Abstract

A chain of metallic particles, of sufficiently small diameter and spacing, allows linearly polarized plasmonic waves to propagate along the chain. In this paper, we consider how these waves are altered when the host is a nematic or cholesteric liquid crystal (NLC or CLC). In an NLC host, with the principal axis (director) oriented either parallel or perpendicular to the chain, we find that the dispersion relations of both the longitudinal (L) and transverse (T) modes are significantly altered relative to those of an isotropic host. Furthermore, when the director is perpendicular to the chain, the doubly degenerate T branch is split into two nondegenerate linearly polarized branches by the anisotropy of the host material. In a CLC liquid crystal with a twist axis parallel to the chain, the two T branches are again found to be split, but are no longer linearly polarized; the dispersion relations depend on the cholesteric pitch angle. To illustrate these results, we calculate the L and T dispersion relations for both types of liquid crystals, assuming that the metal is described by a Drude dielectric function. The formalism can, in principle, include single-particle damping and could be generalized to include radiation damping. The present work suggests that the dispersion relations of plasmonic waves on a chain of nanoparticles can be controlled by immersing the chain in an NLC or a CLC and varying the director axis or pitch angle by applying suitable external fields.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Maxwell, “Colours in metal glasses, in metallic films, and in metallic solutions. II,” Phil. Trans. R. Soc. A 155, 459–512 (1865).
    [CrossRef]
  2. For reviews, see, e.g., M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008), or the following two references.
    [CrossRef]
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  4. L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University, 2009).
  5. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
    [CrossRef]
  6. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
    [CrossRef]
  7. Z. Y. Tang and N. A. Kotov, “One-dimensional assemblies of nanoparticles: preparation, properties, and promise,” Adv. Mater. 17, 951–962 (2005).
    [CrossRef]
  8. S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature 451, 553–556 (2008).
    [CrossRef]
  9. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006).
    [CrossRef]
  10. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
    [CrossRef]
  11. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
    [CrossRef]
  12. S. Y. Park and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004).
    [CrossRef]
  13. W. M. Saj, T. J. Antosiewicz, J. Pniewski, and T. Szoplik, “Energy transport in plasmon waveguides on chains of metal nanoplates,” Opto-Electron. Rev. 14, 243–251 (2006).
    [CrossRef]
  14. P. Ghenuche, R. Quidant, and G. Badenas, “Cumulative plasmon field enhancement in finite metal particle chains,” Opt. Lett. 30, 1882–1884 (2005).
    [CrossRef]
  15. A. Alú and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
    [CrossRef]
  16. N. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
    [CrossRef]
  17. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
    [CrossRef]
  18. C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Resonator mode in chains of silver spheres and its possible application,” Phys. Rev. E 72, 066606 (2005).
    [CrossRef]
  19. F. J. G. de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
    [CrossRef]
  20. P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110, 18243–18253 (2006).
    [CrossRef]
  21. K. B. Crozier, E. Togan, E. Simsek, and T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains,” Opt. Express 15, 17482–17493 (2007).
    [CrossRef]
  22. J. Müller, C. Sönnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
    [CrossRef]
  23. P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. H. Huang, P. M. Alsling, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
    [CrossRef]
  24. R. Pratibha, K. Park, I. I. Salyhukh, and W. Park, “Tunable optical metamaterial based on liquid crystal-gold nanosphere composite,” Opt. Express 17, 19459–19469 (2009).
    [CrossRef]
  25. S. Y. Park and D. Stroud, “Surface-enhanced plasmon splitting in a liquid-crystal-coated gold nanoparticle,” Phys. Rev. Lett. 94, 217401 (2005).
    [CrossRef]
  26. S. Y. Park and D. Stroud, “Splitting of surface plasmon frequencies of metallic particles in a nematic liquid crystal,” Appl. Phys. Lett. 85, 2920–2922 (2004).
    [CrossRef]
  27. D. Liu, C. Xu, and P. M. Hui, “Effects of a coating of spherically anisotropic material in core-shell particles,” Appl. Phys. Lett. 92, 181901 (2008).
    [CrossRef]
  28. M. Dridi and A. Vial, “FDTD modelling of gold nanoparticle pairs in a nematic liquid crystal cell,” J. Phys. D 43, 415102 (2010).
    [CrossRef]
  29. T. G. Schaaff and R. L. Whetten, “Giant gold glutathione cluster compounds: intense optical activity in metal-based transitions,” J. Phys. Chem. B 104, 2630–2641 (2000).
    [CrossRef]
  30. G. Schemer, O. Krichevski, G. Markovich, I. Lubitz, and A. B. Kotlyar, “Chirality of silver nanoparticles synthesized on DNA,” J. Am. Chem. Soc. 128, 11006–11007 (2006).
    [CrossRef]
  31. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, N. Barron, N. Gadegaard, and M. Kadowdwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
    [CrossRef]
  32. M. P. Moloney, Y. K. Gun’ko, and J. M. Kelly, “Chiral highly luminescent CdS quantum dots,” Chem. Commun. 38, 3900–3902 (2007).
    [CrossRef]
  33. A. O. Govorov and Z. Fan, “Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media,” ChemPhysChem 13, 2551–2560 (2012).
    [CrossRef]
  34. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
    [CrossRef]
  35. Y. M. Strelniker, D. Stroud, and A. O. Voznesenskaya, “Control of extraordinary light transmission through perforated metal films using liquid crystals,” Eur. J. Phys. B 52, 1–7 (2006).
    [CrossRef]
  36. D. Stroud, “Generalized effective-medium approach to the conductivity of an inhomogeneous material,” Phys. Rev. B 12, 3368–3373 (1975).
    [CrossRef]
  37. To be specific, Eq. (2) is obtained from Eq. (2.9) of [36] by setting the applied field E0=0 in that equation, and carrying out the integral over a sphere of radius a. Also Eq. (2.9) is applied to the formally analogous case of an inhomogeneous dielectric rather than an inhomogeneous conductor. Thus, the factor δσ(x′) in that equation is replaced by δ^ϵ(x′)=ϵ^−ϵ^h, and in Eq. (4), σ0 is replaced by ϵ^h, where ϵ^h=ϵh1^.
  38. Y. M. Strelniker and D. J. Bergman, “Optical transmission through metal films with a subwavelength hole array in the presence of a magnetic field,” Phys. Rev. B 59, R12763(1999).
    [CrossRef]
  39. D. Stroud, and F. P. Pan, “Effect of isolated inhomogeneities on the galvanomagnetic properties of solids,” Phys. Rev. B 13, 1434–1438 (1976).
    [CrossRef]
  40. D. W. Berreman and T. J. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid-crystal films,” Phys. Rev. Lett. 25, 577–581 (1970).
    [CrossRef]
  41. T. C. Lubensky, D. Pettey, N. Currier, and H. Stark, “Topological defects and interactions in nematic emulsions,” Phys. Rev. E 57, 610 (1998).
    [CrossRef]
  42. P. Poulin and D. A. Weitz, “Inverted and multiple nematic emulsions,” Phys. Rev. E 57, 626–637 (1998).
    [CrossRef]
  43. H. Stark, “Physics of colloidal dispersions in nematic liquid crystals,” Phys. Rep. 351, 387–474 (2001).
    [CrossRef]
  44. R. D. Kamien and T. D. Powers, “Determining the anchoring strength in a capillary using topological defects,” Liq. Cryst. 23, 213–216 (1997).
    [CrossRef]
  45. D. W. Allender, G. P. Crawford, and J. W. Doane, “Determination of the liquid-crystal surface elastic constant K24,” Phys. Rev. Lett. 67, 1442–1445 (1991).
    [CrossRef]
  46. Y. Hadad and B. Z. Steinberg, “Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides,” Phys. Rev. Lett. 105, 233904 (2010).
    [CrossRef]
  47. Y. Mazor and B. Z. Steinberg, “Longitudinal chirality, enhanced nonreciprocity, and nanoscale planar one-way plasmonic guiding,” Phys. Rev. B 86, 045120 (2012).
    [CrossRef]

2012 (2)

A. O. Govorov and Z. Fan, “Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media,” ChemPhysChem 13, 2551–2560 (2012).
[CrossRef]

Y. Mazor and B. Z. Steinberg, “Longitudinal chirality, enhanced nonreciprocity, and nanoscale planar one-way plasmonic guiding,” Phys. Rev. B 86, 045120 (2012).
[CrossRef]

2011 (1)

N. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

2010 (3)

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, N. Barron, N. Gadegaard, and M. Kadowdwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[CrossRef]

M. Dridi and A. Vial, “FDTD modelling of gold nanoparticle pairs in a nematic liquid crystal cell,” J. Phys. D 43, 415102 (2010).
[CrossRef]

Y. Hadad and B. Z. Steinberg, “Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides,” Phys. Rev. Lett. 105, 233904 (2010).
[CrossRef]

2009 (1)

2008 (4)

D. Liu, C. Xu, and P. M. Hui, “Effects of a coating of spherically anisotropic material in core-shell particles,” Appl. Phys. Lett. 92, 181901 (2008).
[CrossRef]

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

For reviews, see, e.g., M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008), or the following two references.
[CrossRef]

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature 451, 553–556 (2008).
[CrossRef]

2007 (3)

F. J. G. de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

M. P. Moloney, Y. K. Gun’ko, and J. M. Kelly, “Chiral highly luminescent CdS quantum dots,” Chem. Commun. 38, 3900–3902 (2007).
[CrossRef]

K. B. Crozier, E. Togan, E. Simsek, and T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains,” Opt. Express 15, 17482–17493 (2007).
[CrossRef]

2006 (6)

G. Schemer, O. Krichevski, G. Markovich, I. Lubitz, and A. B. Kotlyar, “Chirality of silver nanoparticles synthesized on DNA,” J. Am. Chem. Soc. 128, 11006–11007 (2006).
[CrossRef]

Y. M. Strelniker, D. Stroud, and A. O. Voznesenskaya, “Control of extraordinary light transmission through perforated metal films using liquid crystals,” Eur. J. Phys. B 52, 1–7 (2006).
[CrossRef]

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110, 18243–18253 (2006).
[CrossRef]

W. M. Saj, T. J. Antosiewicz, J. Pniewski, and T. Szoplik, “Energy transport in plasmon waveguides on chains of metal nanoplates,” Opto-Electron. Rev. 14, 243–251 (2006).
[CrossRef]

A. Alú and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
[CrossRef]

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006).
[CrossRef]

2005 (5)

Z. Y. Tang and N. A. Kotov, “One-dimensional assemblies of nanoparticles: preparation, properties, and promise,” Adv. Mater. 17, 951–962 (2005).
[CrossRef]

P. Ghenuche, R. Quidant, and G. Badenas, “Cumulative plasmon field enhancement in finite metal particle chains,” Opt. Lett. 30, 1882–1884 (2005).
[CrossRef]

C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Resonator mode in chains of silver spheres and its possible application,” Phys. Rev. E 72, 066606 (2005).
[CrossRef]

P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. H. Huang, P. M. Alsling, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

S. Y. Park and D. Stroud, “Surface-enhanced plasmon splitting in a liquid-crystal-coated gold nanoparticle,” Phys. Rev. Lett. 94, 217401 (2005).
[CrossRef]

2004 (3)

S. Y. Park and D. Stroud, “Splitting of surface plasmon frequencies of metallic particles in a nematic liquid crystal,” Appl. Phys. Lett. 85, 2920–2922 (2004).
[CrossRef]

S. Y. Park and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004).
[CrossRef]

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
[CrossRef]

2003 (2)

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

2002 (1)

J. Müller, C. Sönnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
[CrossRef]

2001 (2)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

H. Stark, “Physics of colloidal dispersions in nematic liquid crystals,” Phys. Rep. 351, 387–474 (2001).
[CrossRef]

2000 (2)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

T. G. Schaaff and R. L. Whetten, “Giant gold glutathione cluster compounds: intense optical activity in metal-based transitions,” J. Phys. Chem. B 104, 2630–2641 (2000).
[CrossRef]

1999 (1)

Y. M. Strelniker and D. J. Bergman, “Optical transmission through metal films with a subwavelength hole array in the presence of a magnetic field,” Phys. Rev. B 59, R12763(1999).
[CrossRef]

1998 (2)

T. C. Lubensky, D. Pettey, N. Currier, and H. Stark, “Topological defects and interactions in nematic emulsions,” Phys. Rev. E 57, 610 (1998).
[CrossRef]

P. Poulin and D. A. Weitz, “Inverted and multiple nematic emulsions,” Phys. Rev. E 57, 626–637 (1998).
[CrossRef]

1997 (1)

R. D. Kamien and T. D. Powers, “Determining the anchoring strength in a capillary using topological defects,” Liq. Cryst. 23, 213–216 (1997).
[CrossRef]

1991 (1)

D. W. Allender, G. P. Crawford, and J. W. Doane, “Determination of the liquid-crystal surface elastic constant K24,” Phys. Rev. Lett. 67, 1442–1445 (1991).
[CrossRef]

1976 (1)

D. Stroud, and F. P. Pan, “Effect of isolated inhomogeneities on the galvanomagnetic properties of solids,” Phys. Rev. B 13, 1434–1438 (1976).
[CrossRef]

1975 (1)

D. Stroud, “Generalized effective-medium approach to the conductivity of an inhomogeneous material,” Phys. Rev. B 12, 3368–3373 (1975).
[CrossRef]

1970 (1)

D. W. Berreman and T. J. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid-crystal films,” Phys. Rev. Lett. 25, 577–581 (1970).
[CrossRef]

1865 (1)

J. C. Maxwell, “Colours in metal glasses, in metallic films, and in metallic solutions. II,” Phil. Trans. R. Soc. A 155, 459–512 (1865).
[CrossRef]

Aizpurua, J.

For reviews, see, e.g., M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008), or the following two references.
[CrossRef]

Allender, D. W.

D. W. Allender, G. P. Crawford, and J. W. Doane, “Determination of the liquid-crystal surface elastic constant K24,” Phys. Rev. Lett. 67, 1442–1445 (1991).
[CrossRef]

Alsling, P. M.

P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. H. Huang, P. M. Alsling, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

Alú, A.

A. Alú and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
[CrossRef]

Antosiewicz, T. J.

W. M. Saj, T. J. Antosiewicz, J. Pniewski, and T. Szoplik, “Energy transport in plasmon waveguides on chains of metal nanoplates,” Opto-Electron. Rev. 14, 243–251 (2006).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

Badenas, G.

Barron, N.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, N. Barron, N. Gadegaard, and M. Kadowdwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[CrossRef]

Bergman, D. J.

Y. M. Strelniker and D. J. Bergman, “Optical transmission through metal films with a subwavelength hole array in the presence of a magnetic field,” Phys. Rev. B 59, R12763(1999).
[CrossRef]

Berreman, D. W.

D. W. Berreman and T. J. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid-crystal films,” Phys. Rev. Lett. 25, 577–581 (1970).
[CrossRef]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

Bryant, G.

For reviews, see, e.g., M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008), or the following two references.
[CrossRef]

Cardimona, D. A.

P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. H. Huang, P. M. Alsling, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

Carpy, T.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, N. Barron, N. Gadegaard, and M. Kadowdwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[CrossRef]

Chang, W. S.

N. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

Cloutier, S. G.

P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. H. Huang, P. M. Alsling, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

Crawford, G. P.

D. W. Allender, G. P. Crawford, and J. W. Doane, “Determination of the liquid-crystal surface elastic constant K24,” Phys. Rev. Lett. 67, 1442–1445 (1991).
[CrossRef]

Crozier, K. B.

Currier, N.

T. C. Lubensky, D. Pettey, N. Currier, and H. Stark, “Topological defects and interactions in nematic emulsions,” Phys. Rev. E 57, 610 (1998).
[CrossRef]

de Abajo, F. J. G.

F. J. G. de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

Dickson, W.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

Doane, J. W.

D. W. Allender, G. P. Crawford, and J. W. Doane, “Determination of the liquid-crystal surface elastic constant K24,” Phys. Rev. Lett. 67, 1442–1445 (1991).
[CrossRef]

Dridi, M.

M. Dridi and A. Vial, “FDTD modelling of gold nanoparticle pairs in a nematic liquid crystal cell,” J. Phys. D 43, 415102 (2010).
[CrossRef]

El-Sayed, M. A.

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110, 18243–18253 (2006).
[CrossRef]

Engheta, N.

A. Alú and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
[CrossRef]

Eustis, S.

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110, 18243–18253 (2006).
[CrossRef]

Evans, P. R.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

Fan, Z.

A. O. Govorov and Z. Fan, “Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media,” ChemPhysChem 13, 2551–2560 (2012).
[CrossRef]

Feldmann, J.

J. Müller, C. Sönnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
[CrossRef]

Ford, G. W.

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
[CrossRef]

Gadegaard, N.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, N. Barron, N. Gadegaard, and M. Kadowdwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[CrossRef]

Ghenuche, P.

Govorov, A. O.

A. O. Govorov and Z. Fan, “Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media,” ChemPhysChem 13, 2551–2560 (2012).
[CrossRef]

Gun’ko, Y. K.

M. P. Moloney, Y. K. Gun’ko, and J. M. Kelly, “Chiral highly luminescent CdS quantum dots,” Chem. Commun. 38, 3900–3902 (2007).
[CrossRef]

Hadad, Y.

Y. Hadad and B. Z. Steinberg, “Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides,” Phys. Rev. Lett. 105, 233904 (2010).
[CrossRef]

Halas, N.

N. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

Hendry, E.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, N. Barron, N. Gadegaard, and M. Kadowdwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[CrossRef]

Huang, D. H.

P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. H. Huang, P. M. Alsling, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

Hui, P. M.

D. Liu, C. Xu, and P. M. Hui, “Effects of a coating of spherically anisotropic material in core-shell particles,” Appl. Phys. Lett. 92, 181901 (2008).
[CrossRef]

Jain, P. K.

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110, 18243–18253 (2006).
[CrossRef]

Johnston, J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, N. Barron, N. Gadegaard, and M. Kadowdwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[CrossRef]

Kadowdwala, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, N. Barron, N. Gadegaard, and M. Kadowdwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[CrossRef]

Kamien, R. D.

R. D. Kamien and T. D. Powers, “Determining the anchoring strength in a capillary using topological defects,” Liq. Cryst. 23, 213–216 (1997).
[CrossRef]

Kelly, J. M.

M. P. Moloney, Y. K. Gun’ko, and J. M. Kelly, “Chiral highly luminescent CdS quantum dots,” Chem. Commun. 38, 3900–3902 (2007).
[CrossRef]

Kelly, S. M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, N. Barron, N. Gadegaard, and M. Kadowdwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Klar, T. A.

J. Müller, C. Sönnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
[CrossRef]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Koenderink, A. F.

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006).
[CrossRef]

Kossyrev, P. A.

P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. H. Huang, P. M. Alsling, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

Kotlyar, A. B.

G. Schemer, O. Krichevski, G. Markovich, I. Lubitz, and A. B. Kotlyar, “Chirality of silver nanoparticles synthesized on DNA,” J. Am. Chem. Soc. 128, 11006–11007 (2006).
[CrossRef]

Kotov, N. A.

Z. Y. Tang and N. A. Kotov, “One-dimensional assemblies of nanoparticles: preparation, properties, and promise,” Adv. Mater. 17, 951–962 (2005).
[CrossRef]

Krichevski, O.

G. Schemer, O. Krichevski, G. Markovich, I. Lubitz, and A. B. Kotlyar, “Chirality of silver nanoparticles synthesized on DNA,” J. Am. Chem. Soc. 128, 11006–11007 (2006).
[CrossRef]

Lal, S.

N. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

Lapthorn, A. J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, N. Barron, N. Gadegaard, and M. Kadowdwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[CrossRef]

Lee, B.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature 451, 553–556 (2008).
[CrossRef]

Link, S.

N. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

Liu, D.

D. Liu, C. Xu, and P. M. Hui, “Effects of a coating of spherically anisotropic material in core-shell particles,” Appl. Phys. Lett. 92, 181901 (2008).
[CrossRef]

Lubensky, T. C.

T. C. Lubensky, D. Pettey, N. Currier, and H. Stark, “Topological defects and interactions in nematic emulsions,” Phys. Rev. E 57, 610 (1998).
[CrossRef]

Lubitz, I.

G. Schemer, O. Krichevski, G. Markovich, I. Lubitz, and A. B. Kotlyar, “Chirality of silver nanoparticles synthesized on DNA,” J. Am. Chem. Soc. 128, 11006–11007 (2006).
[CrossRef]

Lytton-Jean, A. K. R.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature 451, 553–556 (2008).
[CrossRef]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Markovich, G.

G. Schemer, O. Krichevski, G. Markovich, I. Lubitz, and A. B. Kotlyar, “Chirality of silver nanoparticles synthesized on DNA,” J. Am. Chem. Soc. 128, 11006–11007 (2006).
[CrossRef]

Maxwell, J. C.

J. C. Maxwell, “Colours in metal glasses, in metallic films, and in metallic solutions. II,” Phil. Trans. R. Soc. A 155, 459–512 (1865).
[CrossRef]

Mazor, Y.

Y. Mazor and B. Z. Steinberg, “Longitudinal chirality, enhanced nonreciprocity, and nanoscale planar one-way plasmonic guiding,” Phys. Rev. B 86, 045120 (2012).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Mikhaylovskiy, R. V.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, N. Barron, N. Gadegaard, and M. Kadowdwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[CrossRef]

Mirkin, C. A.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature 451, 553–556 (2008).
[CrossRef]

Moloney, M. P.

M. P. Moloney, Y. K. Gun’ko, and J. M. Kelly, “Chiral highly luminescent CdS quantum dots,” Chem. Commun. 38, 3900–3902 (2007).
[CrossRef]

Müller, J.

J. Müller, C. Sönnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
[CrossRef]

Nordlander, P.

N. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

Pan, F. P.

D. Stroud, and F. P. Pan, “Effect of isolated inhomogeneities on the galvanomagnetic properties of solids,” Phys. Rev. B 13, 1434–1438 (1976).
[CrossRef]

Park, K.

Park, S. Y.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature 451, 553–556 (2008).
[CrossRef]

S. Y. Park and D. Stroud, “Surface-enhanced plasmon splitting in a liquid-crystal-coated gold nanoparticle,” Phys. Rev. Lett. 94, 217401 (2005).
[CrossRef]

S. Y. Park and D. Stroud, “Splitting of surface plasmon frequencies of metallic particles in a nematic liquid crystal,” Appl. Phys. Lett. 85, 2920–2922 (2004).
[CrossRef]

S. Y. Park and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004).
[CrossRef]

Park, W.

Pelton, M.

For reviews, see, e.g., M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008), or the following two references.
[CrossRef]

Pettey, D.

T. C. Lubensky, D. Pettey, N. Currier, and H. Stark, “Topological defects and interactions in nematic emulsions,” Phys. Rev. E 57, 610 (1998).
[CrossRef]

Pniewski, J.

W. M. Saj, T. J. Antosiewicz, J. Pniewski, and T. Szoplik, “Energy transport in plasmon waveguides on chains of metal nanoplates,” Opto-Electron. Rev. 14, 243–251 (2006).
[CrossRef]

Pollard, R. J.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

Polman, A.

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006).
[CrossRef]

Popland, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, N. Barron, N. Gadegaard, and M. Kadowdwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[CrossRef]

Poulin, P.

P. Poulin and D. A. Weitz, “Inverted and multiple nematic emulsions,” Phys. Rev. E 57, 626–637 (1998).
[CrossRef]

Powers, T. D.

R. D. Kamien and T. D. Powers, “Determining the anchoring strength in a capillary using topological defects,” Liq. Cryst. 23, 213–216 (1997).
[CrossRef]

Pratibha, R.

Quidant, R.

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Saj, W. M.

W. M. Saj, T. J. Antosiewicz, J. Pniewski, and T. Szoplik, “Energy transport in plasmon waveguides on chains of metal nanoplates,” Opto-Electron. Rev. 14, 243–251 (2006).
[CrossRef]

Salyhukh, I. I.

Schaaff, T. G.

T. G. Schaaff and R. L. Whetten, “Giant gold glutathione cluster compounds: intense optical activity in metal-based transitions,” J. Phys. Chem. B 104, 2630–2641 (2000).
[CrossRef]

Schatz, G. C.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature 451, 553–556 (2008).
[CrossRef]

Scheffer, T. J.

D. W. Berreman and T. J. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid-crystal films,” Phys. Rev. Lett. 25, 577–581 (1970).
[CrossRef]

Schemer, G.

G. Schemer, O. Krichevski, G. Markovich, I. Lubitz, and A. B. Kotlyar, “Chirality of silver nanoparticles synthesized on DNA,” J. Am. Chem. Soc. 128, 11006–11007 (2006).
[CrossRef]

Shamonina, E.

L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University, 2009).

Simovski, C. R.

C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Resonator mode in chains of silver spheres and its possible application,” Phys. Rev. E 72, 066606 (2005).
[CrossRef]

Simsek, E.

Solymar, L.

L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University, 2009).

Sönnichsen, C.

J. Müller, C. Sönnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
[CrossRef]

Stark, H.

H. Stark, “Physics of colloidal dispersions in nematic liquid crystals,” Phys. Rep. 351, 387–474 (2001).
[CrossRef]

T. C. Lubensky, D. Pettey, N. Currier, and H. Stark, “Topological defects and interactions in nematic emulsions,” Phys. Rev. E 57, 610 (1998).
[CrossRef]

Steinberg, B. Z.

Y. Mazor and B. Z. Steinberg, “Longitudinal chirality, enhanced nonreciprocity, and nanoscale planar one-way plasmonic guiding,” Phys. Rev. B 86, 045120 (2012).
[CrossRef]

Y. Hadad and B. Z. Steinberg, “Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides,” Phys. Rev. Lett. 105, 233904 (2010).
[CrossRef]

Strelniker, Y. M.

Y. M. Strelniker, D. Stroud, and A. O. Voznesenskaya, “Control of extraordinary light transmission through perforated metal films using liquid crystals,” Eur. J. Phys. B 52, 1–7 (2006).
[CrossRef]

Y. M. Strelniker and D. J. Bergman, “Optical transmission through metal films with a subwavelength hole array in the presence of a magnetic field,” Phys. Rev. B 59, R12763(1999).
[CrossRef]

Stroud, D.

Y. M. Strelniker, D. Stroud, and A. O. Voznesenskaya, “Control of extraordinary light transmission through perforated metal films using liquid crystals,” Eur. J. Phys. B 52, 1–7 (2006).
[CrossRef]

S. Y. Park and D. Stroud, “Surface-enhanced plasmon splitting in a liquid-crystal-coated gold nanoparticle,” Phys. Rev. Lett. 94, 217401 (2005).
[CrossRef]

S. Y. Park and D. Stroud, “Splitting of surface plasmon frequencies of metallic particles in a nematic liquid crystal,” Appl. Phys. Lett. 85, 2920–2922 (2004).
[CrossRef]

S. Y. Park and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004).
[CrossRef]

D. Stroud, and F. P. Pan, “Effect of isolated inhomogeneities on the galvanomagnetic properties of solids,” Phys. Rev. B 13, 1434–1438 (1976).
[CrossRef]

D. Stroud, “Generalized effective-medium approach to the conductivity of an inhomogeneous material,” Phys. Rev. B 12, 3368–3373 (1975).
[CrossRef]

Szoplik, T.

W. M. Saj, T. J. Antosiewicz, J. Pniewski, and T. Szoplik, “Energy transport in plasmon waveguides on chains of metal nanoplates,” Opto-Electron. Rev. 14, 243–251 (2006).
[CrossRef]

Tang, Z. Y.

Z. Y. Tang and N. A. Kotov, “One-dimensional assemblies of nanoparticles: preparation, properties, and promise,” Adv. Mater. 17, 951–962 (2005).
[CrossRef]

Togan, E.

Tretyakov, S. A.

C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Resonator mode in chains of silver spheres and its possible application,” Phys. Rev. E 72, 066606 (2005).
[CrossRef]

Vial, A.

M. Dridi and A. Vial, “FDTD modelling of gold nanoparticle pairs in a nematic liquid crystal cell,” J. Phys. D 43, 415102 (2010).
[CrossRef]

Viitanen, A. J.

C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Resonator mode in chains of silver spheres and its possible application,” Phys. Rev. E 72, 066606 (2005).
[CrossRef]

von Plessen, G.

J. Müller, C. Sönnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
[CrossRef]

von Poschinger, H.

J. Müller, C. Sönnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
[CrossRef]

Voznesenskaya, A. O.

Y. M. Strelniker, D. Stroud, and A. O. Voznesenskaya, “Control of extraordinary light transmission through perforated metal films using liquid crystals,” Eur. J. Phys. B 52, 1–7 (2006).
[CrossRef]

Weber, W. H.

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
[CrossRef]

Weigand, S.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature 451, 553–556 (2008).
[CrossRef]

Weitz, D. A.

P. Poulin and D. A. Weitz, “Inverted and multiple nematic emulsions,” Phys. Rev. E 57, 626–637 (1998).
[CrossRef]

Whetten, R. L.

T. G. Schaaff and R. L. Whetten, “Giant gold glutathione cluster compounds: intense optical activity in metal-based transitions,” J. Phys. Chem. B 104, 2630–2641 (2000).
[CrossRef]

Wurtz, G. A.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

Xu, C.

D. Liu, C. Xu, and P. M. Hui, “Effects of a coating of spherically anisotropic material in core-shell particles,” Appl. Phys. Lett. 92, 181901 (2008).
[CrossRef]

Xu, J. M.

P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. H. Huang, P. M. Alsling, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

Yang, T.

Yin, A. J.

P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. H. Huang, P. M. Alsling, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

Zayats, A. V.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

Adv. Mater. (2)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Z. Y. Tang and N. A. Kotov, “One-dimensional assemblies of nanoparticles: preparation, properties, and promise,” Adv. Mater. 17, 951–962 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

J. Müller, C. Sönnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
[CrossRef]

S. Y. Park and D. Stroud, “Splitting of surface plasmon frequencies of metallic particles in a nematic liquid crystal,” Appl. Phys. Lett. 85, 2920–2922 (2004).
[CrossRef]

D. Liu, C. Xu, and P. M. Hui, “Effects of a coating of spherically anisotropic material in core-shell particles,” Appl. Phys. Lett. 92, 181901 (2008).
[CrossRef]

Chem. Commun. (1)

M. P. Moloney, Y. K. Gun’ko, and J. M. Kelly, “Chiral highly luminescent CdS quantum dots,” Chem. Commun. 38, 3900–3902 (2007).
[CrossRef]

Chem. Rev. (1)

N. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

ChemPhysChem (1)

A. O. Govorov and Z. Fan, “Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media,” ChemPhysChem 13, 2551–2560 (2012).
[CrossRef]

Eur. J. Phys. B (1)

Y. M. Strelniker, D. Stroud, and A. O. Voznesenskaya, “Control of extraordinary light transmission through perforated metal films using liquid crystals,” Eur. J. Phys. B 52, 1–7 (2006).
[CrossRef]

J. Am. Chem. Soc. (1)

G. Schemer, O. Krichevski, G. Markovich, I. Lubitz, and A. B. Kotlyar, “Chirality of silver nanoparticles synthesized on DNA,” J. Am. Chem. Soc. 128, 11006–11007 (2006).
[CrossRef]

J. Phys. Chem. B (2)

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110, 18243–18253 (2006).
[CrossRef]

T. G. Schaaff and R. L. Whetten, “Giant gold glutathione cluster compounds: intense optical activity in metal-based transitions,” J. Phys. Chem. B 104, 2630–2641 (2000).
[CrossRef]

J. Phys. D (1)

M. Dridi and A. Vial, “FDTD modelling of gold nanoparticle pairs in a nematic liquid crystal cell,” J. Phys. D 43, 415102 (2010).
[CrossRef]

Laser Photon. Rev. (1)

For reviews, see, e.g., M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008), or the following two references.
[CrossRef]

Liq. Cryst. (1)

R. D. Kamien and T. D. Powers, “Determining the anchoring strength in a capillary using topological defects,” Liq. Cryst. 23, 213–216 (1997).
[CrossRef]

Nano Lett. (2)

P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. H. Huang, P. M. Alsling, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Nat. Nanotechnol. (1)

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, N. Barron, N. Gadegaard, and M. Kadowdwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[CrossRef]

Nature (1)

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature 451, 553–556 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opto-Electron. Rev. (1)

W. M. Saj, T. J. Antosiewicz, J. Pniewski, and T. Szoplik, “Energy transport in plasmon waveguides on chains of metal nanoplates,” Opto-Electron. Rev. 14, 243–251 (2006).
[CrossRef]

Phil. Trans. R. Soc. A (1)

J. C. Maxwell, “Colours in metal glasses, in metallic films, and in metallic solutions. II,” Phil. Trans. R. Soc. A 155, 459–512 (1865).
[CrossRef]

Phys. Rep. (1)

H. Stark, “Physics of colloidal dispersions in nematic liquid crystals,” Phys. Rep. 351, 387–474 (2001).
[CrossRef]

Phys. Rev. B (10)

Y. Mazor and B. Z. Steinberg, “Longitudinal chirality, enhanced nonreciprocity, and nanoscale planar one-way plasmonic guiding,” Phys. Rev. B 86, 045120 (2012).
[CrossRef]

A. Alú and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
[CrossRef]

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
[CrossRef]

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
[CrossRef]

S. Y. Park and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004).
[CrossRef]

D. Stroud, “Generalized effective-medium approach to the conductivity of an inhomogeneous material,” Phys. Rev. B 12, 3368–3373 (1975).
[CrossRef]

Y. M. Strelniker and D. J. Bergman, “Optical transmission through metal films with a subwavelength hole array in the presence of a magnetic field,” Phys. Rev. B 59, R12763(1999).
[CrossRef]

D. Stroud, and F. P. Pan, “Effect of isolated inhomogeneities on the galvanomagnetic properties of solids,” Phys. Rev. B 13, 1434–1438 (1976).
[CrossRef]

Phys. Rev. E (3)

C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Resonator mode in chains of silver spheres and its possible application,” Phys. Rev. E 72, 066606 (2005).
[CrossRef]

T. C. Lubensky, D. Pettey, N. Currier, and H. Stark, “Topological defects and interactions in nematic emulsions,” Phys. Rev. E 57, 610 (1998).
[CrossRef]

P. Poulin and D. A. Weitz, “Inverted and multiple nematic emulsions,” Phys. Rev. E 57, 626–637 (1998).
[CrossRef]

Phys. Rev. Lett. (4)

D. W. Allender, G. P. Crawford, and J. W. Doane, “Determination of the liquid-crystal surface elastic constant K24,” Phys. Rev. Lett. 67, 1442–1445 (1991).
[CrossRef]

Y. Hadad and B. Z. Steinberg, “Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides,” Phys. Rev. Lett. 105, 233904 (2010).
[CrossRef]

D. W. Berreman and T. J. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid-crystal films,” Phys. Rev. Lett. 25, 577–581 (1970).
[CrossRef]

S. Y. Park and D. Stroud, “Surface-enhanced plasmon splitting in a liquid-crystal-coated gold nanoparticle,” Phys. Rev. Lett. 94, 217401 (2005).
[CrossRef]

Rev. Mod. Phys. (1)

F. J. G. de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

Other (3)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University, 2009).

To be specific, Eq. (2) is obtained from Eq. (2.9) of [36] by setting the applied field E0=0 in that equation, and carrying out the integral over a sphere of radius a. Also Eq. (2.9) is applied to the formally analogous case of an inhomogeneous dielectric rather than an inhomogeneous conductor. Thus, the factor δσ(x′) in that equation is replaced by δ^ϵ(x′)=ϵ^−ϵ^h, and in Eq. (4), σ0 is replaced by ϵ^h, where ϵ^h=ϵh1^.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Calculated dispersion relations ω(k) for plasmon waves along a chain of metallic nanoparticles, in the presence of an NLC host. We plot ω/ωp, where ωp is the plasma frequency, as a function of kd, where d is the distance between sphere centers. Green and blue (x’s and +’s): L and T modes for a chain embedded in an NLC with director parallel to the chain. The NLC is assumed to have principal dielectric tensor elements ϵ=3.0625 and ϵ=2.3104 parallel and perpendicular to the director, corresponding to the material known as E7. In this and subsequent plots, a/d=1/3, where a is the metallic sphere radius. Also shown are the corresponding L and T dispersion relations (black and red solid lines, respectively) when the host is isotropic with dielectric constant ϵh=2.5611=(1/3)ϵ+(2/3)ϵ.

Fig. 2.
Fig. 2.

Same as Fig. 1 except that the director of the NLC is perpendicular to the chain of metal nanoparticles. The frequencies of the L modes (asterisks, in green) and T modes (+’s and x’s, shown in dark and light blue), divided by the plasma frequency ωp, are plotted versus kd. The NLC has the same dielectric tensor elements as in Fig. 1. Also shown are the corresponding L (solid black) and T (solid red) branches for an isotropic host with ϵh=2.5611. Note that the T branches, which were degenerate in Fig. 1, are split into two branches in this NLC geometry.

Fig. 3.
Fig. 3.

Calculated dispersion relations ω(k) for plasmon waves along a chain of metallic nanoparticles in the presence of a CLC host. We assume that the director rotates about an axis parallel to the chain of metal nanoparticles with a pitch angle α. The red (open square and filled square) plots and blue (crosses and triangles) plots represent the two T branches for αd=π/6 and π/3, respectively, while the black (full circles and asterisks) plots correspond to αd=0 (NLC). In all cases we assume ϵ=3.06525 and ϵ=2.5611. The green points (full circles) represent an isotropic host with ϵ=(1/3)ϵ+(2/3)ϵ=2.5611.

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

ϵ(ω)=1ωp2ω(ω+i/τ)1ωp2ω2,
Ei(x)=Gij(xx)Pj(x)d3x,
Gij(xx)=ijG(xx),
·(ϵ^h·G(xx))=δ(xx),
G(xx)=14πϵϵ1/2×[(xx)2+(yy)2ϵ+(zz)2ϵ]1/2.
Ein,n=(1^Γ^·δ^ϵ)1·Eext,n,
pn=4π3a3Pin,n=4π3a3t^·Eext,n,
t^=δ^ϵ(1^Γ^·δ^ϵ)1
pn=4πa33t^nnG^(xnxn)·pn.
pnz=23ϵa3δϵ1Γδϵnnpnz|znzn|3.
pnx=13ϵϵ2a3δϵ1Γδϵnnpn,x|znzn|3,
1=23ϵa3d3δϵ1Γδϵn0eiknd|n|3,
1=13ϵϵ2a3d3δϵ1Γδϵn0eiknd|n|3.
1=43a3d3δϵ1Γδϵ1ϵcoskd,
1=23a3d3δϵ1Γδϵϵϵ2coskd.
Γ=1ϵλ[11λsin1λλ],Γ=12[Γ+1ϵϵsin1λλ],
Gxx(xx)=14πϵ1/2ϵ3/21|znzn|3,Gyy(xx)=14π1ϵ1/2ϵ1/21|znzn|3,Gzz(xx)=12π1ϵ1/2ϵ1/21|znzn|3,
1=2a33d3δϵxx1Γxxδϵxxϵ1/2ϵ3/2coskd,1=2a33d3δϵyy1Γyyδϵyy1ϵ1/2ϵ1/2coskd,1=4a33d3δϵzz1Γzzδϵzz1ϵ1/2ϵ1/2coskd,
n^(x)=x^cos(αz)+y^sin(αz).
ϵ^(z)=R^1(z)ϵ^R^(z),
Rxx(z)=Ryy(z)=cos(αz),Rxy(z)=Ryx(z)=sin(αz),Rzz(z)=1.
pn=4πa33[t^n+1G^n,n+1·pn+1+t^n1G^n,n1·pn1].
t^nG^n,n=R^1(zn)(t^G^(znzn))R^(zn),
R^1(zn)·p˜n=4πa33R^1(zn+1)[t^G^n,n+1·p˜n+1+R^1(zn1)t^G^n,n1·p˜n1].
R^1(zn±1)=R^1(zn)R^1(±z1),
p˜n=4πa33[R^1(z1)t^G^n,n+1·p˜n+1+R^(z1)t^G^n,n1·p˜n1],
p˜0=8πa33M^(k,ω)·p˜0,
Mxx=τxcos(αd)cos(kd),Mxy=iτysin(αd)sin(kd),Myx=iτxsin(αd)sin(kd),Myy=τycos(αd)cos(kd).
det[1^+8π3a3M^(k,ω)]=0.
1+(Tx+Ty)cos(αd)cos(kd)+TxTy[cos2(kd)sin2(αd)]=0.
Tx=23(a3d3)ϵ1/2ϵ3/2δϵ1Γδϵ,Ty=23(a3d3)1ϵ1/2ϵ1/2δϵ1Γδϵ.
(1Γδϵ)(1Γδϵ)+Lcos(αd)cos(kd)+M[cos2(kd)sin2(αd)]=0,
L=23a3d3[ϵ1/2ϵ3/2δϵ(1Γδϵ)+1ϵ1/2ϵ1/2δϵ(1Γδϵ)],
M=49a6d61ϵ2δϵδϵ.

Metrics