Abstract

A reliable method, combining raster scan process and real-time damage event imaging, has been developed to accurately determine the initiator inducing low-density laser damage at 1064 nm in large aperture solgel coatings. It is revealed that there were two distinct initiators, the visible surface defect and the invisible defect. Online detection and offline morphology analysis demonstrated that 96% of low-density damage sites were initiated by surface defects. All types of surface defects were investigated to find their reaction during exposure to laser irradiation. A kind of surface defect consisting of a central spot and a circle of microvariation was admitted as the main initiator. Its size and hidden depth revealed the characteristics of a laser damage initiator. The morphology and depth profile of the laser damage site consisted of a central point and surrounding delamination area, reconfirming our judgment of initiator property and disclosed laser damage mechanism. A high temperature, generated by initiator absorption, induced a change of phase and produced a huge local pressure. This pressure could hump the surrounding solgel coating, break off the humped coating with a shearing stress, and finally remove it from the sample surface.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. G. Floch and P. F. Belleville, “Damage-resistant sol-gel optical coatings for advanced lasers at CEL-V,” J. Sol-Gel Sci. Technol. 2, 695–705 (1994).
    [CrossRef]
  2. I. M. Thomas, “High laser damage threshold porous silica antireflective coating,” Appl. Opt. 25, 1481–1483 (1986).
    [CrossRef]
  3. H. G. Floch, J.-J. Priotton, and I. M. Thomas, The Physics and Technology of Amorphous SiO2 (Plenum, 1988).
  4. Y. Xu, L. Zhang, D. Wu, Y. H. Sun, Z. X. Huang, X. D. Jiang, X. F. Wei, Z. H. Li, B. Z. Dong, and Z. H. Wu, “Durabel solgel antireflective films with high laser-induced damage thresholds for inertial confinement fusion,” J. Opt. Soc. Am. B 22, 905–912 (2005).
    [CrossRef]
  5. I. M. Thomas, “Sol-gel coatings for high power laser optics-past, present and future,” Proc. SPIE 2114, 232–243 (1994).
    [CrossRef]
  6. H. G. Floch, P. F. Belleville, P. M. Pegon, C. S. Dijonneau, and J. Guerain, “Sol-gel optical thin films for an advanced megajoule-class Nd:glass laser ICF-driver,” Proc. SPIE 2714, 521–536 (1996).
    [CrossRef]
  7. L. Zhang, Y. Xu, D. Wu, Y. Sun, X. Jiang, and X. Wei, “Effect of polyvinylpyrrolidone on the structure and laser damage resistance of sol-gel silica anti-reflective films,” Opt. Laser Technol. 40, 282–288 (2008).
    [CrossRef]
  8. F. Yang, J. Shen, Q. Sun, B. Zhou, G. Wu, and J. Mugnier, “Effect of UV-irradiation on sol-gel optical films,” Proc. SPIE 6034, 603410 (2006).
    [CrossRef]
  9. L. Zhang, Y. Xu, Z. X. Huang, D. J. Yang, X. D. Jiang, D. Wu, Y. H. Sun, and X. F. Wei, “Effect of PEG on laser damage of sol-gel SiO2 anti-reflective coating,” High Power Laser Part. Beams 17, 669–672 (2005).
  10. K. Yoshida, “Mechanism of damage formation in antireflection coatings,” J. Appl. Phys. 60, 1545–1546 (1986).
    [CrossRef]
  11. X. Xia, H. Wang, and Q. Wu, “The stress relief mechanism in laser irradiation on porous films,” Opt. Commun. 285, 70–76 (2012).
    [CrossRef]
  12. X. G. Li and J. Shen, “Research progress in laser induced damage on optical films,” High Power Laser Part. Beams 22, 2237–2243 (2010).
    [CrossRef]
  13. Y. J. Guo, X. T. Zu, X. D. Jiang, X. D. Yuan, S. N. Zhao, S. Z. Xu, B. Y. Wang, and D. B. Tian, “Laser-induced damage of sol-gel silica acid and basic thin films,” High Power Laser Part. Beams 20, 939–942 (2008).
  14. F. Y. Genin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
    [CrossRef]
  15. X. Q. Chen, X. T. Zu, W. G. Zheng, X. D. Jiang, H. B. Lü, H. Ren, Y. Z. Zhang, and C. M. Liu, “Experimental research of laser-induced damage mechanism of the sol-gel SiO2 and ibsd SiO2 thin films,” Acta Phys. Sinica 55, 1201–1206 (2006).
  16. J. E. Martin, J. Wilcoxon, and D. Adolf, “Critical exponents for the sol-gel transition,” Phys. Rev. A 36, 1803–1810(1987).
    [CrossRef]
  17. W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
    [CrossRef]
  18. J. E. Wolfe and S. E. Schrauth, “Automated laser damage test system with real-time damage event imaging and detection,” Proc. SPIE 6403, 640328 (2007).
    [CrossRef]
  19. L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
    [CrossRef]
  20. H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3, 296–298 (1952).
    [CrossRef]
  21. J. C. Gao and J. G. Zhang, “Measurement of electrical charges carried by dust particles,” in Proceedings of IEEE Conference on Electric Contacts (IEEE, 2002), pp. 191–196.
  22. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 87401(2004).
    [CrossRef]
  23. Z. Xia, J. Shao, Z. Fan, and S. Wu, “Thermodynamic damage mechanism of transparent films caused by a low-power laser,” Appl. Opt. 45, 8253–8261 (2006).
    [CrossRef]
  24. L. Piveteau, B. Gasser, and L. Schlapbach, “Evaluating mechanical adhesion of sol-gel titanium dioxide coatings containing calcium phosphate for metal implant application,” Biomaterials 21, 2193–2201 (2000).
    [CrossRef]
  25. H. Leiphoiz, Theory of Elasticity (Noordhoff International, 1974).
  26. T. L. Anderson, Fracture Mechanics2nd ed. (CRC, 1995).

2012 (1)

X. Xia, H. Wang, and Q. Wu, “The stress relief mechanism in laser irradiation on porous films,” Opt. Commun. 285, 70–76 (2012).
[CrossRef]

2010 (1)

X. G. Li and J. Shen, “Research progress in laser induced damage on optical films,” High Power Laser Part. Beams 22, 2237–2243 (2010).
[CrossRef]

2008 (2)

Y. J. Guo, X. T. Zu, X. D. Jiang, X. D. Yuan, S. N. Zhao, S. Z. Xu, B. Y. Wang, and D. B. Tian, “Laser-induced damage of sol-gel silica acid and basic thin films,” High Power Laser Part. Beams 20, 939–942 (2008).

L. Zhang, Y. Xu, D. Wu, Y. Sun, X. Jiang, and X. Wei, “Effect of polyvinylpyrrolidone on the structure and laser damage resistance of sol-gel silica anti-reflective films,” Opt. Laser Technol. 40, 282–288 (2008).
[CrossRef]

2007 (2)

J. E. Wolfe and S. E. Schrauth, “Automated laser damage test system with real-time damage event imaging and detection,” Proc. SPIE 6403, 640328 (2007).
[CrossRef]

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

2006 (3)

X. Q. Chen, X. T. Zu, W. G. Zheng, X. D. Jiang, H. B. Lü, H. Ren, Y. Z. Zhang, and C. M. Liu, “Experimental research of laser-induced damage mechanism of the sol-gel SiO2 and ibsd SiO2 thin films,” Acta Phys. Sinica 55, 1201–1206 (2006).

F. Yang, J. Shen, Q. Sun, B. Zhou, G. Wu, and J. Mugnier, “Effect of UV-irradiation on sol-gel optical films,” Proc. SPIE 6034, 603410 (2006).
[CrossRef]

Z. Xia, J. Shao, Z. Fan, and S. Wu, “Thermodynamic damage mechanism of transparent films caused by a low-power laser,” Appl. Opt. 45, 8253–8261 (2006).
[CrossRef]

2005 (2)

L. Zhang, Y. Xu, Z. X. Huang, D. J. Yang, X. D. Jiang, D. Wu, Y. H. Sun, and X. F. Wei, “Effect of PEG on laser damage of sol-gel SiO2 anti-reflective coating,” High Power Laser Part. Beams 17, 669–672 (2005).

Y. Xu, L. Zhang, D. Wu, Y. H. Sun, Z. X. Huang, X. D. Jiang, X. F. Wei, Z. H. Li, B. Z. Dong, and Z. H. Wu, “Durabel solgel antireflective films with high laser-induced damage thresholds for inertial confinement fusion,” J. Opt. Soc. Am. B 22, 905–912 (2005).
[CrossRef]

2004 (1)

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 87401(2004).
[CrossRef]

2000 (1)

L. Piveteau, B. Gasser, and L. Schlapbach, “Evaluating mechanical adhesion of sol-gel titanium dioxide coatings containing calcium phosphate for metal implant application,” Biomaterials 21, 2193–2201 (2000).
[CrossRef]

1996 (2)

H. G. Floch, P. F. Belleville, P. M. Pegon, C. S. Dijonneau, and J. Guerain, “Sol-gel optical thin films for an advanced megajoule-class Nd:glass laser ICF-driver,” Proc. SPIE 2714, 521–536 (1996).
[CrossRef]

F. Y. Genin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

1994 (2)

I. M. Thomas, “Sol-gel coatings for high power laser optics-past, present and future,” Proc. SPIE 2114, 232–243 (1994).
[CrossRef]

H. G. Floch and P. F. Belleville, “Damage-resistant sol-gel optical coatings for advanced lasers at CEL-V,” J. Sol-Gel Sci. Technol. 2, 695–705 (1994).
[CrossRef]

1987 (1)

J. E. Martin, J. Wilcoxon, and D. Adolf, “Critical exponents for the sol-gel transition,” Phys. Rev. A 36, 1803–1810(1987).
[CrossRef]

1986 (2)

I. M. Thomas, “High laser damage threshold porous silica antireflective coating,” Appl. Opt. 25, 1481–1483 (1986).
[CrossRef]

K. Yoshida, “Mechanism of damage formation in antireflection coatings,” J. Appl. Phys. 60, 1545–1546 (1986).
[CrossRef]

1968 (1)

W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
[CrossRef]

1952 (1)

H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3, 296–298 (1952).
[CrossRef]

Adolf, D.

J. E. Martin, J. Wilcoxon, and D. Adolf, “Critical exponents for the sol-gel transition,” Phys. Rev. A 36, 1803–1810(1987).
[CrossRef]

Anderson, T. L.

T. L. Anderson, Fracture Mechanics2nd ed. (CRC, 1995).

Belleville, P. F.

H. G. Floch, P. F. Belleville, P. M. Pegon, C. S. Dijonneau, and J. Guerain, “Sol-gel optical thin films for an advanced megajoule-class Nd:glass laser ICF-driver,” Proc. SPIE 2714, 521–536 (1996).
[CrossRef]

H. G. Floch and P. F. Belleville, “Damage-resistant sol-gel optical coatings for advanced lasers at CEL-V,” J. Sol-Gel Sci. Technol. 2, 695–705 (1994).
[CrossRef]

Bercegol, H.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Bohn, E.

W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
[CrossRef]

Bouillet, S.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Carr, C. W.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 87401(2004).
[CrossRef]

Chen, X. Q.

X. Q. Chen, X. T. Zu, W. G. Zheng, X. D. Jiang, H. B. Lü, H. Ren, Y. Z. Zhang, and C. M. Liu, “Experimental research of laser-induced damage mechanism of the sol-gel SiO2 and ibsd SiO2 thin films,” Acta Phys. Sinica 55, 1201–1206 (2006).

Courchinoux, R.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Demos, S. G.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 87401(2004).
[CrossRef]

Dijonneau, C. S.

H. G. Floch, P. F. Belleville, P. M. Pegon, C. S. Dijonneau, and J. Guerain, “Sol-gel optical thin films for an advanced megajoule-class Nd:glass laser ICF-driver,” Proc. SPIE 2714, 521–536 (1996).
[CrossRef]

Dong, B. Z.

Donval, T.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Fan, Z.

Feit, M. D.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 87401(2004).
[CrossRef]

Fink, A.

W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
[CrossRef]

Floch, H. G.

H. G. Floch, P. F. Belleville, P. M. Pegon, C. S. Dijonneau, and J. Guerain, “Sol-gel optical thin films for an advanced megajoule-class Nd:glass laser ICF-driver,” Proc. SPIE 2714, 521–536 (1996).
[CrossRef]

H. G. Floch and P. F. Belleville, “Damage-resistant sol-gel optical coatings for advanced lasers at CEL-V,” J. Sol-Gel Sci. Technol. 2, 695–705 (1994).
[CrossRef]

H. G. Floch, J.-J. Priotton, and I. M. Thomas, The Physics and Technology of Amorphous SiO2 (Plenum, 1988).

Gao, J. C.

J. C. Gao and J. G. Zhang, “Measurement of electrical charges carried by dust particles,” in Proceedings of IEEE Conference on Electric Contacts (IEEE, 2002), pp. 191–196.

Gasser, B.

L. Piveteau, B. Gasser, and L. Schlapbach, “Evaluating mechanical adhesion of sol-gel titanium dioxide coatings containing calcium phosphate for metal implant application,” Biomaterials 21, 2193–2201 (2000).
[CrossRef]

Genin, F. Y.

F. Y. Genin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

Goldenberg, H.

H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3, 296–298 (1952).
[CrossRef]

Guerain, J.

H. G. Floch, P. F. Belleville, P. M. Pegon, C. S. Dijonneau, and J. Guerain, “Sol-gel optical thin films for an advanced megajoule-class Nd:glass laser ICF-driver,” Proc. SPIE 2714, 521–536 (1996).
[CrossRef]

Guo, Y. J.

Y. J. Guo, X. T. Zu, X. D. Jiang, X. D. Yuan, S. N. Zhao, S. Z. Xu, B. Y. Wang, and D. B. Tian, “Laser-induced damage of sol-gel silica acid and basic thin films,” High Power Laser Part. Beams 20, 939–942 (2008).

Huang, Z. X.

L. Zhang, Y. Xu, Z. X. Huang, D. J. Yang, X. D. Jiang, D. Wu, Y. H. Sun, and X. F. Wei, “Effect of PEG on laser damage of sol-gel SiO2 anti-reflective coating,” High Power Laser Part. Beams 17, 669–672 (2005).

Y. Xu, L. Zhang, D. Wu, Y. H. Sun, Z. X. Huang, X. D. Jiang, X. F. Wei, Z. H. Li, B. Z. Dong, and Z. H. Wu, “Durabel solgel antireflective films with high laser-induced damage thresholds for inertial confinement fusion,” J. Opt. Soc. Am. B 22, 905–912 (2005).
[CrossRef]

Jiang, X.

L. Zhang, Y. Xu, D. Wu, Y. Sun, X. Jiang, and X. Wei, “Effect of polyvinylpyrrolidone on the structure and laser damage resistance of sol-gel silica anti-reflective films,” Opt. Laser Technol. 40, 282–288 (2008).
[CrossRef]

Jiang, X. D.

Y. J. Guo, X. T. Zu, X. D. Jiang, X. D. Yuan, S. N. Zhao, S. Z. Xu, B. Y. Wang, and D. B. Tian, “Laser-induced damage of sol-gel silica acid and basic thin films,” High Power Laser Part. Beams 20, 939–942 (2008).

X. Q. Chen, X. T. Zu, W. G. Zheng, X. D. Jiang, H. B. Lü, H. Ren, Y. Z. Zhang, and C. M. Liu, “Experimental research of laser-induced damage mechanism of the sol-gel SiO2 and ibsd SiO2 thin films,” Acta Phys. Sinica 55, 1201–1206 (2006).

L. Zhang, Y. Xu, Z. X. Huang, D. J. Yang, X. D. Jiang, D. Wu, Y. H. Sun, and X. F. Wei, “Effect of PEG on laser damage of sol-gel SiO2 anti-reflective coating,” High Power Laser Part. Beams 17, 669–672 (2005).

Y. Xu, L. Zhang, D. Wu, Y. H. Sun, Z. X. Huang, X. D. Jiang, X. F. Wei, Z. H. Li, B. Z. Dong, and Z. H. Wu, “Durabel solgel antireflective films with high laser-induced damage thresholds for inertial confinement fusion,” J. Opt. Soc. Am. B 22, 905–912 (2005).
[CrossRef]

Josse, M.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Lamaignere, L.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Leiphoiz, H.

H. Leiphoiz, Theory of Elasticity (Noordhoff International, 1974).

Li, X. G.

X. G. Li and J. Shen, “Research progress in laser induced damage on optical films,” High Power Laser Part. Beams 22, 2237–2243 (2010).
[CrossRef]

Li, Z. H.

Liu, C. M.

X. Q. Chen, X. T. Zu, W. G. Zheng, X. D. Jiang, H. B. Lü, H. Ren, Y. Z. Zhang, and C. M. Liu, “Experimental research of laser-induced damage mechanism of the sol-gel SiO2 and ibsd SiO2 thin films,” Acta Phys. Sinica 55, 1201–1206 (2006).

Lü, H. B.

X. Q. Chen, X. T. Zu, W. G. Zheng, X. D. Jiang, H. B. Lü, H. Ren, Y. Z. Zhang, and C. M. Liu, “Experimental research of laser-induced damage mechanism of the sol-gel SiO2 and ibsd SiO2 thin films,” Acta Phys. Sinica 55, 1201–1206 (2006).

Martin, J. E.

J. E. Martin, J. Wilcoxon, and D. Adolf, “Critical exponents for the sol-gel transition,” Phys. Rev. A 36, 1803–1810(1987).
[CrossRef]

Mugnier, J.

F. Yang, J. Shen, Q. Sun, B. Zhou, G. Wu, and J. Mugnier, “Effect of UV-irradiation on sol-gel optical films,” Proc. SPIE 6034, 603410 (2006).
[CrossRef]

Pegon, P. M.

H. G. Floch, P. F. Belleville, P. M. Pegon, C. S. Dijonneau, and J. Guerain, “Sol-gel optical thin films for an advanced megajoule-class Nd:glass laser ICF-driver,” Proc. SPIE 2714, 521–536 (1996).
[CrossRef]

Piveteau, L.

L. Piveteau, B. Gasser, and L. Schlapbach, “Evaluating mechanical adhesion of sol-gel titanium dioxide coatings containing calcium phosphate for metal implant application,” Biomaterials 21, 2193–2201 (2000).
[CrossRef]

Poncetta, J.-C.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Priotton, J.-J.

H. G. Floch, J.-J. Priotton, and I. M. Thomas, The Physics and Technology of Amorphous SiO2 (Plenum, 1988).

Radousky, H. B.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 87401(2004).
[CrossRef]

Ren, H.

X. Q. Chen, X. T. Zu, W. G. Zheng, X. D. Jiang, H. B. Lü, H. Ren, Y. Z. Zhang, and C. M. Liu, “Experimental research of laser-induced damage mechanism of the sol-gel SiO2 and ibsd SiO2 thin films,” Acta Phys. Sinica 55, 1201–1206 (2006).

Rubenchik, A. M.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 87401(2004).
[CrossRef]

Schlapbach, L.

L. Piveteau, B. Gasser, and L. Schlapbach, “Evaluating mechanical adhesion of sol-gel titanium dioxide coatings containing calcium phosphate for metal implant application,” Biomaterials 21, 2193–2201 (2000).
[CrossRef]

Schrauth, S. E.

J. E. Wolfe and S. E. Schrauth, “Automated laser damage test system with real-time damage event imaging and detection,” Proc. SPIE 6403, 640328 (2007).
[CrossRef]

Shao, J.

Shen, J.

X. G. Li and J. Shen, “Research progress in laser induced damage on optical films,” High Power Laser Part. Beams 22, 2237–2243 (2010).
[CrossRef]

F. Yang, J. Shen, Q. Sun, B. Zhou, G. Wu, and J. Mugnier, “Effect of UV-irradiation on sol-gel optical films,” Proc. SPIE 6034, 603410 (2006).
[CrossRef]

Stober, W.

W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
[CrossRef]

Stolz, C. J.

F. Y. Genin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

Sun, Q.

F. Yang, J. Shen, Q. Sun, B. Zhou, G. Wu, and J. Mugnier, “Effect of UV-irradiation on sol-gel optical films,” Proc. SPIE 6034, 603410 (2006).
[CrossRef]

Sun, Y.

L. Zhang, Y. Xu, D. Wu, Y. Sun, X. Jiang, and X. Wei, “Effect of polyvinylpyrrolidone on the structure and laser damage resistance of sol-gel silica anti-reflective films,” Opt. Laser Technol. 40, 282–288 (2008).
[CrossRef]

Sun, Y. H.

Y. Xu, L. Zhang, D. Wu, Y. H. Sun, Z. X. Huang, X. D. Jiang, X. F. Wei, Z. H. Li, B. Z. Dong, and Z. H. Wu, “Durabel solgel antireflective films with high laser-induced damage thresholds for inertial confinement fusion,” J. Opt. Soc. Am. B 22, 905–912 (2005).
[CrossRef]

L. Zhang, Y. Xu, Z. X. Huang, D. J. Yang, X. D. Jiang, D. Wu, Y. H. Sun, and X. F. Wei, “Effect of PEG on laser damage of sol-gel SiO2 anti-reflective coating,” High Power Laser Part. Beams 17, 669–672 (2005).

Thomas, I. M.

I. M. Thomas, “Sol-gel coatings for high power laser optics-past, present and future,” Proc. SPIE 2114, 232–243 (1994).
[CrossRef]

I. M. Thomas, “High laser damage threshold porous silica antireflective coating,” Appl. Opt. 25, 1481–1483 (1986).
[CrossRef]

H. G. Floch, J.-J. Priotton, and I. M. Thomas, The Physics and Technology of Amorphous SiO2 (Plenum, 1988).

Tian, D. B.

Y. J. Guo, X. T. Zu, X. D. Jiang, X. D. Yuan, S. N. Zhao, S. Z. Xu, B. Y. Wang, and D. B. Tian, “Laser-induced damage of sol-gel silica acid and basic thin films,” High Power Laser Part. Beams 20, 939–942 (2008).

Tranter, C. J.

H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3, 296–298 (1952).
[CrossRef]

Wang, B. Y.

Y. J. Guo, X. T. Zu, X. D. Jiang, X. D. Yuan, S. N. Zhao, S. Z. Xu, B. Y. Wang, and D. B. Tian, “Laser-induced damage of sol-gel silica acid and basic thin films,” High Power Laser Part. Beams 20, 939–942 (2008).

Wang, H.

X. Xia, H. Wang, and Q. Wu, “The stress relief mechanism in laser irradiation on porous films,” Opt. Commun. 285, 70–76 (2012).
[CrossRef]

Wei, X.

L. Zhang, Y. Xu, D. Wu, Y. Sun, X. Jiang, and X. Wei, “Effect of polyvinylpyrrolidone on the structure and laser damage resistance of sol-gel silica anti-reflective films,” Opt. Laser Technol. 40, 282–288 (2008).
[CrossRef]

Wei, X. F.

Y. Xu, L. Zhang, D. Wu, Y. H. Sun, Z. X. Huang, X. D. Jiang, X. F. Wei, Z. H. Li, B. Z. Dong, and Z. H. Wu, “Durabel solgel antireflective films with high laser-induced damage thresholds for inertial confinement fusion,” J. Opt. Soc. Am. B 22, 905–912 (2005).
[CrossRef]

L. Zhang, Y. Xu, Z. X. Huang, D. J. Yang, X. D. Jiang, D. Wu, Y. H. Sun, and X. F. Wei, “Effect of PEG on laser damage of sol-gel SiO2 anti-reflective coating,” High Power Laser Part. Beams 17, 669–672 (2005).

Wilcoxon, J.

J. E. Martin, J. Wilcoxon, and D. Adolf, “Critical exponents for the sol-gel transition,” Phys. Rev. A 36, 1803–1810(1987).
[CrossRef]

Wolfe, J. E.

J. E. Wolfe and S. E. Schrauth, “Automated laser damage test system with real-time damage event imaging and detection,” Proc. SPIE 6403, 640328 (2007).
[CrossRef]

Wu, D.

L. Zhang, Y. Xu, D. Wu, Y. Sun, X. Jiang, and X. Wei, “Effect of polyvinylpyrrolidone on the structure and laser damage resistance of sol-gel silica anti-reflective films,” Opt. Laser Technol. 40, 282–288 (2008).
[CrossRef]

Y. Xu, L. Zhang, D. Wu, Y. H. Sun, Z. X. Huang, X. D. Jiang, X. F. Wei, Z. H. Li, B. Z. Dong, and Z. H. Wu, “Durabel solgel antireflective films with high laser-induced damage thresholds for inertial confinement fusion,” J. Opt. Soc. Am. B 22, 905–912 (2005).
[CrossRef]

L. Zhang, Y. Xu, Z. X. Huang, D. J. Yang, X. D. Jiang, D. Wu, Y. H. Sun, and X. F. Wei, “Effect of PEG on laser damage of sol-gel SiO2 anti-reflective coating,” High Power Laser Part. Beams 17, 669–672 (2005).

Wu, G.

F. Yang, J. Shen, Q. Sun, B. Zhou, G. Wu, and J. Mugnier, “Effect of UV-irradiation on sol-gel optical films,” Proc. SPIE 6034, 603410 (2006).
[CrossRef]

Wu, Q.

X. Xia, H. Wang, and Q. Wu, “The stress relief mechanism in laser irradiation on porous films,” Opt. Commun. 285, 70–76 (2012).
[CrossRef]

Wu, S.

Wu, Z. H.

Xia, X.

X. Xia, H. Wang, and Q. Wu, “The stress relief mechanism in laser irradiation on porous films,” Opt. Commun. 285, 70–76 (2012).
[CrossRef]

Xia, Z.

Xu, S. Z.

Y. J. Guo, X. T. Zu, X. D. Jiang, X. D. Yuan, S. N. Zhao, S. Z. Xu, B. Y. Wang, and D. B. Tian, “Laser-induced damage of sol-gel silica acid and basic thin films,” High Power Laser Part. Beams 20, 939–942 (2008).

Xu, Y.

L. Zhang, Y. Xu, D. Wu, Y. Sun, X. Jiang, and X. Wei, “Effect of polyvinylpyrrolidone on the structure and laser damage resistance of sol-gel silica anti-reflective films,” Opt. Laser Technol. 40, 282–288 (2008).
[CrossRef]

Y. Xu, L. Zhang, D. Wu, Y. H. Sun, Z. X. Huang, X. D. Jiang, X. F. Wei, Z. H. Li, B. Z. Dong, and Z. H. Wu, “Durabel solgel antireflective films with high laser-induced damage thresholds for inertial confinement fusion,” J. Opt. Soc. Am. B 22, 905–912 (2005).
[CrossRef]

L. Zhang, Y. Xu, Z. X. Huang, D. J. Yang, X. D. Jiang, D. Wu, Y. H. Sun, and X. F. Wei, “Effect of PEG on laser damage of sol-gel SiO2 anti-reflective coating,” High Power Laser Part. Beams 17, 669–672 (2005).

Yang, D. J.

L. Zhang, Y. Xu, Z. X. Huang, D. J. Yang, X. D. Jiang, D. Wu, Y. H. Sun, and X. F. Wei, “Effect of PEG on laser damage of sol-gel SiO2 anti-reflective coating,” High Power Laser Part. Beams 17, 669–672 (2005).

Yang, F.

F. Yang, J. Shen, Q. Sun, B. Zhou, G. Wu, and J. Mugnier, “Effect of UV-irradiation on sol-gel optical films,” Proc. SPIE 6034, 603410 (2006).
[CrossRef]

Yoshida, K.

K. Yoshida, “Mechanism of damage formation in antireflection coatings,” J. Appl. Phys. 60, 1545–1546 (1986).
[CrossRef]

Yuan, X. D.

Y. J. Guo, X. T. Zu, X. D. Jiang, X. D. Yuan, S. N. Zhao, S. Z. Xu, B. Y. Wang, and D. B. Tian, “Laser-induced damage of sol-gel silica acid and basic thin films,” High Power Laser Part. Beams 20, 939–942 (2008).

Zhang, J. G.

J. C. Gao and J. G. Zhang, “Measurement of electrical charges carried by dust particles,” in Proceedings of IEEE Conference on Electric Contacts (IEEE, 2002), pp. 191–196.

Zhang, L.

L. Zhang, Y. Xu, D. Wu, Y. Sun, X. Jiang, and X. Wei, “Effect of polyvinylpyrrolidone on the structure and laser damage resistance of sol-gel silica anti-reflective films,” Opt. Laser Technol. 40, 282–288 (2008).
[CrossRef]

L. Zhang, Y. Xu, Z. X. Huang, D. J. Yang, X. D. Jiang, D. Wu, Y. H. Sun, and X. F. Wei, “Effect of PEG on laser damage of sol-gel SiO2 anti-reflective coating,” High Power Laser Part. Beams 17, 669–672 (2005).

Y. Xu, L. Zhang, D. Wu, Y. H. Sun, Z. X. Huang, X. D. Jiang, X. F. Wei, Z. H. Li, B. Z. Dong, and Z. H. Wu, “Durabel solgel antireflective films with high laser-induced damage thresholds for inertial confinement fusion,” J. Opt. Soc. Am. B 22, 905–912 (2005).
[CrossRef]

Zhang, Y. Z.

X. Q. Chen, X. T. Zu, W. G. Zheng, X. D. Jiang, H. B. Lü, H. Ren, Y. Z. Zhang, and C. M. Liu, “Experimental research of laser-induced damage mechanism of the sol-gel SiO2 and ibsd SiO2 thin films,” Acta Phys. Sinica 55, 1201–1206 (2006).

Zhao, S. N.

Y. J. Guo, X. T. Zu, X. D. Jiang, X. D. Yuan, S. N. Zhao, S. Z. Xu, B. Y. Wang, and D. B. Tian, “Laser-induced damage of sol-gel silica acid and basic thin films,” High Power Laser Part. Beams 20, 939–942 (2008).

Zheng, W. G.

X. Q. Chen, X. T. Zu, W. G. Zheng, X. D. Jiang, H. B. Lü, H. Ren, Y. Z. Zhang, and C. M. Liu, “Experimental research of laser-induced damage mechanism of the sol-gel SiO2 and ibsd SiO2 thin films,” Acta Phys. Sinica 55, 1201–1206 (2006).

Zhou, B.

F. Yang, J. Shen, Q. Sun, B. Zhou, G. Wu, and J. Mugnier, “Effect of UV-irradiation on sol-gel optical films,” Proc. SPIE 6034, 603410 (2006).
[CrossRef]

Zu, X. T.

Y. J. Guo, X. T. Zu, X. D. Jiang, X. D. Yuan, S. N. Zhao, S. Z. Xu, B. Y. Wang, and D. B. Tian, “Laser-induced damage of sol-gel silica acid and basic thin films,” High Power Laser Part. Beams 20, 939–942 (2008).

X. Q. Chen, X. T. Zu, W. G. Zheng, X. D. Jiang, H. B. Lü, H. Ren, Y. Z. Zhang, and C. M. Liu, “Experimental research of laser-induced damage mechanism of the sol-gel SiO2 and ibsd SiO2 thin films,” Acta Phys. Sinica 55, 1201–1206 (2006).

Acta Phys. Sinica (1)

X. Q. Chen, X. T. Zu, W. G. Zheng, X. D. Jiang, H. B. Lü, H. Ren, Y. Z. Zhang, and C. M. Liu, “Experimental research of laser-induced damage mechanism of the sol-gel SiO2 and ibsd SiO2 thin films,” Acta Phys. Sinica 55, 1201–1206 (2006).

Appl. Opt. (2)

Biomaterials (1)

L. Piveteau, B. Gasser, and L. Schlapbach, “Evaluating mechanical adhesion of sol-gel titanium dioxide coatings containing calcium phosphate for metal implant application,” Biomaterials 21, 2193–2201 (2000).
[CrossRef]

Br. J. Appl. Phys. (1)

H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3, 296–298 (1952).
[CrossRef]

High Power Laser Part. Beams (3)

X. G. Li and J. Shen, “Research progress in laser induced damage on optical films,” High Power Laser Part. Beams 22, 2237–2243 (2010).
[CrossRef]

Y. J. Guo, X. T. Zu, X. D. Jiang, X. D. Yuan, S. N. Zhao, S. Z. Xu, B. Y. Wang, and D. B. Tian, “Laser-induced damage of sol-gel silica acid and basic thin films,” High Power Laser Part. Beams 20, 939–942 (2008).

L. Zhang, Y. Xu, Z. X. Huang, D. J. Yang, X. D. Jiang, D. Wu, Y. H. Sun, and X. F. Wei, “Effect of PEG on laser damage of sol-gel SiO2 anti-reflective coating,” High Power Laser Part. Beams 17, 669–672 (2005).

J. Appl. Phys. (1)

K. Yoshida, “Mechanism of damage formation in antireflection coatings,” J. Appl. Phys. 60, 1545–1546 (1986).
[CrossRef]

J. Colloid Interface Sci. (1)

W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Sol-Gel Sci. Technol. (1)

H. G. Floch and P. F. Belleville, “Damage-resistant sol-gel optical coatings for advanced lasers at CEL-V,” J. Sol-Gel Sci. Technol. 2, 695–705 (1994).
[CrossRef]

Opt. Commun. (1)

X. Xia, H. Wang, and Q. Wu, “The stress relief mechanism in laser irradiation on porous films,” Opt. Commun. 285, 70–76 (2012).
[CrossRef]

Opt. Laser Technol. (1)

L. Zhang, Y. Xu, D. Wu, Y. Sun, X. Jiang, and X. Wei, “Effect of polyvinylpyrrolidone on the structure and laser damage resistance of sol-gel silica anti-reflective films,” Opt. Laser Technol. 40, 282–288 (2008).
[CrossRef]

Phys. Rev. A (1)

J. E. Martin, J. Wilcoxon, and D. Adolf, “Critical exponents for the sol-gel transition,” Phys. Rev. A 36, 1803–1810(1987).
[CrossRef]

Phys. Rev. Lett. (1)

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 87401(2004).
[CrossRef]

Proc. SPIE (5)

F. Y. Genin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

J. E. Wolfe and S. E. Schrauth, “Automated laser damage test system with real-time damage event imaging and detection,” Proc. SPIE 6403, 640328 (2007).
[CrossRef]

F. Yang, J. Shen, Q. Sun, B. Zhou, G. Wu, and J. Mugnier, “Effect of UV-irradiation on sol-gel optical films,” Proc. SPIE 6034, 603410 (2006).
[CrossRef]

I. M. Thomas, “Sol-gel coatings for high power laser optics-past, present and future,” Proc. SPIE 2114, 232–243 (1994).
[CrossRef]

H. G. Floch, P. F. Belleville, P. M. Pegon, C. S. Dijonneau, and J. Guerain, “Sol-gel optical thin films for an advanced megajoule-class Nd:glass laser ICF-driver,” Proc. SPIE 2714, 521–536 (1996).
[CrossRef]

Rev. Sci. Instrum. (1)

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Other (4)

J. C. Gao and J. G. Zhang, “Measurement of electrical charges carried by dust particles,” in Proceedings of IEEE Conference on Electric Contacts (IEEE, 2002), pp. 191–196.

H. G. Floch, J.-J. Priotton, and I. M. Thomas, The Physics and Technology of Amorphous SiO2 (Plenum, 1988).

H. Leiphoiz, Theory of Elasticity (Noordhoff International, 1974).

T. L. Anderson, Fracture Mechanics2nd ed. (CRC, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of laser damage test experimental bench used for solgel coatings.

Fig. 2.
Fig. 2.

Images captured after (a) Nth1 pulse and (b) Nth pulse irradiation. The box represented the same area in consecutive images captured while the optic was moving.

Fig. 3.
Fig. 3.

Damage density versus laser fluence detected on the four samples.

Fig. 4.
Fig. 4.

Consecutive images captured during laser irradiation while the optic was moving. It revealed that laser damage sites were induced by (a) a visible surface defect, (b) an invisible defect, and (c) a visible surface defect.

Fig. 5.
Fig. 5.

(a) Morphology and (b) depth profiler of a damage site induced by visible surface defect; (c) morphology and (d) depth profiler of another damage site induced by visible surface defect. The morphology was observed by a differential interference contrast microscopy; the depth profiler was detected by a Bruker DektakXT profiling system.

Fig. 6.
Fig. 6.

(a) Morphology and (b) depth profiler of a damage site induced by invisible defect; (c) morphology and (d) depth profiler of another damage site induced by invisible defect.

Fig. 7.
Fig. 7.

Consecutive pictures of (a) adhered particle, (b) round bulge, and (c) microvariation imaged online during raster scan damage test.

Fig. 8.
Fig. 8.

(a) Morphology and (b) depth profiler of a salient defect; (c) morphology and (d) depth profiler of a depression defect.

Fig. 9.
Fig. 9.

Temperature distribution after laser irradiation with a pulse length of 10 ns.

Fig. 10.
Fig. 10.

Model of laser damage process: (a) an initiator absorbing laser energy, (b) a phase transformation zone formed and a huge pressure P0 generated, (c) surrounding coating humped and a shearing stress σrr produced, and (d) surrounding coating snapped and removed from the surface.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

{1χpTpt=1r2r(r2Tpt)+AKp0r<a,t>01χhTht=1r2r(r2Tht)r>a,t>0,
A={3QI4πa30<t<tp0t>tp.
{Tp=a2AKp{13KpKh+16[1r2a2]2abrπ0ey2tpγ(sinyycosy)sin(ry/a)dyy2[(csinyycosy)2+b2y2sin2y]}0<r<aTh=a3ArKp{13KpKh2π0ey2tpγ(sinyycosy)[bysinycosσy(csinyycosy)sinσy]dyy3[(csinyycosy)2+b2y2sin2y]}r>a,
b=KhKpχpχh,c=1KhKp,γ=a2χp,σ=(ra1)χpχh.
(P+an2V2)(Vnb)=nRT,
σrr=316L2d2p(3+ν),
σrrσc=(πEγs2L(1ν2))12,

Metrics