. Agio, “Exciton-polaritons and nanoscale cavities in photonic crystal slabs,” Phys. Status Solidi B 242, 2197–2209 (2005).
[CrossRef]

Prog. Quantum Electron. (2)

M. Kira and S. Koch, “Many-body correlations and excitonic effects in semiconductor spectroscopy,” Prog. Quantum Electron. 30, 155–296 (2006).
[CrossRef]

K. Böhringer and O. Hess, “A full-time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation,” Prog. Quantum Electron. 32, 159–246 (2008).
[CrossRef]

Semicond. Sci. Technol. (1)

M. S. Skolnick, P. R. Tapster, S. J. Bass, A. D. Pitt, N. Apsley, and S. P. Aldred, “Investigation of InGaAs-InP quantum wells by optical spectroscopy,” Semicond. Sci. Technol. 1, 29–40(1986).
[CrossRef]

Other (12)

E. L. Ivchenko and G. Pikus, Superlattices and Other Heterostructures: Symmetry and Optical Phenomena, Springer Series in Solid-State Sciences (Springer, 1997), Vol. 110.

B. Deveaud, The Physics of Semiconductor Microcavities(Wiley-VCH, 2007).

D. Sanvitto and V. Timofeev, Exciton Polaritons in Microcavities: New Frontiers, Springer Series in Solid-State Sciences (Springer, 2012), Vol. 172.

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House Antennas and Propagation Library (Artech House, 2000).

A. Kavokin and G. Malpuech, Cavity Polaritons, Thin Films and Nanostructures (Academic, 2003) Vol. 32.

K. Cho, Optical Response of Nanostructures: Microscopic Nonlocal Theory (Springer, 2003).

FDTD Solutions ver. 7.0. Lumerical Solutions, Inc., Vancouver, BC, Canada (2009).

C. Weisbuch and B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic, 1991).

C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics, Vol. 1 (Wiley, 1992), pp. 337–405.

E. Palik, Handbook of Optical Constants of Solids, Academic Press Handbook Series (Academic, 1985) Vol. 1.

S. G. Johnson, “ http://ab-initio.mit.edu/wiki/index.php/Harminv .”

F. Biscani, D. Izzo, and C. H. Yam, “A global optimisation toolbox for massively parallel engineering optimisation,” in 4th International Conference on Astrodynamics Tools and Techniques (ICATT), Madrid, Spain, 3–6 May2010. (arXiv:1004.3824v1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Scheme including all the elements of the model.

Fig. 2.
Fig. 2.

(a) Quality factor relative error with respect to its value at 75 ps. The results corresponding to the HI method are multiplied by a factor 4×104. (b) Comparison of the fundamental resonance power spectrum obtained by applying DFT of the Ey component simulated during 75 ps (dot line) with the spectra obtained by PBA (solid line) and HI (dashed line) of Ey simulated for 3 ps.

Fig. 3.
Fig. 3.

Impact of a nonzero imaginary part of the dielectric constant of the InP material on the quality factor of the fundamental mode (solid line) and on its resonance position (dashed line).

Fig. 4.
Fig. 4.

(a) Normalized power spectrum obtained by the PBA method taking different initial times ti up to 1500 fs of an InP L7-PCM embedding a QW of EX0=847.657meV, ΓX0=0.5meV (in logarithmic scale in inset). (b) Similar to (a) but for an InP with Im{εInP}=6×103 (0.5meV linewidth) embedding a QW of ΓX0=5.0meV. (c) Similar to (b), except the power spectrum is obtained by the HI method.

Fig. 5.
Fig. 5.

(a) Contour plot of Pti(ω) generated with the parameters obtained after fitting the 10 spectra indicated in Fig. 4(b) (see text for further details). The partial transparent plot on the left-hand side corresponds to |Ey| shown in logarithmic scale. (b) Power spectrum obtained from the P(ω) expression setting ti=0 (solid line), by the HI method removing the phase difference information (dot symbols) and by the PBA method (square symbols) taking as ti the time origin derived from the fitting.

Fig. 6.
Fig. 6.

(a) Dependence of the Rabi splitting on ΓX0 for ΓPh=0.5meV (red dots) and on ΓPh for ΓX0=0.5meV (blue squares). The solid lines represent the fitting to a two-oscillators model (see text). Light red and blue lines indicate the evolution of the linewidth of the Rabi doublets on the respective Γ parameters. (b) Evolution of the Rabi splitting with the oscillator strength by unit area f/S for ΓX0=ΓPh=0.5meV (red dots). The solid line is the result of a fitting to a square root law. (c) Contour plot of the power spectrum as a function of the detuning. Each spectrum is normalized. The white dots indicate the maxima of the Rabi doublet.

Fig. 7.
Fig. 7.

(a) Rabi splitting as a function of the azimuth of the dipole orientation. The white dotted circle is of radius equal to the maximum value of the Rabi splitting, denoted by the diagonal red line. In the background, the |E|2 is plotted. The white line points to the azimuth π/4, along which |E|2 is plotted in (b). In the foreground of (b) we show the Rabi splitting as a function of the polar angle inscribed inside of a white circle of radius equal to the maximum of the Rabi splitting. The two horizontal white lines indicate the slab interfaces.

Fig. 8.
Fig. 8.

Electric field component Ey monitored from the simulation time origin until 3000 fs (black line). Envelope of Ey of the excitation dipole (gray line). Position of t0 with respect to the simulation time origin, 458.2 fs (vertical red line).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)=ε(1+ωLTEX0ωiΓX0/2),whereωLT=14πε02π2e2εmEX0LQWfS,
f(t)=Θ(tti)Θ(tft)Aei(ω0t+ϕ+iαt),
F(ω)=Aeiϕeiti(ωω0iα)α+i(ωω0)
P(ω)=F(ω)F*(ω)=A2e2tiα1α2+(ωω0)2.
Pc(ω)=A2e2tiαeitiΔ[1α+i(ωω0)1αi(ωω0Δ)].
fobj=nm|Pti,i(ωj)max(Pti,i(ω))Sti,i(ωj)max(Sti,i(ω))|2,
E±=12(E1+E2)±(E1E22)2+g2,
E±=E1+E22iΓ1+Γ24±(E1E22+iΓ2Γ14)2+g2.
D=ε(100010000)E,
εij(ω)=ε+(cosφsinθ000sinφsinθ000cosθ)εωLTEX0ωiΓ/2.

Metrics