Abstract

Kinetic and fluid dynamic processes in diode-pumped alkali lasers (DPALs) are analyzed in detail using a simple, semi-analytical model, applicable to both static and flowing-gas devices. Unlike other models, it takes into account the effects of temperature rise, excitation of neutral alkali atoms to high lying electronic states and their losses due to ionization and chemical reactions, resulting in a decrease in pump absorption, slope efficiency, and lasing power. Effects of natural convection in static DPALs are also taken into account. The applicability of the model is demonstrated in Cs DPALs by (1) obtaining good agreement with measurements in static [Electron. Lett. 44, 582 (2008)] and flowing-gas [Quantum Electron. 42, 95 (2012)] DPALs, (2) predicting the dependence of power on the flow velocity in flowing-gas DPALs, and (3) checking the effect of using a buffer gas with high molar heat capacity and a large relaxation rate constant between the P3/22 and P1/22 fine-structure levels of the alkali atom. The power strongly increases with flow velocity and by replacing, e.g., ethane by propane as a buffer gas, the power may be further increased by up to 30%; 7 kW is achievable in a small-scale laser with 10cm3 of propane for a 20 kW pump at a flow velocity of 20 m/s..

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review (rev1),” Prog. Quantum Electron. 36, 4–28 (2012).
    [CrossRef]
  2. B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44, 582–583 (2008).
    [CrossRef]
  3. Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Chang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283, 2406–2410 (2010).
    [CrossRef]
  4. B. D. Barmashenko and S. Rosenwaks, “Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas,” Opt. Lett. 37, 3615–3617 (2012).
    [CrossRef]
  5. B. D. Barmashenko, S. Rosenwaks, and M. C. Heaven, “Static diode pumped alkali lasers: model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions,” Opt. Commun. 292, 123–125 (2013).
    [CrossRef]
  6. R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, “Photoionization in alkali lasers,” Opt. Express 19, 7894–7902 (2011).
    [CrossRef]
  7. L. Barbier and M. Cheret, “Experimental study of Penning and Hornbeck-Molnar ionisation of rubidium atoms excited in a high s or d level (5d≤nl≤11s),” J. Phys. B 20, 1229–1248 (1987).
    [CrossRef]
  8. J. Hecht, “Photonic frontiers: alkali-vapor lasers: diode pumping enables new approach to alkali-vapor lasers,” Laser Focus World 4, 49–53 (2011).
  9. A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42, 95–98 (2012).
    [CrossRef]
  10. G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101, 45–56 (2010).
    [CrossRef]
  11. G. P. Perram and G. D. Hager, “Influence of broadband excitation on the performance of diode pumped alkali lasers,” in AIAA 42nd Plasmadynamics and Lasers Conference, Honolulu, Hawaii, 27–30 June 2011 (AIAA, 2011), paper 2011-4002.
  12. Z. Yang, H. Wang, Q. Lu, Y. Li, W. Hua, X. Xu, and J. Chen, “Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium,” J. Opt. Soc. Am. B 28, 1353–1364 (2011).
    [CrossRef]
  13. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinski, and L. D. Merkle, “End pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21, 2151–2163 (2004).
    [CrossRef]
  14. N. D. Zameroski, G. D. Hager, W. Rudolph, and D. A. Hostutler, “Experimental and numerical modeling studies of a pulsed rubidium optically pumped alkali metal vapor laser,” J. Opt. Soc. Am. B 28, 1088–1099 (2011).
    [CrossRef]
  15. P. Teerstra and M. M. Yovanovich, “Comprehensive review of natural convection in horizontal circular annuli,” in 7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Albuquerque, New Mexico, 15–18 June 1998 (AIAA, 1998), pp. 141–152.
  16. T. H. Kuehn and R. J. Goldstein, “Correlating equations for natural convection heat transfer between horizontal circular cylinders,” Int. J. Heat Mass Transfer 19, 1127–1134 (1976).
    [CrossRef]
  17. Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milošević, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ→6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54, 1372–1384 (1996).
    [CrossRef]
  18. E. Arimondo, F. Giammanco, A. Sasso, and M. I. Schisano, “Laser ionization and time-resolved ion collection in Cs vapor,” Opt. Commun. 55, 329–334 (1985).
    [CrossRef]
  19. Y. Momozaki and M. S. El-Genk, “Dissociative recombination coefficient for low temperature equilibrium cesium plasma,” J. Appl. Phys. 92, 690–697 (2002).
    [CrossRef]
  20. A. Z. Msezane and S. T. Manson, “Photoionization of the Cs 6d excited state,” Phys. Rev. A 29, 1594–1595 (1984).
    [CrossRef]
  21. A. Tam, J. Moe, and W. Happer, “Particle formation by resonant laser light in alkali-metal vapor,” Phys. Rev. Lett. 35, 1630–1633 (1975).
    [CrossRef]
  22. S. R. Seshadri, Fundamentals of Plasma Physics (Elsevier, 1973), pp. 416–423.
  23. G. A. Pitz, C. D. Fox, and G. P. Perram, “Transfer between the cesium 62P1/2 and 62P3/2 levels induced by collisions with H2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84, 032708 (2011).
    [CrossRef]
  24. W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).
    [CrossRef]
  25. N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42, 245401(2009).
  26. D. A. Steck, “Cesium D line data,” available online at http://steck.us/alkalidata .
  27. B. V. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. J. Knize, “Tunable single frequency cesium laser,” Opt. Commun. 280, 161–164 (2007).
    [CrossRef]
  28. B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32, 2167–2169(2007).
    [CrossRef]
  29. B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Laser diode array pumped continuous wave Rubidium vapor laser,” Opt. Express 16, 748–751 (2008).
    [CrossRef]
  30. “NIST Chemistry WebBook,” available online at http://webbook.nist.gov .
  31. E. Walentynowicz, R. A. Phaneuf, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. X. Temperature dependence of cross sections for P3/22−P1/22 mixing in Cs, induced in collisions with deuterated hydrogens, ethanes, and propanes,” Can. J. Phys. 52, 589–591 (1974).
  32. E. R. Van Artsdalen, “The carbon-carbon bond strengths in ethane, propane, and n-butane,” J. Chem. Phys. 10, 653 (1942).
    [CrossRef]
  33. L. A. Gribov, I. A. Novakov, A. I. Pavlyuchko, and E. V. Vasil’ev, “Spectroscopic calculation of CH bond dissociation energy in the series of chloro derivatives of methane, ethane, and propane,” J. Struct. Chem. 47, 635–641 (2006).
    [CrossRef]

2013 (1)

B. D. Barmashenko, S. Rosenwaks, and M. C. Heaven, “Static diode pumped alkali lasers: model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions,” Opt. Commun. 292, 123–125 (2013).
[CrossRef]

2012 (3)

W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review (rev1),” Prog. Quantum Electron. 36, 4–28 (2012).
[CrossRef]

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42, 95–98 (2012).
[CrossRef]

B. D. Barmashenko and S. Rosenwaks, “Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas,” Opt. Lett. 37, 3615–3617 (2012).
[CrossRef]

2011 (5)

2010 (2)

G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101, 45–56 (2010).
[CrossRef]

Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Chang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283, 2406–2410 (2010).
[CrossRef]

2009 (1)

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42, 245401(2009).

2008 (2)

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44, 582–583 (2008).
[CrossRef]

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Laser diode array pumped continuous wave Rubidium vapor laser,” Opt. Express 16, 748–751 (2008).
[CrossRef]

2007 (2)

B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32, 2167–2169(2007).
[CrossRef]

B. V. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. J. Knize, “Tunable single frequency cesium laser,” Opt. Commun. 280, 161–164 (2007).
[CrossRef]

2006 (1)

L. A. Gribov, I. A. Novakov, A. I. Pavlyuchko, and E. V. Vasil’ev, “Spectroscopic calculation of CH bond dissociation energy in the series of chloro derivatives of methane, ethane, and propane,” J. Struct. Chem. 47, 635–641 (2006).
[CrossRef]

2004 (1)

2002 (1)

Y. Momozaki and M. S. El-Genk, “Dissociative recombination coefficient for low temperature equilibrium cesium plasma,” J. Appl. Phys. 92, 690–697 (2002).
[CrossRef]

1996 (1)

Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milošević, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ→6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54, 1372–1384 (1996).
[CrossRef]

1987 (1)

L. Barbier and M. Cheret, “Experimental study of Penning and Hornbeck-Molnar ionisation of rubidium atoms excited in a high s or d level (5d≤nl≤11s),” J. Phys. B 20, 1229–1248 (1987).
[CrossRef]

1985 (1)

E. Arimondo, F. Giammanco, A. Sasso, and M. I. Schisano, “Laser ionization and time-resolved ion collection in Cs vapor,” Opt. Commun. 55, 329–334 (1985).
[CrossRef]

1984 (1)

A. Z. Msezane and S. T. Manson, “Photoionization of the Cs 6d excited state,” Phys. Rev. A 29, 1594–1595 (1984).
[CrossRef]

1976 (1)

T. H. Kuehn and R. J. Goldstein, “Correlating equations for natural convection heat transfer between horizontal circular cylinders,” Int. J. Heat Mass Transfer 19, 1127–1134 (1976).
[CrossRef]

1975 (1)

A. Tam, J. Moe, and W. Happer, “Particle formation by resonant laser light in alkali-metal vapor,” Phys. Rev. Lett. 35, 1630–1633 (1975).
[CrossRef]

1974 (1)

E. Walentynowicz, R. A. Phaneuf, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. X. Temperature dependence of cross sections for P3/22−P1/22 mixing in Cs, induced in collisions with deuterated hydrogens, ethanes, and propanes,” Can. J. Phys. 52, 589–591 (1974).

1972 (1)

W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).
[CrossRef]

1942 (1)

E. R. Van Artsdalen, “The carbon-carbon bond strengths in ethane, propane, and n-butane,” J. Chem. Phys. 10, 653 (1942).
[CrossRef]

Allegrini, M.

Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milošević, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ→6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54, 1372–1384 (1996).
[CrossRef]

Arimondo, E.

E. Arimondo, F. Giammanco, A. Sasso, and M. I. Schisano, “Laser ionization and time-resolved ion collection in Cs vapor,” Opt. Commun. 55, 329–334 (1985).
[CrossRef]

Barbier, L.

L. Barbier and M. Cheret, “Experimental study of Penning and Hornbeck-Molnar ionisation of rubidium atoms excited in a high s or d level (5d≤nl≤11s),” J. Phys. B 20, 1229–1248 (1987).
[CrossRef]

Barmashenko, B. D.

B. D. Barmashenko, S. Rosenwaks, and M. C. Heaven, “Static diode pumped alkali lasers: model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions,” Opt. Commun. 292, 123–125 (2013).
[CrossRef]

B. D. Barmashenko and S. Rosenwaks, “Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas,” Opt. Lett. 37, 3615–3617 (2012).
[CrossRef]

Beach, R. J.

Bogachev, A. V.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42, 95–98 (2012).
[CrossRef]

Boyadjian, G.

Chang, X.

Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Chang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283, 2406–2410 (2010).
[CrossRef]

Chen, J.

Chen, L.

Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Chang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283, 2406–2410 (2010).
[CrossRef]

Cheret, M.

L. Barbier and M. Cheret, “Experimental study of Penning and Hornbeck-Molnar ionisation of rubidium atoms excited in a high s or d level (5d≤nl≤11s),” J. Phys. B 20, 1229–1248 (1987).
[CrossRef]

de Tomasi, F.

Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milošević, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ→6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54, 1372–1384 (1996).
[CrossRef]

Dubinski, M. A.

Dudov, A. M.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42, 95–98 (2012).
[CrossRef]

El-Genk, M. S.

Y. Momozaki and M. S. El-Genk, “Dissociative recombination coefficient for low temperature equilibrium cesium plasma,” J. Appl. Phys. 92, 690–697 (2002).
[CrossRef]

Elsbernd, P.

B. V. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. J. Knize, “Tunable single frequency cesium laser,” Opt. Commun. 280, 161–164 (2007).
[CrossRef]

Fox, C. D.

G. A. Pitz, C. D. Fox, and G. P. Perram, “Transfer between the cesium 62P1/2 and 62P3/2 levels induced by collisions with H2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84, 032708 (2011).
[CrossRef]

Garanin, S. G.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42, 95–98 (2012).
[CrossRef]

Giammanco, F.

E. Arimondo, F. Giammanco, A. Sasso, and M. I. Schisano, “Laser ionization and time-resolved ion collection in Cs vapor,” Opt. Commun. 55, 329–334 (1985).
[CrossRef]

Goldstein, R. J.

T. H. Kuehn and R. J. Goldstein, “Correlating equations for natural convection heat transfer between horizontal circular cylinders,” Int. J. Heat Mass Transfer 19, 1127–1134 (1976).
[CrossRef]

Gribov, L. A.

L. A. Gribov, I. A. Novakov, A. I. Pavlyuchko, and E. V. Vasil’ev, “Spectroscopic calculation of CH bond dissociation energy in the series of chloro derivatives of methane, ethane, and propane,” J. Struct. Chem. 47, 635–641 (2006).
[CrossRef]

Hager, G. D.

N. D. Zameroski, G. D. Hager, W. Rudolph, and D. A. Hostutler, “Experimental and numerical modeling studies of a pulsed rubidium optically pumped alkali metal vapor laser,” J. Opt. Soc. Am. B 28, 1088–1099 (2011).
[CrossRef]

G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101, 45–56 (2010).
[CrossRef]

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42, 245401(2009).

G. P. Perram and G. D. Hager, “Influence of broadband excitation on the performance of diode pumped alkali lasers,” in AIAA 42nd Plasmadynamics and Lasers Conference, Honolulu, Hawaii, 27–30 June 2011 (AIAA, 2011), paper 2011-4002.

Hallada, F.

B. V. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. J. Knize, “Tunable single frequency cesium laser,” Opt. Commun. 280, 161–164 (2007).
[CrossRef]

Happer, W.

A. Tam, J. Moe, and W. Happer, “Particle formation by resonant laser light in alkali-metal vapor,” Phys. Rev. Lett. 35, 1630–1633 (1975).
[CrossRef]

W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).
[CrossRef]

Heaven, M. C.

B. D. Barmashenko, S. Rosenwaks, and M. C. Heaven, “Static diode pumped alkali lasers: model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions,” Opt. Commun. 292, 123–125 (2013).
[CrossRef]

Hecht, J.

J. Hecht, “Photonic frontiers: alkali-vapor lasers: diode pumping enables new approach to alkali-vapor lasers,” Laser Focus World 4, 49–53 (2011).

Hostutler, D. A.

N. D. Zameroski, G. D. Hager, W. Rudolph, and D. A. Hostutler, “Experimental and numerical modeling studies of a pulsed rubidium optically pumped alkali metal vapor laser,” J. Opt. Soc. Am. B 28, 1088–1099 (2011).
[CrossRef]

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42, 245401(2009).

Hua, W.

Huennekens, J.

Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milošević, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ→6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54, 1372–1384 (1996).
[CrossRef]

Jabbour, Z. J.

Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milošević, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ→6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54, 1372–1384 (1996).
[CrossRef]

Kanz, V. K.

Knize, R. J.

R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, “Photoionization in alkali lasers,” Opt. Express 19, 7894–7902 (2011).
[CrossRef]

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Laser diode array pumped continuous wave Rubidium vapor laser,” Opt. Express 16, 748–751 (2008).
[CrossRef]

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44, 582–583 (2008).
[CrossRef]

B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32, 2167–2169(2007).
[CrossRef]

B. V. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. J. Knize, “Tunable single frequency cesium laser,” Opt. Commun. 280, 161–164 (2007).
[CrossRef]

Kontur, F.

B. V. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. J. Knize, “Tunable single frequency cesium laser,” Opt. Commun. 280, 161–164 (2007).
[CrossRef]

Krause, L.

E. Walentynowicz, R. A. Phaneuf, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. X. Temperature dependence of cross sections for P3/22−P1/22 mixing in Cs, induced in collisions with deuterated hydrogens, ethanes, and propanes,” Can. J. Phys. 52, 589–591 (1974).

Krupke, W. F.

Kuehn, T. H.

T. H. Kuehn and R. J. Goldstein, “Correlating equations for natural convection heat transfer between horizontal circular cylinders,” Int. J. Heat Mass Transfer 19, 1127–1134 (1976).
[CrossRef]

Kulikov, S. M.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42, 95–98 (2012).
[CrossRef]

Li, Y.

Lu, Q.

Manson, S. T.

A. Z. Msezane and S. T. Manson, “Photoionization of the Cs 6d excited state,” Phys. Rev. A 29, 1594–1595 (1984).
[CrossRef]

Merkle, L. D.

Mikaelian, G. T.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42, 95–98 (2012).
[CrossRef]

Miller, W.

B. V. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. J. Knize, “Tunable single frequency cesium laser,” Opt. Commun. 280, 161–164 (2007).
[CrossRef]

Miloševic, S.

Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milošević, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ→6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54, 1372–1384 (1996).
[CrossRef]

Moe, J.

A. Tam, J. Moe, and W. Happer, “Particle formation by resonant laser light in alkali-metal vapor,” Phys. Rev. Lett. 35, 1630–1633 (1975).
[CrossRef]

Momozaki, Y.

Y. Momozaki and M. S. El-Genk, “Dissociative recombination coefficient for low temperature equilibrium cesium plasma,” J. Appl. Phys. 92, 690–697 (2002).
[CrossRef]

Msezane, A. Z.

A. Z. Msezane and S. T. Manson, “Photoionization of the Cs 6d excited state,” Phys. Rev. A 29, 1594–1595 (1984).
[CrossRef]

Namiotka, R. K.

Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milošević, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ→6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54, 1372–1384 (1996).
[CrossRef]

Novakov, I. A.

L. A. Gribov, I. A. Novakov, A. I. Pavlyuchko, and E. V. Vasil’ev, “Spectroscopic calculation of CH bond dissociation energy in the series of chloro derivatives of methane, ethane, and propane,” J. Struct. Chem. 47, 635–641 (2006).
[CrossRef]

Pan, B.

Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Chang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283, 2406–2410 (2010).
[CrossRef]

Panarin, V. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42, 95–98 (2012).
[CrossRef]

Pautov, V. O.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42, 95–98 (2012).
[CrossRef]

Pavlyuchko, A. I.

L. A. Gribov, I. A. Novakov, A. I. Pavlyuchko, and E. V. Vasil’ev, “Spectroscopic calculation of CH bond dissociation energy in the series of chloro derivatives of methane, ethane, and propane,” J. Struct. Chem. 47, 635–641 (2006).
[CrossRef]

Payne, S. A.

Peay, A.

B. V. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. J. Knize, “Tunable single frequency cesium laser,” Opt. Commun. 280, 161–164 (2007).
[CrossRef]

Perram, G. P.

G. A. Pitz, C. D. Fox, and G. P. Perram, “Transfer between the cesium 62P1/2 and 62P3/2 levels induced by collisions with H2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84, 032708 (2011).
[CrossRef]

G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101, 45–56 (2010).
[CrossRef]

G. P. Perram and G. D. Hager, “Influence of broadband excitation on the performance of diode pumped alkali lasers,” in AIAA 42nd Plasmadynamics and Lasers Conference, Honolulu, Hawaii, 27–30 June 2011 (AIAA, 2011), paper 2011-4002.

Phaneuf, R. A.

E. Walentynowicz, R. A. Phaneuf, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. X. Temperature dependence of cross sections for P3/22−P1/22 mixing in Cs, induced in collisions with deuterated hydrogens, ethanes, and propanes,” Can. J. Phys. 52, 589–591 (1974).

Phipps, S.

B. V. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. J. Knize, “Tunable single frequency cesium laser,” Opt. Commun. 280, 161–164 (2007).
[CrossRef]

Pitz, G. A.

G. A. Pitz, C. D. Fox, and G. P. Perram, “Transfer between the cesium 62P1/2 and 62P3/2 levels induced by collisions with H2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84, 032708 (2011).
[CrossRef]

Rosenwaks, S.

B. D. Barmashenko, S. Rosenwaks, and M. C. Heaven, “Static diode pumped alkali lasers: model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions,” Opt. Commun. 292, 123–125 (2013).
[CrossRef]

B. D. Barmashenko and S. Rosenwaks, “Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas,” Opt. Lett. 37, 3615–3617 (2012).
[CrossRef]

Rudolph, W.

N. D. Zameroski, G. D. Hager, W. Rudolph, and D. A. Hostutler, “Experimental and numerical modeling studies of a pulsed rubidium optically pumped alkali metal vapor laser,” J. Opt. Soc. Am. B 28, 1088–1099 (2011).
[CrossRef]

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42, 245401(2009).

Rus, A. V.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42, 95–98 (2012).
[CrossRef]

Sasso, A.

E. Arimondo, F. Giammanco, A. Sasso, and M. I. Schisano, “Laser ionization and time-resolved ion collection in Cs vapor,” Opt. Commun. 55, 329–334 (1985).
[CrossRef]

Schisano, M. I.

E. Arimondo, F. Giammanco, A. Sasso, and M. I. Schisano, “Laser ionization and time-resolved ion collection in Cs vapor,” Opt. Commun. 55, 329–334 (1985).
[CrossRef]

Sell, J.

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44, 582–583 (2008).
[CrossRef]

Seshadri, S. R.

S. R. Seshadri, Fundamentals of Plasma Physics (Elsevier, 1973), pp. 416–423.

Shaffer, M. K.

Stooke, A.

Sukharev, S. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42, 95–98 (2012).
[CrossRef]

Tam, A.

A. Tam, J. Moe, and W. Happer, “Particle formation by resonant laser light in alkali-metal vapor,” Phys. Rev. Lett. 35, 1630–1633 (1975).
[CrossRef]

Teerstra, P.

P. Teerstra and M. M. Yovanovich, “Comprehensive review of natural convection in horizontal circular annuli,” in 7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Albuquerque, New Mexico, 15–18 June 1998 (AIAA, 1998), pp. 141–152.

Van Artsdalen, E. R.

E. R. Van Artsdalen, “The carbon-carbon bond strengths in ethane, propane, and n-butane,” J. Chem. Phys. 10, 653 (1942).
[CrossRef]

Vasil’ev, E. V.

L. A. Gribov, I. A. Novakov, A. I. Pavlyuchko, and E. V. Vasil’ev, “Spectroscopic calculation of CH bond dissociation energy in the series of chloro derivatives of methane, ethane, and propane,” J. Struct. Chem. 47, 635–641 (2006).
[CrossRef]

Voci, A.

Walentynowicz, E.

E. Walentynowicz, R. A. Phaneuf, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. X. Temperature dependence of cross sections for P3/22−P1/22 mixing in Cs, induced in collisions with deuterated hydrogens, ethanes, and propanes,” Can. J. Phys. 52, 589–591 (1974).

Wang, H.

Wang, Y.

Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Chang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283, 2406–2410 (2010).
[CrossRef]

Xu, X.

Yang, Z.

Yeroshenko, V. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42, 95–98 (2012).
[CrossRef]

Yovanovich, M. M.

P. Teerstra and M. M. Yovanovich, “Comprehensive review of natural convection in horizontal circular annuli,” in 7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Albuquerque, New Mexico, 15–18 June 1998 (AIAA, 1998), pp. 141–152.

Zameroski, N. D.

N. D. Zameroski, G. D. Hager, W. Rudolph, and D. A. Hostutler, “Experimental and numerical modeling studies of a pulsed rubidium optically pumped alkali metal vapor laser,” J. Opt. Soc. Am. B 28, 1088–1099 (2011).
[CrossRef]

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42, 245401(2009).

Zhdanov, B.

Zhdanov, B. V.

R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, “Photoionization in alkali lasers,” Opt. Express 19, 7894–7902 (2011).
[CrossRef]

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Laser diode array pumped continuous wave Rubidium vapor laser,” Opt. Express 16, 748–751 (2008).
[CrossRef]

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44, 582–583 (2008).
[CrossRef]

B. V. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. J. Knize, “Tunable single frequency cesium laser,” Opt. Commun. 280, 161–164 (2007).
[CrossRef]

Zhu, Q.

Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Chang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283, 2406–2410 (2010).
[CrossRef]

Appl. Phys. B (1)

G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101, 45–56 (2010).
[CrossRef]

Can. J. Phys. (1)

E. Walentynowicz, R. A. Phaneuf, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. X. Temperature dependence of cross sections for P3/22−P1/22 mixing in Cs, induced in collisions with deuterated hydrogens, ethanes, and propanes,” Can. J. Phys. 52, 589–591 (1974).

Electron. Lett. (1)

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44, 582–583 (2008).
[CrossRef]

Int. J. Heat Mass Transfer (1)

T. H. Kuehn and R. J. Goldstein, “Correlating equations for natural convection heat transfer between horizontal circular cylinders,” Int. J. Heat Mass Transfer 19, 1127–1134 (1976).
[CrossRef]

J. Appl. Phys. (1)

Y. Momozaki and M. S. El-Genk, “Dissociative recombination coefficient for low temperature equilibrium cesium plasma,” J. Appl. Phys. 92, 690–697 (2002).
[CrossRef]

J. Chem. Phys. (1)

E. R. Van Artsdalen, “The carbon-carbon bond strengths in ethane, propane, and n-butane,” J. Chem. Phys. 10, 653 (1942).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. B (2)

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42, 245401(2009).

L. Barbier and M. Cheret, “Experimental study of Penning and Hornbeck-Molnar ionisation of rubidium atoms excited in a high s or d level (5d≤nl≤11s),” J. Phys. B 20, 1229–1248 (1987).
[CrossRef]

J. Struct. Chem. (1)

L. A. Gribov, I. A. Novakov, A. I. Pavlyuchko, and E. V. Vasil’ev, “Spectroscopic calculation of CH bond dissociation energy in the series of chloro derivatives of methane, ethane, and propane,” J. Struct. Chem. 47, 635–641 (2006).
[CrossRef]

Laser Focus World (1)

J. Hecht, “Photonic frontiers: alkali-vapor lasers: diode pumping enables new approach to alkali-vapor lasers,” Laser Focus World 4, 49–53 (2011).

Opt. Commun. (4)

Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Chang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283, 2406–2410 (2010).
[CrossRef]

E. Arimondo, F. Giammanco, A. Sasso, and M. I. Schisano, “Laser ionization and time-resolved ion collection in Cs vapor,” Opt. Commun. 55, 329–334 (1985).
[CrossRef]

B. V. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. J. Knize, “Tunable single frequency cesium laser,” Opt. Commun. 280, 161–164 (2007).
[CrossRef]

B. D. Barmashenko, S. Rosenwaks, and M. C. Heaven, “Static diode pumped alkali lasers: model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions,” Opt. Commun. 292, 123–125 (2013).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (3)

G. A. Pitz, C. D. Fox, and G. P. Perram, “Transfer between the cesium 62P1/2 and 62P3/2 levels induced by collisions with H2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84, 032708 (2011).
[CrossRef]

A. Z. Msezane and S. T. Manson, “Photoionization of the Cs 6d excited state,” Phys. Rev. A 29, 1594–1595 (1984).
[CrossRef]

Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milošević, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ→6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54, 1372–1384 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

A. Tam, J. Moe, and W. Happer, “Particle formation by resonant laser light in alkali-metal vapor,” Phys. Rev. Lett. 35, 1630–1633 (1975).
[CrossRef]

Prog. Quantum Electron. (1)

W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review (rev1),” Prog. Quantum Electron. 36, 4–28 (2012).
[CrossRef]

Quantum Electron. (1)

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42, 95–98 (2012).
[CrossRef]

Rev. Mod. Phys. (1)

W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).
[CrossRef]

Other (5)

S. R. Seshadri, Fundamentals of Plasma Physics (Elsevier, 1973), pp. 416–423.

G. P. Perram and G. D. Hager, “Influence of broadband excitation on the performance of diode pumped alkali lasers,” in AIAA 42nd Plasmadynamics and Lasers Conference, Honolulu, Hawaii, 27–30 June 2011 (AIAA, 2011), paper 2011-4002.

P. Teerstra and M. M. Yovanovich, “Comprehensive review of natural convection in horizontal circular annuli,” in 7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Albuquerque, New Mexico, 15–18 June 1998 (AIAA, 1998), pp. 141–152.

“NIST Chemistry WebBook,” available online at http://webbook.nist.gov .

D. A. Steck, “Cesium D line data,” available online at http://steck.us/alkalidata .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematics of the static and flowing-gas DPALs, for static DPAL u = 0 .

Fig. 2.
Fig. 2.

Dependence of absorption on the pump transition, g 31 , calculated by Eq. (29) on the temperature T for typical DPAL parameters (example 1, Table 2).

Fig. 3.
Fig. 3.

Measured [2] and calculated dependence of the output power P lase (for pulsed and CW operation) and temperature T (for CW operation) in the laser medium on P p for various assumed conditions.

Fig. 4.
Fig. 4.

Dependence of P lase on P p for different mole fractions of C 2 H 6 . Solid lines indicate C 2 H 6 / He = 1 / 5 and dashed lines indicate C 2 H 6 without He.

Fig. 5.
Fig. 5.

Dependence of P lase and T on the content of C 2 H 6 at P p = 250 W .

Fig. 6.
Fig. 6.

Dependence of P lase and T on u for flowing-gas DPAL at different P p and C 2 H 6 / He = 1 / 5 . The curves for T ( u ) are very close for the given values of P p ; hence only one of them is shown. For u > 20 m / s , T T w .

Fig. 7.
Fig. 7.

Dependence of P lase on P p for flowing-gas DPALs at different u and content of C 2 H 6 . Solid lines indicate C 2 H 6 / He = 1 / 5 and dashed line indicates C 2 H 6 without He.

Fig. 8.
Fig. 8.

Comparison of P lase in the flowing-gas DPALs using ethane, C 2 H 6 (solid line) and propane, C 2 H 8 (dashed line).

Fig. 9.
Fig. 9.

Measured [9] and calculated dependence of P lase on P p for different mirror transmissions t and u = 20 m / s , p = 4.5 atm , T w = 393 K , and CH 4 / He = 1 / 4 . Other parameters are shown in Table 2 (example 3).

Fig. 10.
Fig. 10.

Measured [9] and calculated dependence of P lase on p for P p = 700 W , t = 0.92 , u = 20 m / s , T w = 393 K , and CH 4 / He = 1 / 4 . Other parameters are shown in Table 2 (example 3).

Fig. 11.
Fig. 11.

Measured [9] and calculated dependence of P lase on T w for P p = 700 W , t = 0.92 , u = 20 m / s , and CH 4 / He = 1 / 4 . Other parameters are shown in Table 2 (example 3).

Tables (2)

Tables Icon

Table 1. Kinetic Processes Leading to the Loss of Atoms Involved in Lasing in DPALs

Tables Icon

Table 2. Parameters of Different Cs DPALs

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

P lase = η slope ( P p P th ) ,
η slope = η q η mode η res η abs t
η res = ( 1 r 2 ) t ( 1 t 2 r 1 r 2 ) ( 1 + r 2 / r 1 )
η abs = 1 0 f p ( ν ) exp [ σ 31 ( ν ) ( n 3 2 n 1 ) L ] d ν
P th = h ν p L π r 0 2 ( n 2 Γ 21 + n 3 Γ 31 ) / ( η abs t )
f p ( ν ) = ( 4 ln 2 π Δ ν p 2 ) 1 / 2 exp [ 4 ln 2 ( ν ν p Δ ν p ) 2 ]
Ω f = P p t π r 0 2 L ( 1 0 d ν f p ( ν ) exp [ σ 31 ( ν ) ( n 3 ( Ω f , T , n X l ) 2 n 1 ( Ω f , T , n X l ) L ] ) .
R heat = P therm ,
R heat = { 2 π L k e ( T T w ) ln ( R / r 0 ) , u = 0 π r 0 2 n w u T w T c p ( T ) d T + 2 π r 0 k ( T ) Nu ( T T w ) , u > 0
P therm = ν p ν l ν p ( η abs P p h ν p L π r 0 2 n 3 Γ 31 ) + L π r 0 2 [ n M ( k Q 2 h ν l n 2 + k Q 3 h ν p n 3 ) + R rec E i ] .
Ra l = g ( T T w ) l 3 ρ 2 T μ 2 Pr ,
R e , i = n 2 ( σ 2 i , l I l h ν l + σ 2 i , p I p h ν p ) + n 3 ( σ 3 i , l I l h ν l + σ 3 i , p I p h ν p ) + k 2 ( 2 , i ) n 2 2 + k 2 ( 3 , i ) n 3 2 ,
σ j i , l ( p ) = λ i j 2 8 π A i j g i g j ( f b ( T ) / 2 π ) [ Δ j i , l ( p ) 2 + ( f b ( T ) / 2 ) 2 ]
I p = P p t π r 0 2 0 d ν f p ( ν ) exp [ σ 31 ( ν ) ( n 3 2 n 1 ) L ] 1 σ 31 ( ν ) ( n 3 2 n 1 ) L ,
I l = h ν l g th ( Ω f h ν l n 2 Γ 21 n 3 Γ 31 ) .
R chem , i = k 5 n X ( i ) n M ,
n X ( i ) = R e , i ( 1 / τ i + k 5 n M ) ,
n X + = R ion k 6 n X 2 + k 7 ( n He + n M ) n X + 1 / τ mass , ion ,
n X 2 + = A 2 + 4 k 8 ( R ion n X + / τ mass , ion ) A 2 k 8 ,
R ion = ( i n X ( i ) ) [ σ i ( I l h ν l + I p h ν p ) + k 4 ( n 2 + n 3 ) ]
1 / τ mass , ion = R mass , ion π r 0 2 L ( n X + + 2 n X 2 + )
A k 8 n X + + 1 / τ mass , ion ,
R mass = R mass , ion + R chem ,
R mass = { 2 π L D e [ n X w n X ( T / T w ) ] / ln ( R / r 0 ) , u = 0 ( π r 0 2 u + 2 π r 0 DuL π ) ( n X w n X T T w ) , u > 0 ,
R mass , ion = { 2 π L D amb , e [ n + + 2 n 2 + ] / ln ( R / r 0 ) , u = 0 ( π r 0 2 u + 2 π r 0 D amb u L π ) ( n X + + 2 n X 2 + ) , u > 0 ,
D amb = D ( 1 + T e / T )
k ( T ) = k He ( T ) f He + k C 2 H 6 ( T ) ( 1 f He ) ,
D ( T ) = [ D He f He + D C 2 H 6 ( 1 f He ) ] ( T / 273 ) 1.7 ,
g 31 σ 31 ( ν p , T w ) n X w ( T w T ) 1 / 2 × 1 e θ ( g th / σ 21 n X w ) ( 1 + 3 e θ ) ( T / T w ) 1 / 2 1 + e θ ,

Metrics