Abstract

We present a theoretical scheme for laser cooling with the rare-earth-doped direct band-gap semiconductors. We consider ytterbium-doped indium phosphide (Yb3+:InP), in which the cooling process is based on thermal quenching of excited ytterbium ions. The mechanism of cooling in our system consists of laser excitation of ytterbium ions followed by thermal quenching of excited ions accompanied by phonon absorption providing cooling. The band-to-band radiative recombination finalizing the cooling cycle removes energy from the system. This approach to laser cooling of solids permits an increase in the efficiency of the cooling cycle, as well as an acceleration of the cooling process.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93, 269–316 (2008).
    [CrossRef]
  2. M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3, 1–18 (2008).
    [CrossRef]
  3. G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73, 086501 (2010).
    [CrossRef]
  4. N. Q. Vinh, N. N. Ha, and T. Gregorkiewicz, “Photonic properties of Er-doped crystalline silicon,” Proc. IEEE 97, 1269–1283(2009).
    [CrossRef]
  5. P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
    [CrossRef]
  6. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser- induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
    [CrossRef]
  7. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
    [CrossRef]
  8. J. B. Khurgin, “Role of bandtail states in laser cooling of semiconductors,” Phys. Rev. B 77, 235206 (2008).
    [CrossRef]
  9. P. S. Whitney, K. Uwai, H. Nakagome, and K. Takahei, “Electrical properties of ytterbium-doped InP grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 53, 2074–2076 (1988).
    [CrossRef]
  10. K. Takahei, A. Taguchi, H. Nakagome, K. Uwai, and P. S. Whitney, “Intra‐4f‐shell luminescence excitation and quenching mechanism of Yb in InP,” J. Appl. Phys. 66, 4941–4946 (1989).
    [CrossRef]
  11. A. Taguchi, H. Nakagome, and K. Takahei, “Thermal quenching mechanism of Yb intra-4f-shell luminescence in lnP,” J. Appl. Phys. 70, 5604–5607 (1991).
    [CrossRef]
  12. A. Taguchi, M. Taniguchi, and K. Takahei, “Direct verification of energy back transfer from Yb 4f-shell to InP host,” Appl. Phys. Lett. 60, 965–967 (1992).
    [CrossRef]
  13. A. Taguchi, K. Takahei, and Y. Horikoshi, “Multiphonon-assisted enegy transfer between Yb 4f shell and InP host,” J. Appl. Phys. 76, 7288–7295 (1994).
    [CrossRef]
  14. I. Tsimperidiqa, T. Gregorkiewicz, and C. A. J. Ammerlaan, “Role of electron traps in the excitation and de-excitation mechanism of Yb3+ in InP,” J. Appl. Phys. 77, 1523–1530(1995).
    [CrossRef]
  15. M. A. J. Klik and T. Gregorkiewicz, “Optically induced deexcitation of rare-earth ions in a semiconductor matrix,” Phys. Rev. Lett. 89, 227401 (2002).
    [CrossRef]
  16. M. Needels, M. Schluter, and M. Lannoo, “Erbium point defects in silicon,” Phys. Rev. B 47, 15533–15536 (1993).
    [CrossRef]
  17. H. J. Lozykowski and A. K. Alshawa, “Kinetics and quenching mechanisms of photolurninescence in Yb-doped InP,” J. Appl. Phys. 76, 4836–4846 (1994).
    [CrossRef]
  18. W. Korber and A. Hangleiter, “Excitation and decay mechanisms of the intra-4f luminescence of Yb3+ in epitaxial lnP:Yb layers,” Appl. Phys. Lett. 52, 114–116 (1988).
    [CrossRef]
  19. B. K. Ridley, “Multiphonon, non-radiative transition rate for electrons in semiconductors and insulators,” J. Phys. C 11, 2323–2341 (1978).
    [CrossRef]
  20. E. Gutsche, “Non-Condon approximations and the static approach in the theory of non-radiative multiphonon transitions,” Phys. Status Solidi B 109, 583–597 (1982).
    [CrossRef]
  21. A. Taguchi and K. Takahei, “Band-edge-related luminescence due to the energy backtransfer in Yb-doped InP,” J. Appl. Phys. 79, 3261–3266 (1996).
    [CrossRef]
  22. O. Semyonov, A. Subashiev, Z. Chen, and S. Luryi, “Radiation efficiency of heavily doped bulk n-InP semiconductor,” J. Appl. Phys. 108, 013101 (2010).
    [CrossRef]
  23. X. Luo, M. D. Eisaman, and T. R. Gosnell, “Laser cooling of a solid by 21 K starting from room temperature,” Opt. Lett. 23, 639–641 (1998).
    [CrossRef]
  24. H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147(1997).
    [CrossRef]

2010

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73, 086501 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

O. Semyonov, A. Subashiev, Z. Chen, and S. Luryi, “Radiation efficiency of heavily doped bulk n-InP semiconductor,” J. Appl. Phys. 108, 013101 (2010).
[CrossRef]

2009

N. Q. Vinh, N. N. Ha, and T. Gregorkiewicz, “Photonic properties of Er-doped crystalline silicon,” Proc. IEEE 97, 1269–1283(2009).
[CrossRef]

2008

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93, 269–316 (2008).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3, 1–18 (2008).
[CrossRef]

J. B. Khurgin, “Role of bandtail states in laser cooling of semiconductors,” Phys. Rev. B 77, 235206 (2008).
[CrossRef]

2002

M. A. J. Klik and T. Gregorkiewicz, “Optically induced deexcitation of rare-earth ions in a semiconductor matrix,” Phys. Rev. Lett. 89, 227401 (2002).
[CrossRef]

1998

1997

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147(1997).
[CrossRef]

1996

A. Taguchi and K. Takahei, “Band-edge-related luminescence due to the energy backtransfer in Yb-doped InP,” J. Appl. Phys. 79, 3261–3266 (1996).
[CrossRef]

1995

I. Tsimperidiqa, T. Gregorkiewicz, and C. A. J. Ammerlaan, “Role of electron traps in the excitation and de-excitation mechanism of Yb3+ in InP,” J. Appl. Phys. 77, 1523–1530(1995).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser- induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

1994

A. Taguchi, K. Takahei, and Y. Horikoshi, “Multiphonon-assisted enegy transfer between Yb 4f shell and InP host,” J. Appl. Phys. 76, 7288–7295 (1994).
[CrossRef]

H. J. Lozykowski and A. K. Alshawa, “Kinetics and quenching mechanisms of photolurninescence in Yb-doped InP,” J. Appl. Phys. 76, 4836–4846 (1994).
[CrossRef]

1993

M. Needels, M. Schluter, and M. Lannoo, “Erbium point defects in silicon,” Phys. Rev. B 47, 15533–15536 (1993).
[CrossRef]

1992

A. Taguchi, M. Taniguchi, and K. Takahei, “Direct verification of energy back transfer from Yb 4f-shell to InP host,” Appl. Phys. Lett. 60, 965–967 (1992).
[CrossRef]

1991

A. Taguchi, H. Nakagome, and K. Takahei, “Thermal quenching mechanism of Yb intra-4f-shell luminescence in lnP,” J. Appl. Phys. 70, 5604–5607 (1991).
[CrossRef]

1989

K. Takahei, A. Taguchi, H. Nakagome, K. Uwai, and P. S. Whitney, “Intra‐4f‐shell luminescence excitation and quenching mechanism of Yb in InP,” J. Appl. Phys. 66, 4941–4946 (1989).
[CrossRef]

1988

P. S. Whitney, K. Uwai, H. Nakagome, and K. Takahei, “Electrical properties of ytterbium-doped InP grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 53, 2074–2076 (1988).
[CrossRef]

W. Korber and A. Hangleiter, “Excitation and decay mechanisms of the intra-4f luminescence of Yb3+ in epitaxial lnP:Yb layers,” Appl. Phys. Lett. 52, 114–116 (1988).
[CrossRef]

1982

E. Gutsche, “Non-Condon approximations and the static approach in the theory of non-radiative multiphonon transitions,” Phys. Status Solidi B 109, 583–597 (1982).
[CrossRef]

1978

B. K. Ridley, “Multiphonon, non-radiative transition rate for electrons in semiconductors and insulators,” J. Phys. C 11, 2323–2341 (1978).
[CrossRef]

1929

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
[CrossRef]

Alshawa, A. K.

H. J. Lozykowski and A. K. Alshawa, “Kinetics and quenching mechanisms of photolurninescence in Yb-doped InP,” J. Appl. Phys. 76, 4836–4846 (1994).
[CrossRef]

Ammerlaan, C. A. J.

I. Tsimperidiqa, T. Gregorkiewicz, and C. A. J. Ammerlaan, “Role of electron traps in the excitation and de-excitation mechanism of Yb3+ in InP,” J. Appl. Phys. 77, 1523–1530(1995).
[CrossRef]

Bertness, K. A.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147(1997).
[CrossRef]

Bigotta, S.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

Buchwald, M. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser- induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Chen, Z.

O. Semyonov, A. Subashiev, Z. Chen, and S. Luryi, “Radiation efficiency of heavily doped bulk n-InP semiconductor,” J. Appl. Phys. 108, 013101 (2010).
[CrossRef]

Cornell, E. A.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147(1997).
[CrossRef]

Di Lieto, A.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

Edwards, B. C.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser- induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Eichhorn, M.

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93, 269–316 (2008).
[CrossRef]

Eisaman, M. D.

Epstein, R. I.

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3, 1–18 (2008).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser- induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Gauck, H.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147(1997).
[CrossRef]

Gfroerer, T. H.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147(1997).
[CrossRef]

Gosnell, T. R.

X. Luo, M. D. Eisaman, and T. R. Gosnell, “Laser cooling of a solid by 21 K starting from room temperature,” Opt. Lett. 23, 639–641 (1998).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser- induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Gregorkiewicz, T.

N. Q. Vinh, N. N. Ha, and T. Gregorkiewicz, “Photonic properties of Er-doped crystalline silicon,” Proc. IEEE 97, 1269–1283(2009).
[CrossRef]

M. A. J. Klik and T. Gregorkiewicz, “Optically induced deexcitation of rare-earth ions in a semiconductor matrix,” Phys. Rev. Lett. 89, 227401 (2002).
[CrossRef]

I. Tsimperidiqa, T. Gregorkiewicz, and C. A. J. Ammerlaan, “Role of electron traps in the excitation and de-excitation mechanism of Yb3+ in InP,” J. Appl. Phys. 77, 1523–1530(1995).
[CrossRef]

Gutsche, E.

E. Gutsche, “Non-Condon approximations and the static approach in the theory of non-radiative multiphonon transitions,” Phys. Status Solidi B 109, 583–597 (1982).
[CrossRef]

Ha, N. N.

N. Q. Vinh, N. N. Ha, and T. Gregorkiewicz, “Photonic properties of Er-doped crystalline silicon,” Proc. IEEE 97, 1269–1283(2009).
[CrossRef]

Hangleiter, A.

W. Korber and A. Hangleiter, “Excitation and decay mechanisms of the intra-4f luminescence of Yb3+ in epitaxial lnP:Yb layers,” Appl. Phys. Lett. 52, 114–116 (1988).
[CrossRef]

Horikoshi, Y.

A. Taguchi, K. Takahei, and Y. Horikoshi, “Multiphonon-assisted enegy transfer between Yb 4f shell and InP host,” J. Appl. Phys. 76, 7288–7295 (1994).
[CrossRef]

Kashyap, R.

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73, 086501 (2010).
[CrossRef]

Khurgin, J. B.

J. B. Khurgin, “Role of bandtail states in laser cooling of semiconductors,” Phys. Rev. B 77, 235206 (2008).
[CrossRef]

Klik, M. A. J.

M. A. J. Klik and T. Gregorkiewicz, “Optically induced deexcitation of rare-earth ions in a semiconductor matrix,” Phys. Rev. Lett. 89, 227401 (2002).
[CrossRef]

Korber, W.

W. Korber and A. Hangleiter, “Excitation and decay mechanisms of the intra-4f luminescence of Yb3+ in epitaxial lnP:Yb layers,” Appl. Phys. Lett. 52, 114–116 (1988).
[CrossRef]

Lannoo, M.

M. Needels, M. Schluter, and M. Lannoo, “Erbium point defects in silicon,” Phys. Rev. B 47, 15533–15536 (1993).
[CrossRef]

Lozykowski, H. J.

H. J. Lozykowski and A. K. Alshawa, “Kinetics and quenching mechanisms of photolurninescence in Yb-doped InP,” J. Appl. Phys. 76, 4836–4846 (1994).
[CrossRef]

Luo, X.

Luryi, S.

O. Semyonov, A. Subashiev, Z. Chen, and S. Luryi, “Radiation efficiency of heavily doped bulk n-InP semiconductor,” J. Appl. Phys. 108, 013101 (2010).
[CrossRef]

Melgaard, S. D.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

Mungan, C. E.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser- induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Nakagome, H.

A. Taguchi, H. Nakagome, and K. Takahei, “Thermal quenching mechanism of Yb intra-4f-shell luminescence in lnP,” J. Appl. Phys. 70, 5604–5607 (1991).
[CrossRef]

K. Takahei, A. Taguchi, H. Nakagome, K. Uwai, and P. S. Whitney, “Intra‐4f‐shell luminescence excitation and quenching mechanism of Yb in InP,” J. Appl. Phys. 66, 4941–4946 (1989).
[CrossRef]

P. S. Whitney, K. Uwai, H. Nakagome, and K. Takahei, “Electrical properties of ytterbium-doped InP grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 53, 2074–2076 (1988).
[CrossRef]

Needels, M.

M. Needels, M. Schluter, and M. Lannoo, “Erbium point defects in silicon,” Phys. Rev. B 47, 15533–15536 (1993).
[CrossRef]

Nemova, G.

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73, 086501 (2010).
[CrossRef]

Pringsheim, P.

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
[CrossRef]

Renn, M. J.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147(1997).
[CrossRef]

Ridley, B. K.

B. K. Ridley, “Multiphonon, non-radiative transition rate for electrons in semiconductors and insulators,” J. Phys. C 11, 2323–2341 (1978).
[CrossRef]

Schluter, M.

M. Needels, M. Schluter, and M. Lannoo, “Erbium point defects in silicon,” Phys. Rev. B 47, 15533–15536 (1993).
[CrossRef]

Seletskiy, D. V.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

Semyonov, O.

O. Semyonov, A. Subashiev, Z. Chen, and S. Luryi, “Radiation efficiency of heavily doped bulk n-InP semiconductor,” J. Appl. Phys. 108, 013101 (2010).
[CrossRef]

Sheik-Bahae, M.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3, 1–18 (2008).
[CrossRef]

Subashiev, A.

O. Semyonov, A. Subashiev, Z. Chen, and S. Luryi, “Radiation efficiency of heavily doped bulk n-InP semiconductor,” J. Appl. Phys. 108, 013101 (2010).
[CrossRef]

Taguchi, A.

A. Taguchi and K. Takahei, “Band-edge-related luminescence due to the energy backtransfer in Yb-doped InP,” J. Appl. Phys. 79, 3261–3266 (1996).
[CrossRef]

A. Taguchi, K. Takahei, and Y. Horikoshi, “Multiphonon-assisted enegy transfer between Yb 4f shell and InP host,” J. Appl. Phys. 76, 7288–7295 (1994).
[CrossRef]

A. Taguchi, M. Taniguchi, and K. Takahei, “Direct verification of energy back transfer from Yb 4f-shell to InP host,” Appl. Phys. Lett. 60, 965–967 (1992).
[CrossRef]

A. Taguchi, H. Nakagome, and K. Takahei, “Thermal quenching mechanism of Yb intra-4f-shell luminescence in lnP,” J. Appl. Phys. 70, 5604–5607 (1991).
[CrossRef]

K. Takahei, A. Taguchi, H. Nakagome, K. Uwai, and P. S. Whitney, “Intra‐4f‐shell luminescence excitation and quenching mechanism of Yb in InP,” J. Appl. Phys. 66, 4941–4946 (1989).
[CrossRef]

Takahei, K.

A. Taguchi and K. Takahei, “Band-edge-related luminescence due to the energy backtransfer in Yb-doped InP,” J. Appl. Phys. 79, 3261–3266 (1996).
[CrossRef]

A. Taguchi, K. Takahei, and Y. Horikoshi, “Multiphonon-assisted enegy transfer between Yb 4f shell and InP host,” J. Appl. Phys. 76, 7288–7295 (1994).
[CrossRef]

A. Taguchi, M. Taniguchi, and K. Takahei, “Direct verification of energy back transfer from Yb 4f-shell to InP host,” Appl. Phys. Lett. 60, 965–967 (1992).
[CrossRef]

A. Taguchi, H. Nakagome, and K. Takahei, “Thermal quenching mechanism of Yb intra-4f-shell luminescence in lnP,” J. Appl. Phys. 70, 5604–5607 (1991).
[CrossRef]

K. Takahei, A. Taguchi, H. Nakagome, K. Uwai, and P. S. Whitney, “Intra‐4f‐shell luminescence excitation and quenching mechanism of Yb in InP,” J. Appl. Phys. 66, 4941–4946 (1989).
[CrossRef]

P. S. Whitney, K. Uwai, H. Nakagome, and K. Takahei, “Electrical properties of ytterbium-doped InP grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 53, 2074–2076 (1988).
[CrossRef]

Taniguchi, M.

A. Taguchi, M. Taniguchi, and K. Takahei, “Direct verification of energy back transfer from Yb 4f-shell to InP host,” Appl. Phys. Lett. 60, 965–967 (1992).
[CrossRef]

Tonelli, M.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

Tsimperidiqa, I.

I. Tsimperidiqa, T. Gregorkiewicz, and C. A. J. Ammerlaan, “Role of electron traps in the excitation and de-excitation mechanism of Yb3+ in InP,” J. Appl. Phys. 77, 1523–1530(1995).
[CrossRef]

Uwai, K.

K. Takahei, A. Taguchi, H. Nakagome, K. Uwai, and P. S. Whitney, “Intra‐4f‐shell luminescence excitation and quenching mechanism of Yb in InP,” J. Appl. Phys. 66, 4941–4946 (1989).
[CrossRef]

P. S. Whitney, K. Uwai, H. Nakagome, and K. Takahei, “Electrical properties of ytterbium-doped InP grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 53, 2074–2076 (1988).
[CrossRef]

Vinh, N. Q.

N. Q. Vinh, N. N. Ha, and T. Gregorkiewicz, “Photonic properties of Er-doped crystalline silicon,” Proc. IEEE 97, 1269–1283(2009).
[CrossRef]

Whitney, P. S.

K. Takahei, A. Taguchi, H. Nakagome, K. Uwai, and P. S. Whitney, “Intra‐4f‐shell luminescence excitation and quenching mechanism of Yb in InP,” J. Appl. Phys. 66, 4941–4946 (1989).
[CrossRef]

P. S. Whitney, K. Uwai, H. Nakagome, and K. Takahei, “Electrical properties of ytterbium-doped InP grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 53, 2074–2076 (1988).
[CrossRef]

Appl. Phys. A

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147(1997).
[CrossRef]

Appl. Phys. B

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93, 269–316 (2008).
[CrossRef]

Appl. Phys. Lett.

P. S. Whitney, K. Uwai, H. Nakagome, and K. Takahei, “Electrical properties of ytterbium-doped InP grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 53, 2074–2076 (1988).
[CrossRef]

A. Taguchi, M. Taniguchi, and K. Takahei, “Direct verification of energy back transfer from Yb 4f-shell to InP host,” Appl. Phys. Lett. 60, 965–967 (1992).
[CrossRef]

W. Korber and A. Hangleiter, “Excitation and decay mechanisms of the intra-4f luminescence of Yb3+ in epitaxial lnP:Yb layers,” Appl. Phys. Lett. 52, 114–116 (1988).
[CrossRef]

J. Appl. Phys.

A. Taguchi, K. Takahei, and Y. Horikoshi, “Multiphonon-assisted enegy transfer between Yb 4f shell and InP host,” J. Appl. Phys. 76, 7288–7295 (1994).
[CrossRef]

I. Tsimperidiqa, T. Gregorkiewicz, and C. A. J. Ammerlaan, “Role of electron traps in the excitation and de-excitation mechanism of Yb3+ in InP,” J. Appl. Phys. 77, 1523–1530(1995).
[CrossRef]

K. Takahei, A. Taguchi, H. Nakagome, K. Uwai, and P. S. Whitney, “Intra‐4f‐shell luminescence excitation and quenching mechanism of Yb in InP,” J. Appl. Phys. 66, 4941–4946 (1989).
[CrossRef]

A. Taguchi, H. Nakagome, and K. Takahei, “Thermal quenching mechanism of Yb intra-4f-shell luminescence in lnP,” J. Appl. Phys. 70, 5604–5607 (1991).
[CrossRef]

H. J. Lozykowski and A. K. Alshawa, “Kinetics and quenching mechanisms of photolurninescence in Yb-doped InP,” J. Appl. Phys. 76, 4836–4846 (1994).
[CrossRef]

A. Taguchi and K. Takahei, “Band-edge-related luminescence due to the energy backtransfer in Yb-doped InP,” J. Appl. Phys. 79, 3261–3266 (1996).
[CrossRef]

O. Semyonov, A. Subashiev, Z. Chen, and S. Luryi, “Radiation efficiency of heavily doped bulk n-InP semiconductor,” J. Appl. Phys. 108, 013101 (2010).
[CrossRef]

J. Phys. C

B. K. Ridley, “Multiphonon, non-radiative transition rate for electrons in semiconductors and insulators,” J. Phys. C 11, 2323–2341 (1978).
[CrossRef]

Laser Photon. Rev.

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3, 1–18 (2008).
[CrossRef]

Nat. Photonics

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

Nature

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser- induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Opt. Lett.

Phys. Rev. B

M. Needels, M. Schluter, and M. Lannoo, “Erbium point defects in silicon,” Phys. Rev. B 47, 15533–15536 (1993).
[CrossRef]

J. B. Khurgin, “Role of bandtail states in laser cooling of semiconductors,” Phys. Rev. B 77, 235206 (2008).
[CrossRef]

Phys. Rev. Lett.

M. A. J. Klik and T. Gregorkiewicz, “Optically induced deexcitation of rare-earth ions in a semiconductor matrix,” Phys. Rev. Lett. 89, 227401 (2002).
[CrossRef]

Phys. Status Solidi B

E. Gutsche, “Non-Condon approximations and the static approach in the theory of non-radiative multiphonon transitions,” Phys. Status Solidi B 109, 583–597 (1982).
[CrossRef]

Proc. IEEE

N. Q. Vinh, N. N. Ha, and T. Gregorkiewicz, “Photonic properties of Er-doped crystalline silicon,” Proc. IEEE 97, 1269–1283(2009).
[CrossRef]

Rep. Prog. Phys.

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73, 086501 (2010).
[CrossRef]

Z. Phys.

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Model of cooling in Yb:InP system.

Fig. 2.
Fig. 2.

Schematic configuration-coordinate model for two localized states. State (1): F5/22 excited state. There are no free carriers in the system. State (2): AE trap with an electron–hole pair.

Fig. 3.
Fig. 3.

Probability of the transition with phonon absorption between the excited level of Yb3+ ions, F5/22, and the AE trap, Wa(1), as a function of temperature.

Fig. 4.
Fig. 4.

Probability of the transition with phonon absorption between the excited AE trap and the conduction band, Wa(2), as a function of temperature.

Fig. 5.
Fig. 5.

Dependence between the limit value of the rate of thermal quenching providing cooling power in the system, which can compensate for the heat-generated power with Stokes fluorescence, Wa_min(1), and the pump wavelength.

Fig. 6.
Fig. 6.

Concentration of carriers in the conduction band, n, as a function of pump power.

Fig. 7.
Fig. 7.

Cooling efficiency, ηcool, as a function of pump power. (a) Both loss terms, A=3×106s1 and C=1.6×106μm6/s, are taken in to account. (b) Nonradiative decay A=0, and Auger coefficient C=1.6×106μm6/s. (c) Nonradiative decay A=3×106s1, and Auger coefficient C=0.

Fig. 8.
Fig. 8.

Temperature of the sample as a function of pump power.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

We=W0(nq+1)pexp(2nqs).
Wa=W0(nq)pexp(2nqs),
dN2dt=Ipωp[NTσa(λp)N2(σa(λp)+σe(λp))]N2τN2Wa(1)+NexWe(1),dNexdt=N2Wa(1)NexWa(2)+nWe(2)NexWe(1),dndt=NexWa(2)AnBn2Cn3nWe(2),NT=N1+N2,
Pcool=LAeff{Ip[NTσa(λp)N2(σa(λp)+σe(λp))]Bn2ωfN2τωFYb+Anωf+Cn3ωp},
Pabs=LAeffIp[NTσa(λp)N2(σa(λp)+σe(λp))].
η˜cool=hνfhνphνp=λpλf1,
ηcool=PcoolPabs.
Pcool=πDLεσB(Tr4Ts4),
Wa(1)>Wa_min(1),whereWa_min(1)=1τ·λf(λFYbλp)λFYb(λpλf)

Metrics