Abstract

We report on the regulation of a photorefractive (PR) surface soliton theoretically and experimentally. The size and trajectory of a PR surface soliton can be modulated by launch position, applied external electric field, and relative light intensity. This offers a means to manipulate optical beams. A PR surface soliton with a size as small as 3 μm is achieved. Under proper conditions a straightly propagating surface PR surface soliton can be induced.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901 (2007).
    [CrossRef]
  2. H. Z. Kang, T. H. Zhang, B. H. Wang, C. B. Lou, B. G. Zhu, H. H. Ma, S. M. Liu, J. G. Tian, and J. J. Xu, “(2+1)/D surface solitons in virtue of the cooperation of nonlocal and local nonlinearities,” Opt. Lett. 34, 3298–3300 (2009).
    [CrossRef]
  3. B. Alfassi, C. Rotschild, and M. Segev, “Incoherent surface solitons in effectively instantaneous nonlocal nonlinear media,” Phys. Rev. A 80, 041808 (2009).
    [CrossRef]
  4. J. Safioui, E. Fazio, F. Devaux, and M. Chauvet, “Surface-wave pyroelectric photorefractive solitons,” Opt. Lett. 35, 1254–1256 (2010).
    [CrossRef]
  5. Z. J. Yang, X. K. Ma, D. Q. Lu, Y. Z. Zheng, X. H. Gao, and W. Hu, “Relation between surface solitons and bulk solitons in nonlocal nonlinear media,” Opt. Express 19, 4890–4901 (2011).
    [CrossRef]
  6. A. Barak, C. Rotschild, B. Alfassi, M. Segev, and D. N. Christodoulides, “Random-phase surface-wave solitons in nonlocal nonlinear media,” Opt. Lett. 32, 2450–2452 (2007).
    [CrossRef]
  7. K. G. Makris, S. Suntsov, D. N. Christodoulides, G. I. Stegeman, and A. Hache, “Discrete surface solitons,” Opt. Lett. 30, 2466–2468 (2005).
    [CrossRef]
  8. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Surface gap solitons,” Phys. Rev. Lett. 96, 073901 (2006).
    [CrossRef]
  9. A. Szameit, Y. V. Kartashov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and L. Torner, “Observation of two-dimensional surface solitons in asymmetric waveguide arrays,” Phys. Rev. Lett. 98, 173903 (2007).
    [CrossRef]
  10. X. S. Wang, A. Bezryadina, Z. G. Chen, K. G. Makris, D. N. Christodoulides, and G. I. Stegeman, “Observation of two-dimensional surface solitons,” Phys. Rev. Lett. 98, 123903(2007).
    [CrossRef]
  11. M. Segev, B. Crosignani, A. Yariv, and B. Fisher, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926(1992).
    [CrossRef]
  12. G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74, 1978–1981 (1995).
    [CrossRef]
  13. Z. G. Chen, M. Mitchell, M. F. Shih, and M. Segev, “Steady-state dark photorefractive screening solitons,” Opt. Lett. 21, 629–631 (1996).
    [CrossRef]
  14. M. Peccianti, C. Conti, G. Assanto, A. D. Luca, and C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
    [CrossRef]
  15. M. Segev and M. F. Shih, “Photorefractive screening solitons of high and low intensity,” J. Opt. Soc. Am. B 13, 706–718(1996).
    [CrossRef]
  16. M. Morin, G. Duree, G. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20, 2066–2068 (1995).
    [CrossRef]
  17. S. Lan, M. F. Shih, G. Mizell, J. A. Giordmaine, Z. G. Chen, C. Anastassiou, J. Martin, and M. Segev, “Second-harmonic generation in waveguides induced by photorefractive spatial solitons,” Opt. Lett. 24, 1145–1147 (1999).
    [CrossRef]
  18. H. Z. Kang, T. H. Zhang, H. H. Ma, C. B. Lou, S. M. Liu, J. G. Tian, and J. J. Xu, “Giant enhancement of surface second-harmonic generation using photorefractive surface waves with diffusion and drift nonlinearities,” Opt. Lett. 35, 1605–1607 (2010).
    [CrossRef]
  19. I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett. 83, 2429–2432 (1999).
    [CrossRef]

2011 (1)

2010 (2)

2009 (2)

2007 (4)

B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901 (2007).
[CrossRef]

A. Barak, C. Rotschild, B. Alfassi, M. Segev, and D. N. Christodoulides, “Random-phase surface-wave solitons in nonlocal nonlinear media,” Opt. Lett. 32, 2450–2452 (2007).
[CrossRef]

A. Szameit, Y. V. Kartashov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and L. Torner, “Observation of two-dimensional surface solitons in asymmetric waveguide arrays,” Phys. Rev. Lett. 98, 173903 (2007).
[CrossRef]

X. S. Wang, A. Bezryadina, Z. G. Chen, K. G. Makris, D. N. Christodoulides, and G. I. Stegeman, “Observation of two-dimensional surface solitons,” Phys. Rev. Lett. 98, 123903(2007).
[CrossRef]

2006 (1)

Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Surface gap solitons,” Phys. Rev. Lett. 96, 073901 (2006).
[CrossRef]

2005 (1)

2002 (1)

M. Peccianti, C. Conti, G. Assanto, A. D. Luca, and C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[CrossRef]

1999 (2)

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett. 83, 2429–2432 (1999).
[CrossRef]

S. Lan, M. F. Shih, G. Mizell, J. A. Giordmaine, Z. G. Chen, C. Anastassiou, J. Martin, and M. Segev, “Second-harmonic generation in waveguides induced by photorefractive spatial solitons,” Opt. Lett. 24, 1145–1147 (1999).
[CrossRef]

1996 (2)

1995 (2)

M. Morin, G. Duree, G. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20, 2066–2068 (1995).
[CrossRef]

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74, 1978–1981 (1995).
[CrossRef]

1992 (1)

M. Segev, B. Crosignani, A. Yariv, and B. Fisher, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926(1992).
[CrossRef]

Alfassi, B.

B. Alfassi, C. Rotschild, and M. Segev, “Incoherent surface solitons in effectively instantaneous nonlocal nonlinear media,” Phys. Rev. A 80, 041808 (2009).
[CrossRef]

B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901 (2007).
[CrossRef]

A. Barak, C. Rotschild, B. Alfassi, M. Segev, and D. N. Christodoulides, “Random-phase surface-wave solitons in nonlocal nonlinear media,” Opt. Lett. 32, 2450–2452 (2007).
[CrossRef]

Anastassiou, C.

Assanto, G.

M. Peccianti, C. Conti, G. Assanto, A. D. Luca, and C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[CrossRef]

Barak, A.

Bezryadina, A.

X. S. Wang, A. Bezryadina, Z. G. Chen, K. G. Makris, D. N. Christodoulides, and G. I. Stegeman, “Observation of two-dimensional surface solitons,” Phys. Rev. Lett. 98, 123903(2007).
[CrossRef]

Chauvet, M.

Chen, Z. G.

Christodoulides, D. N.

A. Barak, C. Rotschild, B. Alfassi, M. Segev, and D. N. Christodoulides, “Random-phase surface-wave solitons in nonlocal nonlinear media,” Opt. Lett. 32, 2450–2452 (2007).
[CrossRef]

X. S. Wang, A. Bezryadina, Z. G. Chen, K. G. Makris, D. N. Christodoulides, and G. I. Stegeman, “Observation of two-dimensional surface solitons,” Phys. Rev. Lett. 98, 123903(2007).
[CrossRef]

B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901 (2007).
[CrossRef]

K. G. Makris, S. Suntsov, D. N. Christodoulides, G. I. Stegeman, and A. Hache, “Discrete surface solitons,” Opt. Lett. 30, 2466–2468 (2005).
[CrossRef]

Conti, C.

M. Peccianti, C. Conti, G. Assanto, A. D. Luca, and C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[CrossRef]

Crosignani, B.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74, 1978–1981 (1995).
[CrossRef]

M. Segev, B. Crosignani, A. Yariv, and B. Fisher, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926(1992).
[CrossRef]

Davis, C. C.

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett. 83, 2429–2432 (1999).
[CrossRef]

Devaux, F.

Dreisow, F.

A. Szameit, Y. V. Kartashov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and L. Torner, “Observation of two-dimensional surface solitons in asymmetric waveguide arrays,” Phys. Rev. Lett. 98, 173903 (2007).
[CrossRef]

Duree, G.

M. Morin, G. Duree, G. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20, 2066–2068 (1995).
[CrossRef]

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74, 1978–1981 (1995).
[CrossRef]

Fazio, E.

Fisher, B.

M. Segev, B. Crosignani, A. Yariv, and B. Fisher, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926(1992).
[CrossRef]

Gao, X. H.

Giordmaine, J. A.

Hache, A.

Hu, W.

Kang, H. Z.

Kartashov, Y. V.

A. Szameit, Y. V. Kartashov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and L. Torner, “Observation of two-dimensional surface solitons in asymmetric waveguide arrays,” Phys. Rev. Lett. 98, 173903 (2007).
[CrossRef]

Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Surface gap solitons,” Phys. Rev. Lett. 96, 073901 (2006).
[CrossRef]

Lan, S.

Lee, C. H.

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett. 83, 2429–2432 (1999).
[CrossRef]

Liu, S. M.

Lou, C. B.

Lu, D. Q.

Luca, A. D.

M. Peccianti, C. Conti, G. Assanto, A. D. Luca, and C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[CrossRef]

Ma, H. H.

Ma, X. K.

Makris, K. G.

X. S. Wang, A. Bezryadina, Z. G. Chen, K. G. Makris, D. N. Christodoulides, and G. I. Stegeman, “Observation of two-dimensional surface solitons,” Phys. Rev. Lett. 98, 123903(2007).
[CrossRef]

K. G. Makris, S. Suntsov, D. N. Christodoulides, G. I. Stegeman, and A. Hache, “Discrete surface solitons,” Opt. Lett. 30, 2466–2468 (2005).
[CrossRef]

Manela, O.

B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901 (2007).
[CrossRef]

Martin, J.

Mitchell, M.

Mizell, G.

Morin, M.

M. Morin, G. Duree, G. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20, 2066–2068 (1995).
[CrossRef]

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74, 1978–1981 (1995).
[CrossRef]

Nolte, S.

A. Szameit, Y. V. Kartashov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and L. Torner, “Observation of two-dimensional surface solitons in asymmetric waveguide arrays,” Phys. Rev. Lett. 98, 173903 (2007).
[CrossRef]

Peccianti, M.

M. Peccianti, C. Conti, G. Assanto, A. D. Luca, and C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[CrossRef]

Pertsch, T.

A. Szameit, Y. V. Kartashov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and L. Torner, “Observation of two-dimensional surface solitons in asymmetric waveguide arrays,” Phys. Rev. Lett. 98, 173903 (2007).
[CrossRef]

Porto, P. D.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74, 1978–1981 (1995).
[CrossRef]

Rotschild, C.

B. Alfassi, C. Rotschild, and M. Segev, “Incoherent surface solitons in effectively instantaneous nonlocal nonlinear media,” Phys. Rev. A 80, 041808 (2009).
[CrossRef]

B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901 (2007).
[CrossRef]

A. Barak, C. Rotschild, B. Alfassi, M. Segev, and D. N. Christodoulides, “Random-phase surface-wave solitons in nonlocal nonlinear media,” Opt. Lett. 32, 2450–2452 (2007).
[CrossRef]

Safioui, J.

Salamo, G.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74, 1978–1981 (1995).
[CrossRef]

M. Morin, G. Duree, G. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20, 2066–2068 (1995).
[CrossRef]

Segev, M.

B. Alfassi, C. Rotschild, and M. Segev, “Incoherent surface solitons in effectively instantaneous nonlocal nonlinear media,” Phys. Rev. A 80, 041808 (2009).
[CrossRef]

B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901 (2007).
[CrossRef]

A. Barak, C. Rotschild, B. Alfassi, M. Segev, and D. N. Christodoulides, “Random-phase surface-wave solitons in nonlocal nonlinear media,” Opt. Lett. 32, 2450–2452 (2007).
[CrossRef]

S. Lan, M. F. Shih, G. Mizell, J. A. Giordmaine, Z. G. Chen, C. Anastassiou, J. Martin, and M. Segev, “Second-harmonic generation in waveguides induced by photorefractive spatial solitons,” Opt. Lett. 24, 1145–1147 (1999).
[CrossRef]

M. Segev and M. F. Shih, “Photorefractive screening solitons of high and low intensity,” J. Opt. Soc. Am. B 13, 706–718(1996).
[CrossRef]

Z. G. Chen, M. Mitchell, M. F. Shih, and M. Segev, “Steady-state dark photorefractive screening solitons,” Opt. Lett. 21, 629–631 (1996).
[CrossRef]

M. Morin, G. Duree, G. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20, 2066–2068 (1995).
[CrossRef]

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74, 1978–1981 (1995).
[CrossRef]

M. Segev, B. Crosignani, A. Yariv, and B. Fisher, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926(1992).
[CrossRef]

Sharp, E.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74, 1978–1981 (1995).
[CrossRef]

Shih, M. F.

Smolyaninov, I. I.

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett. 83, 2429–2432 (1999).
[CrossRef]

Stegeman, G. I.

X. S. Wang, A. Bezryadina, Z. G. Chen, K. G. Makris, D. N. Christodoulides, and G. I. Stegeman, “Observation of two-dimensional surface solitons,” Phys. Rev. Lett. 98, 123903(2007).
[CrossRef]

K. G. Makris, S. Suntsov, D. N. Christodoulides, G. I. Stegeman, and A. Hache, “Discrete surface solitons,” Opt. Lett. 30, 2466–2468 (2005).
[CrossRef]

Suntsov, S.

Szameit, A.

A. Szameit, Y. V. Kartashov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and L. Torner, “Observation of two-dimensional surface solitons in asymmetric waveguide arrays,” Phys. Rev. Lett. 98, 173903 (2007).
[CrossRef]

Tian, J. G.

Torner, L.

A. Szameit, Y. V. Kartashov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and L. Torner, “Observation of two-dimensional surface solitons in asymmetric waveguide arrays,” Phys. Rev. Lett. 98, 173903 (2007).
[CrossRef]

Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Surface gap solitons,” Phys. Rev. Lett. 96, 073901 (2006).
[CrossRef]

Tünnermann, A.

A. Szameit, Y. V. Kartashov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and L. Torner, “Observation of two-dimensional surface solitons in asymmetric waveguide arrays,” Phys. Rev. Lett. 98, 173903 (2007).
[CrossRef]

Umeton, C.

M. Peccianti, C. Conti, G. Assanto, A. D. Luca, and C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[CrossRef]

Vysloukh, V. A.

Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Surface gap solitons,” Phys. Rev. Lett. 96, 073901 (2006).
[CrossRef]

Wang, B. H.

Wang, X. S.

X. S. Wang, A. Bezryadina, Z. G. Chen, K. G. Makris, D. N. Christodoulides, and G. I. Stegeman, “Observation of two-dimensional surface solitons,” Phys. Rev. Lett. 98, 123903(2007).
[CrossRef]

Xu, J. J.

Yang, Z. J.

Yariv, A.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74, 1978–1981 (1995).
[CrossRef]

M. Segev, B. Crosignani, A. Yariv, and B. Fisher, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926(1992).
[CrossRef]

Zhang, T. H.

Zheng, Y. Z.

Zhu, B. G.

Appl. Phys. Lett. (1)

M. Peccianti, C. Conti, G. Assanto, A. D. Luca, and C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (8)

M. Morin, G. Duree, G. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20, 2066–2068 (1995).
[CrossRef]

S. Lan, M. F. Shih, G. Mizell, J. A. Giordmaine, Z. G. Chen, C. Anastassiou, J. Martin, and M. Segev, “Second-harmonic generation in waveguides induced by photorefractive spatial solitons,” Opt. Lett. 24, 1145–1147 (1999).
[CrossRef]

Z. G. Chen, M. Mitchell, M. F. Shih, and M. Segev, “Steady-state dark photorefractive screening solitons,” Opt. Lett. 21, 629–631 (1996).
[CrossRef]

K. G. Makris, S. Suntsov, D. N. Christodoulides, G. I. Stegeman, and A. Hache, “Discrete surface solitons,” Opt. Lett. 30, 2466–2468 (2005).
[CrossRef]

A. Barak, C. Rotschild, B. Alfassi, M. Segev, and D. N. Christodoulides, “Random-phase surface-wave solitons in nonlocal nonlinear media,” Opt. Lett. 32, 2450–2452 (2007).
[CrossRef]

H. Z. Kang, T. H. Zhang, B. H. Wang, C. B. Lou, B. G. Zhu, H. H. Ma, S. M. Liu, J. G. Tian, and J. J. Xu, “(2+1)/D surface solitons in virtue of the cooperation of nonlocal and local nonlinearities,” Opt. Lett. 34, 3298–3300 (2009).
[CrossRef]

J. Safioui, E. Fazio, F. Devaux, and M. Chauvet, “Surface-wave pyroelectric photorefractive solitons,” Opt. Lett. 35, 1254–1256 (2010).
[CrossRef]

H. Z. Kang, T. H. Zhang, H. H. Ma, C. B. Lou, S. M. Liu, J. G. Tian, and J. J. Xu, “Giant enhancement of surface second-harmonic generation using photorefractive surface waves with diffusion and drift nonlinearities,” Opt. Lett. 35, 1605–1607 (2010).
[CrossRef]

Phys. Rev. A (1)

B. Alfassi, C. Rotschild, and M. Segev, “Incoherent surface solitons in effectively instantaneous nonlocal nonlinear media,” Phys. Rev. A 80, 041808 (2009).
[CrossRef]

Phys. Rev. Lett. (7)

Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Surface gap solitons,” Phys. Rev. Lett. 96, 073901 (2006).
[CrossRef]

A. Szameit, Y. V. Kartashov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and L. Torner, “Observation of two-dimensional surface solitons in asymmetric waveguide arrays,” Phys. Rev. Lett. 98, 173903 (2007).
[CrossRef]

X. S. Wang, A. Bezryadina, Z. G. Chen, K. G. Makris, D. N. Christodoulides, and G. I. Stegeman, “Observation of two-dimensional surface solitons,” Phys. Rev. Lett. 98, 123903(2007).
[CrossRef]

M. Segev, B. Crosignani, A. Yariv, and B. Fisher, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926(1992).
[CrossRef]

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74, 1978–1981 (1995).
[CrossRef]

B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901 (2007).
[CrossRef]

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett. 83, 2429–2432 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

FWHM of a surface soliton as a function of (a) applied external electric field E0 with Imax/(Ib+Id)=10 and (b) relative light intensity Imax/(Ib+Id) with E0=30V/mm.

Fig. 2.
Fig. 2.

Dependence of the PR surface soliton trajectory on launch positions. (a) x=27μm for three reflections, (b) x=15μm for four reflections, and (c) x=10μm for a straightly propagating PR surface soliton. The boundary of the PRC is located at x=0μm; the applied external electric field is E0=30V/mm; the FWHM and the Imax/(Ib+Id) of the incident Gaussian beam are 12 μm and 10, respectively.

Fig. 3.
Fig. 3.

Regulation of PR surface solitons by an applied external electric field. (a) E0=20V/mm for three reflections and (b) E0=14V/mm for a straightly propagating PR surface soliton. The boundary of the PRC is located at x=0μm; the launch position is x=15μm; the FWHM and the Imax/(Ib+Id) of the incident Gaussian beam are 12 μm and 10, respectively.

Fig. 4.
Fig. 4.

Regulation of PR surface solitons by relative light intensity. (a) Imax/(Ib+Id)=1.4 for three reflections and (b) Imax/(Ib+Id)=0.75 for a straightly propagating PR surface soliton. The boundary of the PRC is located at x=0μm; the launch position is x=15μm; the FWHM of the incident Gaussian beam is 12 μm; the applied external electric field is E0=30V/mm.

Fig. 5.
Fig. 5.

Setup for the regulation of PR surface solitons.

Fig. 6.
Fig. 6.

Excitation and self-bending of PR soliton in bulk. Along with the formation of the soliton, the incident beam is self-bent and reaches its steady state at 400s. (a) Beam at input face, (b) diffracted beam at output face at 0 s, and (c)–(g) self-bent soliton beam at output face at 8, 32, 151, 403, and 560 s, respectively.

Fig. 7.
Fig. 7.

Experimental regulation of the PR surface soliton trajectory by the launch position. (a1)–(a4) The images at the input face of the crystal; the incident positions are 30, 20, 15, and 10 μm, respectively. (b1)–(b4), (c1)–(c4), (d1)–(d4), (e1)–(e4), (f1)–(f4), (g1)–(g4), (h1)–(h4), (i1)–(i4) The images at the output face of the crystal at 0, 6, 30, 43, 64, 229, 545, and 615 s, respectively. (b1)–(i1), (b2)–(i2), (b3)–(i3), and (b4)–(i4) show one reflection, two times of reflection, three times of reflection, and straight-line propagation of PR solitons, respectively.

Fig. 8.
Fig. 8.

Experimental regulation of the PR surface soliton trajectory by the applied external electric field. (a1)–(g2) The images at output face of the crystal at 0, 2, 75, 112, 368, 423, and 517 s, respectively. (a1)–(g1) and (a2)–(g2) correspond to E0=100 and E0=60V/mm, respectively.

Fig. 9.
Fig. 9.

Experimental regulation of the PR surface soliton trajectory by the relative light intensity. (a1)–(g2) The images at output face of the crystal at 0, 3, 25, 56, 104, 364, and 487 s, respectively. (a1)–(g1) and (a2)–(g2) correspond to a power of 7 and 3 μW for the incident beam, respectively.

Fig. 10.
Fig. 10.

Experimental curves of FWHM for the PR surface solitons as a function of (a) applied external electric field E0 with a 0.7 μW incident laser beam and 0.1W/cm2 background illumination and (b) relative light intensity with E0=200V/mm.

Fig. 11.
Fig. 11.

Modulation instability of the PR surface solitons under a high applied external electric field. (a) PR surface soliton when E0=240V/mm and (b)–(d) modulation instability when E0=250, 260, and 280V/mm, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

2E(x,y,z)+k2E(x,y,z)=0,
ESC(x,y)=kBTqln[I(x,y)+Id+Ib]+E0(I+Id+Ib)I(x,y)+Id+Ib,
2A(x,y)+γA2(x,y)A2(x,y)+1A(x,y)xaE0A2(x,y)+1A(x,y)+(k02n2β2)A(x,y)=0,
2x2A(x,z)+2z2A(x,z)+γA2(x,z)A2(x,z)+1A(x,z)xaE0A2(x,z)+1A(x,z)+k02n2A(x,z)=0.

Metrics