Abstract

The absorption enhancement of photonic crystals composed of negative-index material and positive-index material is investigated in this article. It is found that whole absorption of an electromagnetic wave with weak dependence on the incident angle can be achieved in an asymmetric structure by adjusting materials and parameters. Furthermore, with the incident angle increasing to 80°, we demonstrate that the absorption for both polarizations remains over 80%. Finally, the influence of the damping factor of the Drude model is studied, and a conclusion is drawn that says the absorption is invariant with the damping factor when the ratio between the damping factor and the electronic or magnetic plasma frequency is smaller than 104.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
    [CrossRef]
  2. Q. Feng, M. B. Pu, C. G. Hu, and X. G. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37, 2133–2135 (2012).
    [CrossRef]
  3. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36, 945–947 (2011).
    [CrossRef]
  4. B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Progress Electromagn. Res. 101, 231–239 (2010).
    [CrossRef]
  5. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20, 7165–7172 (2012).
    [CrossRef]
  6. N. Bonod and E. Popov, “Total light absorption in a wide range of incidence by nanostructured metals without plasmons,” Opt. Lett. 33, 2398–2400 (2008).
    [CrossRef]
  7. M. Wang, C. G. Hu, M. B. Pu, C. Huang, Z. Y. Zhao, Q. Feng, and X. G. Luo, “Truncated spherical voids for nearly omnidirectional optical absorption,” Opt. Express 19, 20642–20649 (2011).
    [CrossRef]
  8. T. V. Teperik, V. V. Popov, and F. J. Garcia de Abajo, “Total light absorption in plasmonic nanostructures,” J. Opt. Pure Appl. Opt. 9, S458 (2007).
    [CrossRef]
  9. Z. M. Zhang, G. Q. Du, H. T. Jiang, Y. H. Li, Z. S. Wang, and H. Chen, “Complete absorption in a heterostructure composed of a metal and a doped photonic crystal,” J. Opt. Soc. Am. B 27, 909–913 (2010).
    [CrossRef]
  10. C. Ndiaye, F. Lemarchand, M. Zerrad, D. Ausserre, and C. Amra, “Optical design for 100% absorption and maximum field enhancement in thin-film multilayers at resonances under total reflection,” Appl. Opt. 50, C382–C387 (2011).
    [CrossRef]
  11. G. C. R. Devarapu and S. Foteinopoulou, “Mid-IR near-perfect absorption with a SiC photonic crystal with angle-controlled polarization selectivity,” Opt. Express 20, 13040–13054 (2012).
    [CrossRef]
  12. J. W. Dong, G. Q. Liang, Y. H. Chen, and H. Z. Wang, “Robust absorption broadband in one-dimensional metallic-dielectric quasic-periodic structure,” Opt. Express 14, 2014–2020 (2006).
    [CrossRef]
  13. K. Iwaszczuk, A. C. Strikwerda, K. Fan, and X. Zhang, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20, 635–643 (2012).
    [CrossRef]
  14. R. Alaee, C. Menzel, C. Rockstuhl, and F. lederer, “Perfect absorbers on curved surfaces and their potential applications,” Opt. Express 20, 18370–18376 (2012).
    [CrossRef]
  15. R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterial for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009).
    [CrossRef]
  16. R. Melik, E. Unal, N. K. Perkgoz, B. Santoni, D. Kamstock, C. Puttlitz, and H. V. Demir, “Nested metamaterials for wireless strain sensing,” IEEE J. Sel. Top. Quantum Electron. 16, 450–458 (2010).
    [CrossRef]
  17. R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterail based telemetric strain sensing in different materials,” Opt. Express 18, 5000–5007 (2010).
    [CrossRef]
  18. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
    [CrossRef]
  19. X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
    [CrossRef]
  20. A. Mishra, S. K. Awasthi, S. K. Srivastava, U. Malaviya, and S. P. Ojha, “Tunable and omnidirectional filter based on one-dimensional photonic crystals composed of single-negative materials,” J. Opt. Soc. Am. B 28, 1416–1422 (2011).
    [CrossRef]
  21. Y. Xiang, X. Dai, S. Wen, and D. Fan, “Omnidirectional and multiple-channeled high-quality filters of photonic heterostructures containing single-negative materials,” J. Opt. Soc. Am. A 24, A28–A32 (2007).
    [CrossRef]
  22. Y. Xiang, X. Dai, S. Wen, and D. Fan, “Independently tunable omnidirectional multichannel filters based on the fractal multilayers containing negative-index materials,” Opt. Lett. 33, 1255–1257 (2008).
    [CrossRef]
  23. Y. H. Chen, “Omnidirectional and independently tunable defect modes in fractal photonic crystals containing single-negative materials,” Appl. Phys. B 95, 757–761 (2009).
    [CrossRef]
  24. Y. H. Chen, J. W. Dong, and H. Z. Wang, “Conditions of near-zero dispersion of defect modes in one-dimensional photonic crystals containing negative-index materials,” J. Opt. Soc. Am. B 23, 776–781 (2006).
    [CrossRef]
  25. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  26. K. Y. Xu, X. G. Zheng, C. L. Li, and W. L. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604 (2005).
    [CrossRef]

2012 (5)

2011 (4)

2010 (6)

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Progress Electromagn. Res. 101, 231–239 (2010).
[CrossRef]

R. Melik, E. Unal, N. K. Perkgoz, B. Santoni, D. Kamstock, C. Puttlitz, and H. V. Demir, “Nested metamaterials for wireless strain sensing,” IEEE J. Sel. Top. Quantum Electron. 16, 450–458 (2010).
[CrossRef]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterail based telemetric strain sensing in different materials,” Opt. Express 18, 5000–5007 (2010).
[CrossRef]

Z. M. Zhang, G. Q. Du, H. T. Jiang, Y. H. Li, Z. S. Wang, and H. Chen, “Complete absorption in a heterostructure composed of a metal and a doped photonic crystal,” J. Opt. Soc. Am. B 27, 909–913 (2010).
[CrossRef]

2009 (2)

Y. H. Chen, “Omnidirectional and independently tunable defect modes in fractal photonic crystals containing single-negative materials,” Appl. Phys. B 95, 757–761 (2009).
[CrossRef]

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterial for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009).
[CrossRef]

2008 (3)

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Y. Xiang, X. Dai, S. Wen, and D. Fan, “Independently tunable omnidirectional multichannel filters based on the fractal multilayers containing negative-index materials,” Opt. Lett. 33, 1255–1257 (2008).
[CrossRef]

N. Bonod and E. Popov, “Total light absorption in a wide range of incidence by nanostructured metals without plasmons,” Opt. Lett. 33, 2398–2400 (2008).
[CrossRef]

2007 (2)

2006 (2)

2005 (1)

K. Y. Xu, X. G. Zheng, C. L. Li, and W. L. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604 (2005).
[CrossRef]

Alaee, R.

Amra, C.

Ausserre, D.

Averitt, R. D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Awasthi, S. K.

Bingham, C. M.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Bonod, N.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Chen, H.

Chen, H. T.

Chen, Q.

Chen, Y. H.

Cumming, D. R. S.

Dai, X.

Demir, H. V.

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterail based telemetric strain sensing in different materials,” Opt. Express 18, 5000–5007 (2010).
[CrossRef]

R. Melik, E. Unal, N. K. Perkgoz, B. Santoni, D. Kamstock, C. Puttlitz, and H. V. Demir, “Nested metamaterials for wireless strain sensing,” IEEE J. Sel. Top. Quantum Electron. 16, 450–458 (2010).
[CrossRef]

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterial for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009).
[CrossRef]

Devarapu, G. C. R.

Dong, J. W.

Du, G. Q.

Fan, D.

Fan, K.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, and X. Zhang, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20, 635–643 (2012).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Feng, Q.

Feng, Y.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Progress Electromagn. Res. 101, 231–239 (2010).
[CrossRef]

Foteinopoulou, S.

Garcia de Abajo, F. J.

T. V. Teperik, V. V. Popov, and F. J. Garcia de Abajo, “Total light absorption in plasmonic nanostructures,” J. Opt. Pure Appl. Opt. 9, S458 (2007).
[CrossRef]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Grant, J.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Hu, C. G.

Huang, C.

M. Wang, C. G. Hu, M. B. Pu, C. Huang, Z. Y. Zhao, Q. Feng, and X. G. Luo, “Truncated spherical voids for nearly omnidirectional optical absorption,” Opt. Express 19, 20642–20649 (2011).
[CrossRef]

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Progress Electromagn. Res. 101, 231–239 (2010).
[CrossRef]

Iwaszczuk, K.

Jiang, H. T.

Jiang, T.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Progress Electromagn. Res. 101, 231–239 (2010).
[CrossRef]

Kamstock, D.

R. Melik, E. Unal, N. K. Perkgoz, B. Santoni, D. Kamstock, C. Puttlitz, and H. V. Demir, “Nested metamaterials for wireless strain sensing,” IEEE J. Sel. Top. Quantum Electron. 16, 450–458 (2010).
[CrossRef]

Khalid, A.

Landy, N. I.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

lederer, F.

Lemarchand, F.

Li, C. L.

K. Y. Xu, X. G. Zheng, C. L. Li, and W. L. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604 (2005).
[CrossRef]

Li, Y. H.

Liang, G. Q.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Liu, X. L.

X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

Luo, X. G.

Ma, Y.

Malaviya, U.

Melik, R.

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterail based telemetric strain sensing in different materials,” Opt. Express 18, 5000–5007 (2010).
[CrossRef]

R. Melik, E. Unal, N. K. Perkgoz, B. Santoni, D. Kamstock, C. Puttlitz, and H. V. Demir, “Nested metamaterials for wireless strain sensing,” IEEE J. Sel. Top. Quantum Electron. 16, 450–458 (2010).
[CrossRef]

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterial for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009).
[CrossRef]

Menzel, C.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Mishra, A.

Ndiaye, C.

Ojha, S. P.

Padilla, W. J.

X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Perkgoz, N. K.

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterail based telemetric strain sensing in different materials,” Opt. Express 18, 5000–5007 (2010).
[CrossRef]

R. Melik, E. Unal, N. K. Perkgoz, B. Santoni, D. Kamstock, C. Puttlitz, and H. V. Demir, “Nested metamaterials for wireless strain sensing,” IEEE J. Sel. Top. Quantum Electron. 16, 450–458 (2010).
[CrossRef]

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterial for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009).
[CrossRef]

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Popov, E.

Popov, V. V.

T. V. Teperik, V. V. Popov, and F. J. Garcia de Abajo, “Total light absorption in plasmonic nanostructures,” J. Opt. Pure Appl. Opt. 9, S458 (2007).
[CrossRef]

Pu, M. B.

Puttlitz, C.

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterail based telemetric strain sensing in different materials,” Opt. Express 18, 5000–5007 (2010).
[CrossRef]

R. Melik, E. Unal, N. K. Perkgoz, B. Santoni, D. Kamstock, C. Puttlitz, and H. V. Demir, “Nested metamaterials for wireless strain sensing,” IEEE J. Sel. Top. Quantum Electron. 16, 450–458 (2010).
[CrossRef]

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterial for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009).
[CrossRef]

Rockstuhl, C.

Saha, S. C.

Santoni, B.

R. Melik, E. Unal, N. K. Perkgoz, B. Santoni, D. Kamstock, C. Puttlitz, and H. V. Demir, “Nested metamaterials for wireless strain sensing,” IEEE J. Sel. Top. Quantum Electron. 16, 450–458 (2010).
[CrossRef]

She, W. L.

K. Y. Xu, X. G. Zheng, C. L. Li, and W. L. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604 (2005).
[CrossRef]

Shrekenhamer, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Srivastava, S. K.

Starr, A. F.

X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

Starr, T.

X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

Strikwerda, A. C.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, and X. Zhang, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20, 635–643 (2012).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Tao, H.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Teperik, T. V.

T. V. Teperik, V. V. Popov, and F. J. Garcia de Abajo, “Total light absorption in plasmonic nanostructures,” J. Opt. Pure Appl. Opt. 9, S458 (2007).
[CrossRef]

Unal, E.

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterail based telemetric strain sensing in different materials,” Opt. Express 18, 5000–5007 (2010).
[CrossRef]

R. Melik, E. Unal, N. K. Perkgoz, B. Santoni, D. Kamstock, C. Puttlitz, and H. V. Demir, “Nested metamaterials for wireless strain sensing,” IEEE J. Sel. Top. Quantum Electron. 16, 450–458 (2010).
[CrossRef]

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterial for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009).
[CrossRef]

Wang, H. Z.

Wang, M.

Wang, Z.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Progress Electromagn. Res. 101, 231–239 (2010).
[CrossRef]

Wang, Z. S.

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Wen, S.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Xiang, Y.

Xu, K. Y.

K. Y. Xu, X. G. Zheng, C. L. Li, and W. L. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604 (2005).
[CrossRef]

Zerrad, M.

Zhang, X.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, and X. Zhang, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20, 635–643 (2012).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Zhang, Z. M.

Zhao, J.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Progress Electromagn. Res. 101, 231–239 (2010).
[CrossRef]

Zhao, Z. Y.

Zheng, X. G.

K. Y. Xu, X. G. Zheng, C. L. Li, and W. L. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604 (2005).
[CrossRef]

Zhu, B.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Progress Electromagn. Res. 101, 231–239 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

Y. H. Chen, “Omnidirectional and independently tunable defect modes in fractal photonic crystals containing single-negative materials,” Appl. Phys. B 95, 757–761 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterial for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Melik, E. Unal, N. K. Perkgoz, B. Santoni, D. Kamstock, C. Puttlitz, and H. V. Demir, “Nested metamaterials for wireless strain sensing,” IEEE J. Sel. Top. Quantum Electron. 16, 450–458 (2010).
[CrossRef]

J. Opt. Pure Appl. Opt. (1)

T. V. Teperik, V. V. Popov, and F. J. Garcia de Abajo, “Total light absorption in plasmonic nanostructures,” J. Opt. Pure Appl. Opt. 9, S458 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Opt. Express (7)

Opt. Lett. (4)

Phys. Rev. B (1)

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Phys. Rev. E (1)

K. Y. Xu, X. G. Zheng, C. L. Li, and W. L. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

Progress Electromagn. Res. (1)

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Progress Electromagn. Res. 101, 231–239 (2010).
[CrossRef]

Other (1)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic of the doped photonic crystal (NP)SD(PN)K.

Fig. 2.
Fig. 2.

(a) Transmittance T, reflectance R, and absorption A of (NP)2D(PN)k at the period K=2. (b) Absorbance A of (NP)2D(PN)K at ω/ω0=0.99 with the period K. The inset shows the variance of A, R, and T with K at ω/ω0=0.99.

Fig. 3.
Fig. 3.

(a) Electric-field distribution of (NP)2D(PN)2 at ε=0.15. (b) Electric-field distribution of (NP)2D(PN)6 at ε=0.15.

Fig. 4.
Fig. 4.

Normalized absorption energy ratio of each layer accounting for the total absorption of structure (NP)2D(PN)6. The parameters are the same as in Fig. 3(b).

Fig. 5.
Fig. 5.

Absorption, reflection, and transmission of the structure (NP)2D(PN)6 versus ε when ω/ω0 is 0.99. The rest of the parameters remain the same as those in Fig. 2.

Fig. 6.
Fig. 6.

Electric-field distribution of (NP)2D(PN)6 at ε=0.29. The rest of the parameters remain the same as those in Fig. 2.

Fig. 7.
Fig. 7.

Absorption of (NP)2D(PN)6 at different incident angles at ε=0.29. The rest of the parameters are the same as in Fig. 2.

Fig. 8.
Fig. 8.

Dotted lines are the contours of 80% absorption. All of parameters remain the same as those in Fig. 7. It shows that there is not an overlap when absorption is over 80%.

Fig. 9.
Fig. 9.

Absorption of N1(NP)2D(PN)6 at different incident angle and polarization, in which N1 represents the negative-index material N with the thickness dN/2, and the rest of the parameters remain the same as in Fig. 7.

Fig. 10.
Fig. 10.

Dotted lines are the contours of 80% absorption. All of the parameters remain the same as those in Fig. 9. It shows that there is an overlap when absorption is over 80%.

Fig. 11.
Fig. 11.

Influence of the damping factor γ of the NIM in the structure (NP)2D(PN)2 at ε=0.15.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

εN=1.21ωep2/(ω2+iγω),
μN=1ωmp2/(ω2+iγω),
R=|ErE0|2,
T=|EtE0|2,
Azε|E|2dz.

Metrics