Abstract

In this paper we propose and demonstrate a dynamic, narrow-bandpass frequency filter. This is generated in a rare-earth ion-doped crystal using a combination of spectral hole burning and Stark shifting. This filter can toggle within one microsecond between absorption and transmission, with 60dB difference in attenuation, in two separate 1 MHz wide spectral regions. The filter demonstrated here is specifically designed as a component in a rare-earth ion-based quantum repeater protocol. However, this is a general technique that could also be applied for amplitude or phase modulation, or switching between more complicated spectral profiles.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
    [CrossRef]
  2. M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
    [CrossRef]
  3. C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
    [CrossRef]
  4. E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
    [CrossRef]
  5. U. Bogner, K. Beck, and M. Maier, “Electric field selective optical data storage using persistent spectral hole burning,” Appl. Phys. Lett. 46, 534–536 (1985).
    [CrossRef]
  6. C. D. Caro, A. Renn, and U. P. Wild, “Hole burning, Stark effect, and data storage: 2: holographic recording and detection of spectral holes,” Appl. Opt. 30, 2890–2898 (1991).
    [CrossRef]
  7. A. Renn, U. P. Wild, and A. Rebane, “Multidimensional holography by persistent spectral hole burning,” J. Phys. Chem. A 106, 3045–3060 (2002).
    [CrossRef]
  8. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
    [CrossRef]
  9. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
    [CrossRef]
  10. P. M. Ledingham, W. R. Naylor, J. J. Longdell, S. E. Beavan, and M. J. Sellars, “Nonclassical photon streams using rephased amplified spontaneous emission,” Phys. Rev. A 81, 012301 (2010).
    [CrossRef]
  11. S. E. Beavan, M. P. Hedges, and M. J. Sellars, “Demonstration of photon-echo rephasing of spontaneous emission,” Phys. Rev. Lett. 109, 093603 (2012).
    [CrossRef]
  12. P. Ledingham, W. Naylor, and J. Longdell, “Experimental realization of light with time-separated correlations by rephasing amplified spontaneous emission,” Phys. Rev. Lett. 109, 093602 (2012).
    [CrossRef]
  13. R. M. Macfarlane and R. M. Shelby, Coherent Transient and Holeburning Spectroscopy of Rare Earth Ions in Solids (North Holland, 1987).
  14. M. P. Hedges, “High performance solid state quantum memory,” Ph.D. thesis, Australian National University, 2011.
  15. F. Graf, A. Renn, U. Wild, and M. Mitsunaga, “Site interference in Stark-modulated photon echoes,” Phys. Rev. B 55, 11225(1997).
    [CrossRef]
  16. R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995).
    [CrossRef]
  17. M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B 70, 214116(2004).
    [CrossRef]
  18. G. J. Pryde, M. J. Sellars, and N. B. Manson, “Solid state coherent transient measurements using hard optical pulses,” Phys. Rev. Lett. 84, 1152–1155 (2000).
    [CrossRef]

2012 (2)

S. E. Beavan, M. P. Hedges, and M. J. Sellars, “Demonstration of photon-echo rephasing of spontaneous emission,” Phys. Rev. Lett. 109, 093603 (2012).
[CrossRef]

P. Ledingham, W. Naylor, and J. Longdell, “Experimental realization of light with time-separated correlations by rephasing amplified spontaneous emission,” Phys. Rev. Lett. 109, 093602 (2012).
[CrossRef]

2011 (2)

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[CrossRef]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[CrossRef]

2010 (3)

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[CrossRef]

P. M. Ledingham, W. R. Naylor, J. J. Longdell, S. E. Beavan, and M. J. Sellars, “Nonclassical photon streams using rephased amplified spontaneous emission,” Phys. Rev. A 81, 012301 (2010).
[CrossRef]

2004 (1)

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B 70, 214116(2004).
[CrossRef]

2002 (1)

A. Renn, U. P. Wild, and A. Rebane, “Multidimensional holography by persistent spectral hole burning,” J. Phys. Chem. A 106, 3045–3060 (2002).
[CrossRef]

2001 (1)

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef]

2000 (1)

G. J. Pryde, M. J. Sellars, and N. B. Manson, “Solid state coherent transient measurements using hard optical pulses,” Phys. Rev. Lett. 84, 1152–1155 (2000).
[CrossRef]

1998 (1)

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

1997 (1)

F. Graf, A. Renn, U. Wild, and M. Mitsunaga, “Site interference in Stark-modulated photon echoes,” Phys. Rev. B 55, 11225(1997).
[CrossRef]

1995 (1)

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995).
[CrossRef]

1991 (1)

1985 (1)

U. Bogner, K. Beck, and M. Maier, “Electric field selective optical data storage using persistent spectral hole burning,” Appl. Phys. Lett. 46, 534–536 (1985).
[CrossRef]

Afzelius, M.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[CrossRef]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

Amari, A.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

Beavan, S. E.

S. E. Beavan, M. P. Hedges, and M. J. Sellars, “Demonstration of photon-echo rephasing of spontaneous emission,” Phys. Rev. Lett. 109, 093603 (2012).
[CrossRef]

P. M. Ledingham, W. R. Naylor, J. J. Longdell, S. E. Beavan, and M. J. Sellars, “Nonclassical photon streams using rephased amplified spontaneous emission,” Phys. Rev. A 81, 012301 (2010).
[CrossRef]

Beck, K.

U. Bogner, K. Beck, and M. Maier, “Electric field selective optical data storage using persistent spectral hole burning,” Appl. Phys. Lett. 46, 534–536 (1985).
[CrossRef]

Bogner, U.

U. Bogner, K. Beck, and M. Maier, “Electric field selective optical data storage using persistent spectral hole burning,” Appl. Phys. Lett. 46, 534–536 (1985).
[CrossRef]

Briegel, H.-J.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Bussières, F.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[CrossRef]

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[CrossRef]

Caro, C. D.

Cirac, J. I.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Clausen, C.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[CrossRef]

Cone, R. L.

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995).
[CrossRef]

de Riedmatten, H.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[CrossRef]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

Duan, L.-M.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef]

Dür, W.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Equall, R. W.

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995).
[CrossRef]

George, M.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[CrossRef]

Gisin, N.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[CrossRef]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

Graf, F.

F. Graf, A. Renn, U. Wild, and M. Mitsunaga, “Site interference in Stark-modulated photon echoes,” Phys. Rev. B 55, 11225(1997).
[CrossRef]

Hedges, M. P.

S. E. Beavan, M. P. Hedges, and M. J. Sellars, “Demonstration of photon-echo rephasing of spontaneous emission,” Phys. Rev. Lett. 109, 093603 (2012).
[CrossRef]

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[CrossRef]

M. P. Hedges, “High performance solid state quantum memory,” Ph.D. thesis, Australian National University, 2011.

Jin, J.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[CrossRef]

Klieber, R.

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B 70, 214116(2004).
[CrossRef]

Kröll, S.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B 70, 214116(2004).
[CrossRef]

Lauritzen, B.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

Ledingham, P.

P. Ledingham, W. Naylor, and J. Longdell, “Experimental realization of light with time-separated correlations by rephasing amplified spontaneous emission,” Phys. Rev. Lett. 109, 093602 (2012).
[CrossRef]

Ledingham, P. M.

P. M. Ledingham, W. R. Naylor, J. J. Longdell, S. E. Beavan, and M. J. Sellars, “Nonclassical photon streams using rephased amplified spontaneous emission,” Phys. Rev. A 81, 012301 (2010).
[CrossRef]

Li, Y.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[CrossRef]

Longdell, J.

P. Ledingham, W. Naylor, and J. Longdell, “Experimental realization of light with time-separated correlations by rephasing amplified spontaneous emission,” Phys. Rev. Lett. 109, 093602 (2012).
[CrossRef]

Longdell, J. J.

P. M. Ledingham, W. R. Naylor, J. J. Longdell, S. E. Beavan, and M. J. Sellars, “Nonclassical photon streams using rephased amplified spontaneous emission,” Phys. Rev. A 81, 012301 (2010).
[CrossRef]

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[CrossRef]

Lukin, M. D.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef]

Macfarlane, R. M.

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995).
[CrossRef]

R. M. Macfarlane and R. M. Shelby, Coherent Transient and Holeburning Spectroscopy of Rare Earth Ions in Solids (North Holland, 1987).

Maier, M.

U. Bogner, K. Beck, and M. Maier, “Electric field selective optical data storage using persistent spectral hole burning,” Appl. Phys. Lett. 46, 534–536 (1985).
[CrossRef]

Manson, N. B.

G. J. Pryde, M. J. Sellars, and N. B. Manson, “Solid state coherent transient measurements using hard optical pulses,” Phys. Rev. Lett. 84, 1152–1155 (2000).
[CrossRef]

Minár, J.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

Mitsunaga, M.

F. Graf, A. Renn, U. Wild, and M. Mitsunaga, “Site interference in Stark-modulated photon echoes,” Phys. Rev. B 55, 11225(1997).
[CrossRef]

Naylor, W.

P. Ledingham, W. Naylor, and J. Longdell, “Experimental realization of light with time-separated correlations by rephasing amplified spontaneous emission,” Phys. Rev. Lett. 109, 093602 (2012).
[CrossRef]

Naylor, W. R.

P. M. Ledingham, W. R. Naylor, J. J. Longdell, S. E. Beavan, and M. J. Sellars, “Nonclassical photon streams using rephased amplified spontaneous emission,” Phys. Rev. A 81, 012301 (2010).
[CrossRef]

Nilsson, M.

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B 70, 214116(2004).
[CrossRef]

Oblak, D.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[CrossRef]

Pryde, G. J.

G. J. Pryde, M. J. Sellars, and N. B. Manson, “Solid state coherent transient measurements using hard optical pulses,” Phys. Rev. Lett. 84, 1152–1155 (2000).
[CrossRef]

Rebane, A.

A. Renn, U. P. Wild, and A. Rebane, “Multidimensional holography by persistent spectral hole burning,” J. Phys. Chem. A 106, 3045–3060 (2002).
[CrossRef]

Renn, A.

A. Renn, U. P. Wild, and A. Rebane, “Multidimensional holography by persistent spectral hole burning,” J. Phys. Chem. A 106, 3045–3060 (2002).
[CrossRef]

F. Graf, A. Renn, U. Wild, and M. Mitsunaga, “Site interference in Stark-modulated photon echoes,” Phys. Rev. B 55, 11225(1997).
[CrossRef]

C. D. Caro, A. Renn, and U. P. Wild, “Hole burning, Stark effect, and data storage: 2: holographic recording and detection of spectral holes,” Appl. Opt. 30, 2890–2898 (1991).
[CrossRef]

Ricken, R.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[CrossRef]

Rippe, L.

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B 70, 214116(2004).
[CrossRef]

Saglamyurek, E.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[CrossRef]

Sangouard, N.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[CrossRef]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

Sellars, M. J.

S. E. Beavan, M. P. Hedges, and M. J. Sellars, “Demonstration of photon-echo rephasing of spontaneous emission,” Phys. Rev. Lett. 109, 093603 (2012).
[CrossRef]

P. M. Ledingham, W. R. Naylor, J. J. Longdell, S. E. Beavan, and M. J. Sellars, “Nonclassical photon streams using rephased amplified spontaneous emission,” Phys. Rev. A 81, 012301 (2010).
[CrossRef]

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[CrossRef]

G. J. Pryde, M. J. Sellars, and N. B. Manson, “Solid state coherent transient measurements using hard optical pulses,” Phys. Rev. Lett. 84, 1152–1155 (2000).
[CrossRef]

Shelby, R. M.

R. M. Macfarlane and R. M. Shelby, Coherent Transient and Holeburning Spectroscopy of Rare Earth Ions in Solids (North Holland, 1987).

Simon, C.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

Sinclair, N.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[CrossRef]

Slater, J. A.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[CrossRef]

Sohler, W.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[CrossRef]

Suter, D.

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B 70, 214116(2004).
[CrossRef]

Tittel, W.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[CrossRef]

Usmani, I.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[CrossRef]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

Walther, A.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

Wild, U.

F. Graf, A. Renn, U. Wild, and M. Mitsunaga, “Site interference in Stark-modulated photon echoes,” Phys. Rev. B 55, 11225(1997).
[CrossRef]

Wild, U. P.

A. Renn, U. P. Wild, and A. Rebane, “Multidimensional holography by persistent spectral hole burning,” J. Phys. Chem. A 106, 3045–3060 (2002).
[CrossRef]

C. D. Caro, A. Renn, and U. P. Wild, “Hole burning, Stark effect, and data storage: 2: holographic recording and detection of spectral holes,” Appl. Opt. 30, 2890–2898 (1991).
[CrossRef]

Zoller, P.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

U. Bogner, K. Beck, and M. Maier, “Electric field selective optical data storage using persistent spectral hole burning,” Appl. Phys. Lett. 46, 534–536 (1985).
[CrossRef]

J. Phys. Chem. A (1)

A. Renn, U. P. Wild, and A. Rebane, “Multidimensional holography by persistent spectral hole burning,” J. Phys. Chem. A 106, 3045–3060 (2002).
[CrossRef]

Nature (4)

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[CrossRef]

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[CrossRef]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[CrossRef]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef]

Phys. Rev. A (1)

P. M. Ledingham, W. R. Naylor, J. J. Longdell, S. E. Beavan, and M. J. Sellars, “Nonclassical photon streams using rephased amplified spontaneous emission,” Phys. Rev. A 81, 012301 (2010).
[CrossRef]

Phys. Rev. B (3)

F. Graf, A. Renn, U. Wild, and M. Mitsunaga, “Site interference in Stark-modulated photon echoes,” Phys. Rev. B 55, 11225(1997).
[CrossRef]

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995).
[CrossRef]

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B 70, 214116(2004).
[CrossRef]

Phys. Rev. Lett. (5)

G. J. Pryde, M. J. Sellars, and N. B. Manson, “Solid state coherent transient measurements using hard optical pulses,” Phys. Rev. Lett. 84, 1152–1155 (2000).
[CrossRef]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

S. E. Beavan, M. P. Hedges, and M. J. Sellars, “Demonstration of photon-echo rephasing of spontaneous emission,” Phys. Rev. Lett. 109, 093603 (2012).
[CrossRef]

P. Ledingham, W. Naylor, and J. Longdell, “Experimental realization of light with time-separated correlations by rephasing amplified spontaneous emission,” Phys. Rev. Lett. 109, 093602 (2012).
[CrossRef]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Other (2)

R. M. Macfarlane and R. M. Shelby, Coherent Transient and Holeburning Spectroscopy of Rare Earth Ions in Solids (North Holland, 1987).

M. P. Hedges, “High performance solid state quantum memory,” Ph.D. thesis, Australian National University, 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Sample orientation and electrode arrangement. (b) DC Stark effect in Pr3+:Y2SiO5. δμ is the difference in the static dipole moments of the ground and excited state, or alternatively the electric dipole of the H43D21 transition. The magnitude of δμ is 112kHz/(V·cm1), oriented in one of four possible directions [15]. The angle θ is 24.8° (see [15]), and ϕ is 35° (inferred from Fig. 5.15 in [14]). Note that the static dipole moment δμ1,2,3,4 is oriented differently to the dipole moment at the optical frequency, which is predominantly along the y^ (D2) axis. (c) Reduced energy-level diagram for the H43D21 transition in Pr3+:Y2SiO5 in zero magnetic field [16,18]. The ground (H34) and excited (D12) states are split into three doubly degenerate hyperfine levels.

Fig. 2.
Fig. 2.

Electric field component along the z^ axis as a function of depth in the sample. This was calculated numerically using finite element analysis software and the geometry shown in Fig. 1(a).

Fig. 3.
Fig. 3.

Quantifying the Stark shift using a narrow absorptive feature. The absorption is determined by measuring the transmission of a 2 MHz FWHM Gaussian-shaped probe pulse and using the probe-pulse transmission (without any absorption feature burned) for normalization. The absorption feature is shown by the blue trace and has a Lorenzian profile with a FWHM of 73 kHz. Note there is also an additional absorptive feature located at 800kHz from the main antihole, which is attributed to some off-resonant burnback of a different frequency group of ions. Also shown are the absorption profiles of the ensemble with varying voltages applied to electrode A. The dashed (black) trace is the predicted absorption profile for the electrode A voltage of 4 V. This was calculated using the electric field profile (see Fig. 2) and the measured initial feature.

Fig. 4.
Fig. 4.

Characterization of the filter performance using heterodyne detection. The solid (black) line represents the input probe pulses, centered at ν1 and ν2, as measured with the laser detuned from the transition resonance. The (blue) dashed trace is the transmission of the same two probe pulses, with the filter configured to absorb the pulse at ν1. Similarly for the (green) dotted–dashed trace, the filter is absorbing at ν2. The background noise level when there are no input pulses is also shown (red). The lower plot is an expanded view of the background level and shows that the probe-pulse transmission is only marginally higher than the background for the respective filter configurations. For clarity, this lower plot has been averaged along the frequency axis. The local oscillator, ν1 and ν2 fields are generated by AOMs in double-pass configurations and are shifted from the laser frequency by 150, 143, and 153.2 MHz, respectively. Therefore ν1ν2=10.2MHz, and the beat frequency between the field at ν1(ν2) and the local oscillator is 7 MHz (3.2 MHz). Each trace is the average over 2000 shots.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SDC=δμ·E,

Metrics