Abstract

We demonstrate an all-fiber sensor for low-frequency vibration measurements. The sensor is based on the configuration of a Fabry–Perot interferometer (FPI), where the first mirror of the FPI is a splice joint between a single-mode fiber and a hollow-core fiber (HCF) and the second mirror is the end face of an etched microstructure support beam inserted into the HCF. The support beam consists of a mass block in the middle and can oscillate freely in the HCF when the sensor is subject to vibration. Our experimental sensor using a 60 mm long support beam with a diameter of 35 μm and a mass block of 2.95×108kg can detect vibrations at frequencies lower than 1 Hz with an acceleration resolution of 8.35×107g and a measurement range of ±2.24g. The sensor output varies by only 2.5% when the temperature changes from 20°C to 120°C. The sensor could be embedded in composite material and find applications in harsh environments.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Strasberg and D. Feit, “Vibration damping of large structures induced by attached small resonant structures,” J. Acoust. Soc. Am. 99, 335–344 (1996).
    [CrossRef]
  2. N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,” Proc. IEEE 86, 1640–1659 (1998).
    [CrossRef]
  3. H. Nakstad and J. T. Kringlebotn, “Oil and gas applications: probing oil fields,” Nat. Photonics 2, 147–149 (2008).
    [CrossRef]
  4. A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microship optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
    [CrossRef]
  5. C. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade, and H. K. Rockstad, “Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution,” J. Microelectromech. Syst. 7, 235–244 (1998).
    [CrossRef]
  6. H. Kulah, J. Chae, N. Yazdi, and K. Najafi, “Noise analysis and characterization of a sigma-delta capacitive microaccelerometer,” IEEE J. Solid-State Circ. 41, 352–361 (2006).
    [CrossRef]
  7. S. Tadigadapa and K. Mateti, “Piezoelectric MEMS sensors: state-of-the-art and perspectives,” Meas. Sci. Technol. 20, 092001 (2009).
    [CrossRef]
  8. J. W. Berthold, “Historical review of microbend fiber-optic sensors,” J. Lightwave Technol. 13, 1193–1199 (1995).
    [CrossRef]
  9. J. M. Lopez-Higuera, M. A. Morante, and A. Cobo, “Simple low-frequency optical fiber accelerometer with large rotating machine monitoring applications,” J. Lightwave Technol. 15, 1120–1130 (1997).
    [CrossRef]
  10. G. A. Cranch and P. J. Nash, “High-responsivity fiber-optic flexural disk accelerometers,” J. Lightwave Technol. 18, 1233–1243 (2000).
    [CrossRef]
  11. N. K. Pandey and B. C. Yadav, “Embedded fibre optic microbend sensor for measurement of high pressure and crack detection,” Sens. Actuat. A 128, 33–36 (2006).
    [CrossRef]
  12. K. Weir, W. J. O. Boyle, B. T. Meggit, A. W. Palmer, and K. T. V. Grattan, “A novel adaptation of the Michelson interferometer for the measurement of vibration,” J. Lightwave Technol. 10, 700–703 (1992).
    [CrossRef]
  13. G. Schröpfer, W. Elflein, M. d. Labachelerie, H. Porte, and S. Ballandras, “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuat. A 68, 344–359 (1998).
    [CrossRef]
  14. T. K. Gangopadhyay, and P. J. Henderson, “Vibration: history and measurement with an extrinsic Fabry-Pérot sensor with solid-state laser interferometry,” Appl. Opt. 38, 2471–2477 (1999).
    [CrossRef]
  15. J. A. Garcia-Souto, and H. Lamela-Rivera, “High resolution (<1  nm) interferometric fiber-optic sensor of vibrations in high-power transformers,” Opt. Express 14, 9679–9686 (2006).
    [CrossRef]
  16. Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281, 1538–1544 (2008).
    [CrossRef]
  17. T. Ke, T. Zhu, Y. J. Rao, and M. Deng, “Accelerometer based on all-fiber Fabry-Perot interferometer formed by hollow-core photonic crystal fiber,” Microw. Opt. Technol. Lett. 52, 2531–2535 (2010).
    [CrossRef]
  18. M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10, 1605–1607 (1998).
    [CrossRef]
  19. Y. N. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, and S. J. Spammer, “Temperature-insensitive fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 15, 1437–1439 (2003).
    [CrossRef]
  20. K. O. Lee, K. S. Chiang, and Z. Chen, “Temperature-insensitive fiber-Bragg-gating-based vibration sensor,” Opt. Eng. 40, 2582–2585 (2001).
    [CrossRef]
  21. A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. M. Culloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8, 1292–1298 (2008).
    [CrossRef]
  22. T. Guo, A. Ivanov, C. Chen, and J. Albert, “Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling,” Opt. Lett. 33, 1004–1006 (2008).
    [CrossRef]
  23. N. V. Wheeler, M. D. W. Grogan, T. D. Bradley, F. Couny, T. A. Birks, and F. Benabid, “Multipass hollow core-PCF microcell using a tapered micromirror,” J. Lightwave Technol. 29, 1314–1318 (2011).
    [CrossRef]
  24. P. Museros and M. D. Martinez-Rodrigo, “Vibration control of simply supported beams under moving loads using fluid viscous dampers,” J. Sound Vib. 300, 292–315 (2007).
    [CrossRef]
  25. H. Dubbel, Taschenbuch für den Maschinenbau (J. Springer, 1951).

2012

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microship optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[CrossRef]

2011

2010

T. Ke, T. Zhu, Y. J. Rao, and M. Deng, “Accelerometer based on all-fiber Fabry-Perot interferometer formed by hollow-core photonic crystal fiber,” Microw. Opt. Technol. Lett. 52, 2531–2535 (2010).
[CrossRef]

2009

S. Tadigadapa and K. Mateti, “Piezoelectric MEMS sensors: state-of-the-art and perspectives,” Meas. Sci. Technol. 20, 092001 (2009).
[CrossRef]

2008

H. Nakstad and J. T. Kringlebotn, “Oil and gas applications: probing oil fields,” Nat. Photonics 2, 147–149 (2008).
[CrossRef]

Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281, 1538–1544 (2008).
[CrossRef]

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. M. Culloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8, 1292–1298 (2008).
[CrossRef]

T. Guo, A. Ivanov, C. Chen, and J. Albert, “Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling,” Opt. Lett. 33, 1004–1006 (2008).
[CrossRef]

2007

P. Museros and M. D. Martinez-Rodrigo, “Vibration control of simply supported beams under moving loads using fluid viscous dampers,” J. Sound Vib. 300, 292–315 (2007).
[CrossRef]

2006

J. A. Garcia-Souto, and H. Lamela-Rivera, “High resolution (<1  nm) interferometric fiber-optic sensor of vibrations in high-power transformers,” Opt. Express 14, 9679–9686 (2006).
[CrossRef]

N. K. Pandey and B. C. Yadav, “Embedded fibre optic microbend sensor for measurement of high pressure and crack detection,” Sens. Actuat. A 128, 33–36 (2006).
[CrossRef]

H. Kulah, J. Chae, N. Yazdi, and K. Najafi, “Noise analysis and characterization of a sigma-delta capacitive microaccelerometer,” IEEE J. Solid-State Circ. 41, 352–361 (2006).
[CrossRef]

2003

Y. N. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, and S. J. Spammer, “Temperature-insensitive fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 15, 1437–1439 (2003).
[CrossRef]

2001

K. O. Lee, K. S. Chiang, and Z. Chen, “Temperature-insensitive fiber-Bragg-gating-based vibration sensor,” Opt. Eng. 40, 2582–2585 (2001).
[CrossRef]

2000

1999

1998

G. Schröpfer, W. Elflein, M. d. Labachelerie, H. Porte, and S. Ballandras, “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuat. A 68, 344–359 (1998).
[CrossRef]

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10, 1605–1607 (1998).
[CrossRef]

C. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade, and H. K. Rockstad, “Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution,” J. Microelectromech. Syst. 7, 235–244 (1998).
[CrossRef]

N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,” Proc. IEEE 86, 1640–1659 (1998).
[CrossRef]

1997

J. M. Lopez-Higuera, M. A. Morante, and A. Cobo, “Simple low-frequency optical fiber accelerometer with large rotating machine monitoring applications,” J. Lightwave Technol. 15, 1120–1130 (1997).
[CrossRef]

1996

M. Strasberg and D. Feit, “Vibration damping of large structures induced by attached small resonant structures,” J. Acoust. Soc. Am. 99, 335–344 (1996).
[CrossRef]

1995

J. W. Berthold, “Historical review of microbend fiber-optic sensors,” J. Lightwave Technol. 13, 1193–1199 (1995).
[CrossRef]

1992

K. Weir, W. J. O. Boyle, B. T. Meggit, A. W. Palmer, and K. T. V. Grattan, “A novel adaptation of the Michelson interferometer for the measurement of vibration,” J. Lightwave Technol. 10, 700–703 (1992).
[CrossRef]

Albert, J.

Althouse, B. A.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10, 1605–1607 (1998).
[CrossRef]

Ayazi, F.

N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,” Proc. IEEE 86, 1640–1659 (1998).
[CrossRef]

Ballandras, S.

G. Schröpfer, W. Elflein, M. d. Labachelerie, H. Porte, and S. Ballandras, “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuat. A 68, 344–359 (1998).
[CrossRef]

Barton, J. S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. M. Culloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8, 1292–1298 (2008).
[CrossRef]

Barzilai, A. M.

C. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade, and H. K. Rockstad, “Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution,” J. Microelectromech. Syst. 7, 235–244 (1998).
[CrossRef]

Benabid, F.

Bennion, I.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. M. Culloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8, 1292–1298 (2008).
[CrossRef]

Berthold, J. W.

J. W. Berthold, “Historical review of microbend fiber-optic sensors,” J. Lightwave Technol. 13, 1193–1199 (1995).
[CrossRef]

Birks, T. A.

Blasius, T. D.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microship optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[CrossRef]

Boyle, W. J. O.

K. Weir, W. J. O. Boyle, B. T. Meggit, A. W. Palmer, and K. T. V. Grattan, “A novel adaptation of the Michelson interferometer for the measurement of vibration,” J. Lightwave Technol. 10, 700–703 (1992).
[CrossRef]

Bradley, T. D.

Chae, J.

H. Kulah, J. Chae, N. Yazdi, and K. Najafi, “Noise analysis and characterization of a sigma-delta capacitive microaccelerometer,” IEEE J. Solid-State Circ. 41, 352–361 (2006).
[CrossRef]

Chen, C.

Chen, X.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. M. Culloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8, 1292–1298 (2008).
[CrossRef]

Chen, Z.

K. O. Lee, K. S. Chiang, and Z. Chen, “Temperature-insensitive fiber-Bragg-gating-based vibration sensor,” Opt. Eng. 40, 2582–2585 (2001).
[CrossRef]

Chiang, K. S.

K. O. Lee, K. S. Chiang, and Z. Chen, “Temperature-insensitive fiber-Bragg-gating-based vibration sensor,” Opt. Eng. 40, 2582–2585 (2001).
[CrossRef]

Cobo, A.

J. M. Lopez-Higuera, M. A. Morante, and A. Cobo, “Simple low-frequency optical fiber accelerometer with large rotating machine monitoring applications,” J. Lightwave Technol. 15, 1120–1130 (1997).
[CrossRef]

Couny, F.

Cranch, G. A.

Culloch, S. M.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. M. Culloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8, 1292–1298 (2008).
[CrossRef]

Deng, M.

T. Ke, T. Zhu, Y. J. Rao, and M. Deng, “Accelerometer based on all-fiber Fabry-Perot interferometer formed by hollow-core photonic crystal fiber,” Microw. Opt. Technol. Lett. 52, 2531–2535 (2010).
[CrossRef]

Dubbel, H.

H. Dubbel, Taschenbuch für den Maschinenbau (J. Springer, 1951).

Elflein, W.

G. Schröpfer, W. Elflein, M. d. Labachelerie, H. Porte, and S. Ballandras, “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuat. A 68, 344–359 (1998).
[CrossRef]

Feit, D.

M. Strasberg and D. Feit, “Vibration damping of large structures induced by attached small resonant structures,” J. Acoust. Soc. Am. 99, 335–344 (1996).
[CrossRef]

Fender, A.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. M. Culloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8, 1292–1298 (2008).
[CrossRef]

Gangopadhyay, T. K.

Garcia-Souto, J. A.

George, D. S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. M. Culloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8, 1292–1298 (2008).
[CrossRef]

Grade, J. D.

C. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade, and H. K. Rockstad, “Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution,” J. Microelectromech. Syst. 7, 235–244 (1998).
[CrossRef]

Grattan, K. T. V.

K. Weir, W. J. O. Boyle, B. T. Meggit, A. W. Palmer, and K. T. V. Grattan, “A novel adaptation of the Michelson interferometer for the measurement of vibration,” J. Lightwave Technol. 10, 700–703 (1992).
[CrossRef]

Grogan, M. D. W.

Guo, T.

Henderson, P. J.

Howden, R. I.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. M. Culloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8, 1292–1298 (2008).
[CrossRef]

Ivanov, A.

Johnson, G. A.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10, 1605–1607 (1998).
[CrossRef]

Jones, B. J. S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. M. Culloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8, 1292–1298 (2008).
[CrossRef]

Ke, T.

T. Ke, T. Zhu, Y. J. Rao, and M. Deng, “Accelerometer based on all-fiber Fabry-Perot interferometer formed by hollow-core photonic crystal fiber,” Microw. Opt. Technol. Lett. 52, 2531–2535 (2010).
[CrossRef]

Kenny, T. W.

C. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade, and H. K. Rockstad, “Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution,” J. Microelectromech. Syst. 7, 235–244 (1998).
[CrossRef]

Krause, A. G.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microship optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[CrossRef]

Kringlebotn, J. T.

H. Nakstad and J. T. Kringlebotn, “Oil and gas applications: probing oil fields,” Nat. Photonics 2, 147–149 (2008).
[CrossRef]

Kulah, H.

H. Kulah, J. Chae, N. Yazdi, and K. Najafi, “Noise analysis and characterization of a sigma-delta capacitive microaccelerometer,” IEEE J. Solid-State Circ. 41, 352–361 (2006).
[CrossRef]

Labachelerie, M. d.

G. Schröpfer, W. Elflein, M. d. Labachelerie, H. Porte, and S. Ballandras, “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuat. A 68, 344–359 (1998).
[CrossRef]

Lacquet, M. B.

Y. N. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, and S. J. Spammer, “Temperature-insensitive fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 15, 1437–1439 (2003).
[CrossRef]

Lamela-Rivera, H.

Lee, K. O.

K. O. Lee, K. S. Chiang, and Z. Chen, “Temperature-insensitive fiber-Bragg-gating-based vibration sensor,” Opt. Eng. 40, 2582–2585 (2001).
[CrossRef]

Lin, Q.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microship optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[CrossRef]

Liu, C.

C. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade, and H. K. Rockstad, “Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution,” J. Microelectromech. Syst. 7, 235–244 (1998).
[CrossRef]

Liu, D.

Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281, 1538–1544 (2008).
[CrossRef]

Liu, H.

Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281, 1538–1544 (2008).
[CrossRef]

Lopez-Higuera, J. M.

J. M. Lopez-Higuera, M. A. Morante, and A. Cobo, “Simple low-frequency optical fiber accelerometer with large rotating machine monitoring applications,” J. Lightwave Technol. 15, 1120–1130 (1997).
[CrossRef]

Lu, C.

Y. N. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, and S. J. Spammer, “Temperature-insensitive fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 15, 1437–1439 (2003).
[CrossRef]

MacPherson, W. N.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. M. Culloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8, 1292–1298 (2008).
[CrossRef]

Maier, R. R. J.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. M. Culloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8, 1292–1298 (2008).
[CrossRef]

Martinez-Rodrigo, M. D.

P. Museros and M. D. Martinez-Rodrigo, “Vibration control of simply supported beams under moving loads using fluid viscous dampers,” J. Sound Vib. 300, 292–315 (2007).
[CrossRef]

Mateti, K.

S. Tadigadapa and K. Mateti, “Piezoelectric MEMS sensors: state-of-the-art and perspectives,” Meas. Sci. Technol. 20, 092001 (2009).
[CrossRef]

Meggit, B. T.

K. Weir, W. J. O. Boyle, B. T. Meggit, A. W. Palmer, and K. T. V. Grattan, “A novel adaptation of the Michelson interferometer for the measurement of vibration,” J. Lightwave Technol. 10, 700–703 (1992).
[CrossRef]

Morante, M. A.

J. M. Lopez-Higuera, M. A. Morante, and A. Cobo, “Simple low-frequency optical fiber accelerometer with large rotating machine monitoring applications,” J. Lightwave Technol. 15, 1120–1130 (1997).
[CrossRef]

Museros, P.

P. Museros and M. D. Martinez-Rodrigo, “Vibration control of simply supported beams under moving loads using fluid viscous dampers,” J. Sound Vib. 300, 292–315 (2007).
[CrossRef]

Najafi, K.

H. Kulah, J. Chae, N. Yazdi, and K. Najafi, “Noise analysis and characterization of a sigma-delta capacitive microaccelerometer,” IEEE J. Solid-State Circ. 41, 352–361 (2006).
[CrossRef]

N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,” Proc. IEEE 86, 1640–1659 (1998).
[CrossRef]

Nakstad, H.

H. Nakstad and J. T. Kringlebotn, “Oil and gas applications: probing oil fields,” Nat. Photonics 2, 147–149 (2008).
[CrossRef]

Nash, P. J.

Painter, O.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microship optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[CrossRef]

Palmer, A. W.

K. Weir, W. J. O. Boyle, B. T. Meggit, A. W. Palmer, and K. T. V. Grattan, “A novel adaptation of the Michelson interferometer for the measurement of vibration,” J. Lightwave Technol. 10, 700–703 (1992).
[CrossRef]

Pandey, N. K.

N. K. Pandey and B. C. Yadav, “Embedded fibre optic microbend sensor for measurement of high pressure and crack detection,” Sens. Actuat. A 128, 33–36 (2006).
[CrossRef]

Partridge, A.

C. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade, and H. K. Rockstad, “Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution,” J. Microelectromech. Syst. 7, 235–244 (1998).
[CrossRef]

Porte, H.

G. Schröpfer, W. Elflein, M. d. Labachelerie, H. Porte, and S. Ballandras, “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuat. A 68, 344–359 (1998).
[CrossRef]

Rao, Y. J.

T. Ke, T. Zhu, Y. J. Rao, and M. Deng, “Accelerometer based on all-fiber Fabry-Perot interferometer formed by hollow-core photonic crystal fiber,” Microw. Opt. Technol. Lett. 52, 2531–2535 (2010).
[CrossRef]

Reynolds, J. K.

C. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade, and H. K. Rockstad, “Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution,” J. Microelectromech. Syst. 7, 235–244 (1998).
[CrossRef]

Rockstad, H. K.

C. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade, and H. K. Rockstad, “Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution,” J. Microelectromech. Syst. 7, 235–244 (1998).
[CrossRef]

Schröpfer, G.

G. Schröpfer, W. Elflein, M. d. Labachelerie, H. Porte, and S. Ballandras, “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuat. A 68, 344–359 (1998).
[CrossRef]

Shum, P.

Y. N. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, and S. J. Spammer, “Temperature-insensitive fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 15, 1437–1439 (2003).
[CrossRef]

Smith, G. W.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. M. Culloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8, 1292–1298 (2008).
[CrossRef]

Spammer, S. J.

Y. N. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, and S. J. Spammer, “Temperature-insensitive fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 15, 1437–1439 (2003).
[CrossRef]

Strasberg, M.

M. Strasberg and D. Feit, “Vibration damping of large structures induced by attached small resonant structures,” J. Acoust. Soc. Am. 99, 335–344 (1996).
[CrossRef]

Sun, Q.

Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281, 1538–1544 (2008).
[CrossRef]

Suo, R.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. M. Culloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8, 1292–1298 (2008).
[CrossRef]

Swart, P. L.

Y. N. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, and S. J. Spammer, “Temperature-insensitive fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 15, 1437–1439 (2003).
[CrossRef]

Tadigadapa, S.

S. Tadigadapa and K. Mateti, “Piezoelectric MEMS sensors: state-of-the-art and perspectives,” Meas. Sci. Technol. 20, 092001 (2009).
[CrossRef]

Todd, M. D.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10, 1605–1607 (1998).
[CrossRef]

Vohra, S. T.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10, 1605–1607 (1998).
[CrossRef]

Wang, J.

Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281, 1538–1544 (2008).
[CrossRef]

Weir, K.

K. Weir, W. J. O. Boyle, B. T. Meggit, A. W. Palmer, and K. T. V. Grattan, “A novel adaptation of the Michelson interferometer for the measurement of vibration,” J. Lightwave Technol. 10, 700–703 (1992).
[CrossRef]

Wheeler, N. V.

Winger, M.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microship optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[CrossRef]

Yadav, B. C.

N. K. Pandey and B. C. Yadav, “Embedded fibre optic microbend sensor for measurement of high pressure and crack detection,” Sens. Actuat. A 128, 33–36 (2006).
[CrossRef]

Yazdi, N.

H. Kulah, J. Chae, N. Yazdi, and K. Najafi, “Noise analysis and characterization of a sigma-delta capacitive microaccelerometer,” IEEE J. Solid-State Circ. 41, 352–361 (2006).
[CrossRef]

N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,” Proc. IEEE 86, 1640–1659 (1998).
[CrossRef]

Zhang, L.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. M. Culloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8, 1292–1298 (2008).
[CrossRef]

Zhu, T.

T. Ke, T. Zhu, Y. J. Rao, and M. Deng, “Accelerometer based on all-fiber Fabry-Perot interferometer formed by hollow-core photonic crystal fiber,” Microw. Opt. Technol. Lett. 52, 2531–2535 (2010).
[CrossRef]

Zhu, Y. N.

Y. N. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, and S. J. Spammer, “Temperature-insensitive fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 15, 1437–1439 (2003).
[CrossRef]

Appl. Opt.

IEEE J. Solid-State Circ.

H. Kulah, J. Chae, N. Yazdi, and K. Najafi, “Noise analysis and characterization of a sigma-delta capacitive microaccelerometer,” IEEE J. Solid-State Circ. 41, 352–361 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10, 1605–1607 (1998).
[CrossRef]

Y. N. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, and S. J. Spammer, “Temperature-insensitive fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 15, 1437–1439 (2003).
[CrossRef]

IEEE Sens. J.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. M. Culloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8, 1292–1298 (2008).
[CrossRef]

J. Acoust. Soc. Am.

M. Strasberg and D. Feit, “Vibration damping of large structures induced by attached small resonant structures,” J. Acoust. Soc. Am. 99, 335–344 (1996).
[CrossRef]

J. Lightwave Technol.

J. W. Berthold, “Historical review of microbend fiber-optic sensors,” J. Lightwave Technol. 13, 1193–1199 (1995).
[CrossRef]

J. M. Lopez-Higuera, M. A. Morante, and A. Cobo, “Simple low-frequency optical fiber accelerometer with large rotating machine monitoring applications,” J. Lightwave Technol. 15, 1120–1130 (1997).
[CrossRef]

K. Weir, W. J. O. Boyle, B. T. Meggit, A. W. Palmer, and K. T. V. Grattan, “A novel adaptation of the Michelson interferometer for the measurement of vibration,” J. Lightwave Technol. 10, 700–703 (1992).
[CrossRef]

G. A. Cranch and P. J. Nash, “High-responsivity fiber-optic flexural disk accelerometers,” J. Lightwave Technol. 18, 1233–1243 (2000).
[CrossRef]

N. V. Wheeler, M. D. W. Grogan, T. D. Bradley, F. Couny, T. A. Birks, and F. Benabid, “Multipass hollow core-PCF microcell using a tapered micromirror,” J. Lightwave Technol. 29, 1314–1318 (2011).
[CrossRef]

J. Microelectromech. Syst.

C. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade, and H. K. Rockstad, “Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution,” J. Microelectromech. Syst. 7, 235–244 (1998).
[CrossRef]

J. Sound Vib.

P. Museros and M. D. Martinez-Rodrigo, “Vibration control of simply supported beams under moving loads using fluid viscous dampers,” J. Sound Vib. 300, 292–315 (2007).
[CrossRef]

Meas. Sci. Technol.

S. Tadigadapa and K. Mateti, “Piezoelectric MEMS sensors: state-of-the-art and perspectives,” Meas. Sci. Technol. 20, 092001 (2009).
[CrossRef]

Microw. Opt. Technol. Lett.

T. Ke, T. Zhu, Y. J. Rao, and M. Deng, “Accelerometer based on all-fiber Fabry-Perot interferometer formed by hollow-core photonic crystal fiber,” Microw. Opt. Technol. Lett. 52, 2531–2535 (2010).
[CrossRef]

Nat. Photonics

H. Nakstad and J. T. Kringlebotn, “Oil and gas applications: probing oil fields,” Nat. Photonics 2, 147–149 (2008).
[CrossRef]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microship optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[CrossRef]

Opt. Commun.

Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281, 1538–1544 (2008).
[CrossRef]

Opt. Eng.

K. O. Lee, K. S. Chiang, and Z. Chen, “Temperature-insensitive fiber-Bragg-gating-based vibration sensor,” Opt. Eng. 40, 2582–2585 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. IEEE

N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,” Proc. IEEE 86, 1640–1659 (1998).
[CrossRef]

Sens. Actuat. A

G. Schröpfer, W. Elflein, M. d. Labachelerie, H. Porte, and S. Ballandras, “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuat. A 68, 344–359 (1998).
[CrossRef]

N. K. Pandey and B. C. Yadav, “Embedded fibre optic microbend sensor for measurement of high pressure and crack detection,” Sens. Actuat. A 128, 33–36 (2006).
[CrossRef]

Other

H. Dubbel, Taschenbuch für den Maschinenbau (J. Springer, 1951).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic diagram and microscopic images of the all-fiber vibration sensor.

Fig. 2.
Fig. 2.

Experimental setup for the characterization of the vibration sensor.

Fig. 3.
Fig. 3.

The reflection spectrum of the sensor (dot line) in relation to the operation wavelength at 1540 nm.

Fig. 4.
Fig. 4.

Sensor output voltages at vibration frequencies of (a) 10 Hz and (b) 0.5 Hz, and the corresponding acceleration variations at (c) 10 Hz and (d) 0.5 Hz.

Fig. 5.
Fig. 5.

Frequency responses of three vibration sensors using different beam lengths.

Fig. 6.
Fig. 6.

(a) Dependence of the resonance frequency of the sensor on (a) the weight of the mass block at L2=60mm and (b) the length of the beam L2 at a mass block of 2.95×108kg.

Fig. 7.
Fig. 7.

Variation of the reflection spectrum of the sensor with the temperature.

Fig. 8.
Fig. 8.

Variations of the sensor output voltage and the corresponding acceleration with the temperature.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

IR=2RI0(1cosφ),
ΔL=20L2/21+w2dxL2,
w=a/ωn2,
ωn=π4EIL23m,
a=0.32275π3EImL22π[λcos1(1V2GBRI)4nπL]nL2,
ΔL=(L4α4L3α3)ΔT,

Metrics