M. K. Tavassoly and F. Yadollahi, “Dynamics of states in the nonlinear interaction regime between a three-level atom and generalized coherent states and their non-classical features,” Int. J. Mod. Phys. B 26, 1250027 (2012).

[CrossRef]

M. J. Faghihi and M. K. Tavassoly, “Dynamics of entropy and nonclassical properties of the state of a Λ-type three-level atom interacting with a single-mode cavity field with intensity-dependent coupling in a Kerr medium,” J. Phys. B 45, 035502 (2012).

[CrossRef]

S. Cordero and J. Récamier, “Algebraic treatment of the time-dependent Jaynes–Cummings Hamiltonian including nonlinear terms,” J. Phys. A 45, 385303 (2012).

[CrossRef]

O. de los Santos-Sánchez and J. Récamier, “The f-deformed Jaynes–Cummings model and its nonlinear coherent states,” J. Phys. B 45, 015502 (2012).

G. R. Honarasa and M. K. Tavassoly, “Generalized deformed Kerr states and their physical properties,” Phys. Scr. 86, 035401 (2012).

[CrossRef]

E. Piroozi and M. K. Tavassoly, “Nonlinear semi-coherent states, their nonclassical features and phase properties,” J. Phys. A 45, 135301 (2012).

[CrossRef]

O. Safaeian and M. K. Tavassoly, “Deformed photon-added nonlinear coherent states and their non-classical properties,” J. Phys. A 44, 225301 (2011).

[CrossRef]

J. L. Guo, Y. B. Sun, and Z. D. Li, “Entropy exchange and entanglement in Jaynes–Cummings model with Kerr-like medium and intensity-depend coupling,” Opt. Commun. 284, 896–901 (2011).

[CrossRef]

N. H. Abdel-Wahab and M. F. Mourad, “On the interaction between two two-level atoms and a two mode cavity field in the presence of detuning and cross-Kerr nonlinearity,” Phys. Scr. 84, 015401 (2011).

[CrossRef]

M. J. Faghihi and M. K. Tavassoly, “Nonlinear quantum optical springs and their nonclassical properties,” Commun. Theor. Phys. 56, 327–332 (2011).

[CrossRef]

V. I. Manko, G. Marmo, and F. Zaccaria, “Moyal and tomographic probability representations for f-oscillator quantum states,” Phys. Scr. 81, 045004 (2010).

[CrossRef]

M. K. Tavassoly, “On the non-classicality features of new classes of nonlinear coherent states,” Opt. Commun. 283, 5081–5091 (2010).

[CrossRef]

F. Eftekhari, and M. K. Tavassoly, “On a general formalism of nonlinear charge coherent states, their quantum statistics and nonclassical properties,” Int. J. Mod. Phys. A 25, 3481–3504 (2010).

[CrossRef]

G. R. Honarasa, M. K. Tavassoly, and M. Hatami, “Number–phase entropic uncertainty relations and Wigner functions for solvable quantum systems with discrete spectra,” Phys. Lett. A 373, 3931–3936 (2009).

[CrossRef]

V. I. Koroli and V. V. Zalamai, “Dynamics of a laser-cooled and trapped radiator interacting with the Holstein–Primakoff SU(1,1) coherent state,” J. Phys. B 42, 035505 (2009).

[CrossRef]

G. R. Honarasa, M. K. Tavassoly, and M. Hatami, “Quantum phase properties associated to solvable quantum systems using the nonlinear coherent states approach,” Opt. Commun. 282, 2192–2198 (2009).

[CrossRef]

M. K. Tavassoly, “New nonlinear coherent states associated with inverse bosonic and f-deformed ladder operators,” J. Phys. A 41, 285305 (2008).

[CrossRef]

M. Abdel-Aty and A. S. F. Obada, “Engineering entanglement of a general three-level system interacting with a correlated two-mode nonlinear coherent state,” Eur. Phys. J. D 23, 155–165 (2003).

[CrossRef]

R. A. Zait, “Nonclassical statistical properties of a three-level atom interacting with a single-mode field in a Kerr medium with intensity dependent coupling,” Phys. Lett. A 319, 461–474 (2003).

[CrossRef]

V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, “f-oscillators and nonlinear coherent states,” Phys. Scr. 55, 528–541 (1997).

[CrossRef]

A. Orłowski, “Information entropy and squeezing of quantum fluctuations,” Phys. Rev. A 56, 2545–2548 (1997).

[CrossRef]

M. F. Fang and H. E. Liu, “Properties of entropy and phase of the field in the two-photon Jaynes–Cummings model with an added Kerr medium,” Phys. Lett. A 200, 250–256 (1995).

[CrossRef]

A. Y. Kazakov, “Modified Jaynes–Cummings model: interaction of the two-level atom with two modes,” Phys. Lett. A 206, 229–234 (1995).

[CrossRef]

R. H. Xie, G. O. Xu, and D. H. Liu, “Numerical study of non-classical effects and the effect of virtual photon fields in the Jaynes–Cummings model,” Phys. Lett. A 202, 28–33 (1995).

[CrossRef]

F. An-fu and W. Zhi-wei, “Phase, coherence properties, and the numerical analysis of the field in the nonresonant Jaynes–Cummings model,” Phys. Rev. A 49, 1509–1512 (1994).

[CrossRef]

J. Crnugelj, M. Martinis, and V. Mikuta-Martinis, “Properties of a deformed Jaynes–Cummings model,” Phys. Rev. A 50, 1785–1791 (1994).

[CrossRef]

E. C. G. Sudarshan, “Diagonal harmonious state representations,” Int. J. Theor. Phys. 32, 1069–1076 (1993).

[CrossRef]

S. J. D. Phoenix and P. L. Knight, “Establishment of an entangled atom–field state in the Jaynes–Cummings model,” Phys. Rev. A 44, 6023–6029 (1991).

[CrossRef]

S. M. Barnett and S. J. D. Phoenix, “Information theory, squeezing, and quantum correlations,” Phys. Rev. A 44, 535–545 (1991).

[CrossRef]

V. Bužek, “Jaynes–Cummings model with intensity-dependent coupling interacting with Holstein–Primakoff SU(1, 1) coherent state, Phys. Rev. A 39, 3196–3199 (1989).

[CrossRef]

B. Buck and C. V. Sukumar, “Solution of the Heisenberg equations for an atom interacting with radiation,” J. Phys. A 17, 877 (1984).

[CrossRef]

G. S. Agarwal and S. Singh, “Effect of pump fluctuations on line shapes in coherent anti-Stokes Raman scattering,” Phys. Rev. A 25, 3195–3205 (1982).

[CrossRef]

B. Buck and C. V. Sukumar, “Exactly soluble model of atom–phonon coupling showing periodic decay and revival,” Phys. Lett. A 81, 132–135 (1981).

[CrossRef]

C. V. Sukumar and B. Buck, “Multi-phonon generalisation of the Jaynes–Cummings model,” Phys. Lett. A 83, 211–213(1981).

[CrossRef]

I. Białynicki-Birula and J. Mycielski, “Uncertainty relations for information entropy in wave mechanics,” Commun. Math. Phys. 44, 129–132 (1975).

[CrossRef]

M. Araki and E. Leib, “Entropy inequalities,” Commun. Math. Phys. 18, 160–170 (1970).

[CrossRef]

F. W. Cummings, “Stimulated emission of radiation in a single mode,” Phys. Rev. A 140, 1051–1056 (1965).

[CrossRef]

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE. 51, 89–109 (1963).

[CrossRef]

W. Heisenberg, “The actual content of quantum theoretical kinematics and mechanics,” Z. Phys. 43, 172–198 (1927).

[CrossRef]

M. Abdel-Aty and A. S. F. Obada, “Engineering entanglement of a general three-level system interacting with a correlated two-mode nonlinear coherent state,” Eur. Phys. J. D 23, 155–165 (2003).

[CrossRef]

N. H. Abdel-Wahab and M. F. Mourad, “On the interaction between two two-level atoms and a two mode cavity field in the presence of detuning and cross-Kerr nonlinearity,” Phys. Scr. 84, 015401 (2011).

[CrossRef]

G. S. Agarwal and S. Singh, “Effect of pump fluctuations on line shapes in coherent anti-Stokes Raman scattering,” Phys. Rev. A 25, 3195–3205 (1982).

[CrossRef]

F. An-fu and W. Zhi-wei, “Phase, coherence properties, and the numerical analysis of the field in the nonresonant Jaynes–Cummings model,” Phys. Rev. A 49, 1509–1512 (1994).

[CrossRef]

M. Araki and E. Leib, “Entropy inequalities,” Commun. Math. Phys. 18, 160–170 (1970).

[CrossRef]

S. M. Barnett and S. J. D. Phoenix, “Information theory, squeezing, and quantum correlations,” Phys. Rev. A 44, 535–545 (1991).

[CrossRef]

G. Benenti, G. Casati, and G. Strini, Principles of Quantum Computation and Information, Vols I and II (World Scientific, 2007).

I. Białynicki-Birula and J. Mycielski, “Uncertainty relations for information entropy in wave mechanics,” Commun. Math. Phys. 44, 129–132 (1975).

[CrossRef]

B. Buck and C. V. Sukumar, “Solution of the Heisenberg equations for an atom interacting with radiation,” J. Phys. A 17, 877 (1984).

[CrossRef]

B. Buck and C. V. Sukumar, “Exactly soluble model of atom–phonon coupling showing periodic decay and revival,” Phys. Lett. A 81, 132–135 (1981).

[CrossRef]

C. V. Sukumar and B. Buck, “Multi-phonon generalisation of the Jaynes–Cummings model,” Phys. Lett. A 83, 211–213(1981).

[CrossRef]

V. Bužek, “Jaynes–Cummings model with intensity-dependent coupling interacting with Holstein–Primakoff SU(1, 1) coherent state, Phys. Rev. A 39, 3196–3199 (1989).

[CrossRef]

G. Benenti, G. Casati, and G. Strini, Principles of Quantum Computation and Information, Vols I and II (World Scientific, 2007).

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

S. Cordero and J. Récamier, “Algebraic treatment of the time-dependent Jaynes–Cummings Hamiltonian including nonlinear terms,” J. Phys. A 45, 385303 (2012).

[CrossRef]

J. Crnugelj, M. Martinis, and V. Mikuta-Martinis, “Properties of a deformed Jaynes–Cummings model,” Phys. Rev. A 50, 1785–1791 (1994).

[CrossRef]

F. W. Cummings, “Stimulated emission of radiation in a single mode,” Phys. Rev. A 140, 1051–1056 (1965).

[CrossRef]

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE. 51, 89–109 (1963).

[CrossRef]

O. de los Santos-Sánchez and J. Récamier, “The f-deformed Jaynes–Cummings model and its nonlinear coherent states,” J. Phys. B 45, 015502 (2012).

F. Eftekhari, and M. K. Tavassoly, “On a general formalism of nonlinear charge coherent states, their quantum statistics and nonclassical properties,” Int. J. Mod. Phys. A 25, 3481–3504 (2010).

[CrossRef]

M. J. Faghihi and M. K. Tavassoly, “Dynamics of entropy and nonclassical properties of the state of a Λ-type three-level atom interacting with a single-mode cavity field with intensity-dependent coupling in a Kerr medium,” J. Phys. B 45, 035502 (2012).

[CrossRef]

M. J. Faghihi and M. K. Tavassoly, “Nonlinear quantum optical springs and their nonclassical properties,” Commun. Theor. Phys. 56, 327–332 (2011).

[CrossRef]

M. F. Fang and H. E. Liu, “Properties of entropy and phase of the field in the two-photon Jaynes–Cummings model with an added Kerr medium,” Phys. Lett. A 200, 250–256 (1995).

[CrossRef]

J. L. Guo, Y. B. Sun, and Z. D. Li, “Entropy exchange and entanglement in Jaynes–Cummings model with Kerr-like medium and intensity-depend coupling,” Opt. Commun. 284, 896–901 (2011).

[CrossRef]

G. R. Honarasa, M. K. Tavassoly, and M. Hatami, “Number–phase entropic uncertainty relations and Wigner functions for solvable quantum systems with discrete spectra,” Phys. Lett. A 373, 3931–3936 (2009).

[CrossRef]

G. R. Honarasa, M. K. Tavassoly, and M. Hatami, “Quantum phase properties associated to solvable quantum systems using the nonlinear coherent states approach,” Opt. Commun. 282, 2192–2198 (2009).

[CrossRef]

W. Heisenberg, “The actual content of quantum theoretical kinematics and mechanics,” Z. Phys. 43, 172–198 (1927).

[CrossRef]

G. R. Honarasa and M. K. Tavassoly, “Generalized deformed Kerr states and their physical properties,” Phys. Scr. 86, 035401 (2012).

[CrossRef]

G. R. Honarasa, M. K. Tavassoly, and M. Hatami, “Quantum phase properties associated to solvable quantum systems using the nonlinear coherent states approach,” Opt. Commun. 282, 2192–2198 (2009).

[CrossRef]

G. R. Honarasa, M. K. Tavassoly, and M. Hatami, “Number–phase entropic uncertainty relations and Wigner functions for solvable quantum systems with discrete spectra,” Phys. Lett. A 373, 3931–3936 (2009).

[CrossRef]

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE. 51, 89–109 (1963).

[CrossRef]

A. Y. Kazakov, “Modified Jaynes–Cummings model: interaction of the two-level atom with two modes,” Phys. Lett. A 206, 229–234 (1995).

[CrossRef]

V. I. Koroli and V. V. Zalamai, “Dynamics of a laser-cooled and trapped radiator interacting with the Holstein–Primakoff SU(1,1) coherent state,” J. Phys. B 42, 035505 (2009).

[CrossRef]

M. Araki and E. Leib, “Entropy inequalities,” Commun. Math. Phys. 18, 160–170 (1970).

[CrossRef]

J. L. Guo, Y. B. Sun, and Z. D. Li, “Entropy exchange and entanglement in Jaynes–Cummings model with Kerr-like medium and intensity-depend coupling,” Opt. Commun. 284, 896–901 (2011).

[CrossRef]

N. C. Lindsay, A Concrete Introduction to Higher Algebra, 3rd ed. (Springer, 2008).

R. H. Xie, G. O. Xu, and D. H. Liu, “Numerical study of non-classical effects and the effect of virtual photon fields in the Jaynes–Cummings model,” Phys. Lett. A 202, 28–33 (1995).

[CrossRef]

M. F. Fang and H. E. Liu, “Properties of entropy and phase of the field in the two-photon Jaynes–Cummings model with an added Kerr medium,” Phys. Lett. A 200, 250–256 (1995).

[CrossRef]

V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, “f-oscillators and nonlinear coherent states,” Phys. Scr. 55, 528–541 (1997).

[CrossRef]

V. I. Manko, G. Marmo, and F. Zaccaria, “Moyal and tomographic probability representations for f-oscillator quantum states,” Phys. Scr. 81, 045004 (2010).

[CrossRef]

V. I. Manko, G. Marmo, and F. Zaccaria, “Moyal and tomographic probability representations for f-oscillator quantum states,” Phys. Scr. 81, 045004 (2010).

[CrossRef]

V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, “f-oscillators and nonlinear coherent states,” Phys. Scr. 55, 528–541 (1997).

[CrossRef]

J. Crnugelj, M. Martinis, and V. Mikuta-Martinis, “Properties of a deformed Jaynes–Cummings model,” Phys. Rev. A 50, 1785–1791 (1994).

[CrossRef]

J. Crnugelj, M. Martinis, and V. Mikuta-Martinis, “Properties of a deformed Jaynes–Cummings model,” Phys. Rev. A 50, 1785–1791 (1994).

[CrossRef]

N. H. Abdel-Wahab and M. F. Mourad, “On the interaction between two two-level atoms and a two mode cavity field in the presence of detuning and cross-Kerr nonlinearity,” Phys. Scr. 84, 015401 (2011).

[CrossRef]

I. Białynicki-Birula and J. Mycielski, “Uncertainty relations for information entropy in wave mechanics,” Commun. Math. Phys. 44, 129–132 (1975).

[CrossRef]

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

M. Abdel-Aty and A. S. F. Obada, “Engineering entanglement of a general three-level system interacting with a correlated two-mode nonlinear coherent state,” Eur. Phys. J. D 23, 155–165 (2003).

[CrossRef]

A. Orłowski, “Information entropy and squeezing of quantum fluctuations,” Phys. Rev. A 56, 2545–2548 (1997).

[CrossRef]

S. J. D. Phoenix and P. L. Knight, “Establishment of an entangled atom–field state in the Jaynes–Cummings model,” Phys. Rev. A 44, 6023–6029 (1991).

[CrossRef]

S. M. Barnett and S. J. D. Phoenix, “Information theory, squeezing, and quantum correlations,” Phys. Rev. A 44, 535–545 (1991).

[CrossRef]

S. J. D. Phoenix and P. L. Knight, “Periodicity, phase, and entropy in models of two-photon resonance,” J. Opt. Soc. Am. B 7, 116–124 (1990).

[CrossRef]

E. Piroozi and M. K. Tavassoly, “Nonlinear semi-coherent states, their nonclassical features and phase properties,” J. Phys. A 45, 135301 (2012).

[CrossRef]

O. de los Santos-Sánchez and J. Récamier, “The f-deformed Jaynes–Cummings model and its nonlinear coherent states,” J. Phys. B 45, 015502 (2012).

S. Cordero and J. Récamier, “Algebraic treatment of the time-dependent Jaynes–Cummings Hamiltonian including nonlinear terms,” J. Phys. A 45, 385303 (2012).

[CrossRef]

O. Safaeian and M. K. Tavassoly, “Deformed photon-added nonlinear coherent states and their non-classical properties,” J. Phys. A 44, 225301 (2011).

[CrossRef]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 2001).

G. S. Agarwal and S. Singh, “Effect of pump fluctuations on line shapes in coherent anti-Stokes Raman scattering,” Phys. Rev. A 25, 3195–3205 (1982).

[CrossRef]

G. Benenti, G. Casati, and G. Strini, Principles of Quantum Computation and Information, Vols I and II (World Scientific, 2007).

V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, “f-oscillators and nonlinear coherent states,” Phys. Scr. 55, 528–541 (1997).

[CrossRef]

E. C. G. Sudarshan, “Diagonal harmonious state representations,” Int. J. Theor. Phys. 32, 1069–1076 (1993).

[CrossRef]

B. Buck and C. V. Sukumar, “Solution of the Heisenberg equations for an atom interacting with radiation,” J. Phys. A 17, 877 (1984).

[CrossRef]

B. Buck and C. V. Sukumar, “Exactly soluble model of atom–phonon coupling showing periodic decay and revival,” Phys. Lett. A 81, 132–135 (1981).

[CrossRef]

C. V. Sukumar and B. Buck, “Multi-phonon generalisation of the Jaynes–Cummings model,” Phys. Lett. A 83, 211–213(1981).

[CrossRef]

J. L. Guo, Y. B. Sun, and Z. D. Li, “Entropy exchange and entanglement in Jaynes–Cummings model with Kerr-like medium and intensity-depend coupling,” Opt. Commun. 284, 896–901 (2011).

[CrossRef]

M. K. Tavassoly and F. Yadollahi, “Dynamics of states in the nonlinear interaction regime between a three-level atom and generalized coherent states and their non-classical features,” Int. J. Mod. Phys. B 26, 1250027 (2012).

[CrossRef]

E. Piroozi and M. K. Tavassoly, “Nonlinear semi-coherent states, their nonclassical features and phase properties,” J. Phys. A 45, 135301 (2012).

[CrossRef]

M. J. Faghihi and M. K. Tavassoly, “Dynamics of entropy and nonclassical properties of the state of a Λ-type three-level atom interacting with a single-mode cavity field with intensity-dependent coupling in a Kerr medium,” J. Phys. B 45, 035502 (2012).

[CrossRef]

G. R. Honarasa and M. K. Tavassoly, “Generalized deformed Kerr states and their physical properties,” Phys. Scr. 86, 035401 (2012).

[CrossRef]

O. Safaeian and M. K. Tavassoly, “Deformed photon-added nonlinear coherent states and their non-classical properties,” J. Phys. A 44, 225301 (2011).

[CrossRef]

M. J. Faghihi and M. K. Tavassoly, “Nonlinear quantum optical springs and their nonclassical properties,” Commun. Theor. Phys. 56, 327–332 (2011).

[CrossRef]

M. K. Tavassoly, “On the non-classicality features of new classes of nonlinear coherent states,” Opt. Commun. 283, 5081–5091 (2010).

[CrossRef]

F. Eftekhari, and M. K. Tavassoly, “On a general formalism of nonlinear charge coherent states, their quantum statistics and nonclassical properties,” Int. J. Mod. Phys. A 25, 3481–3504 (2010).

[CrossRef]

G. R. Honarasa, M. K. Tavassoly, and M. Hatami, “Quantum phase properties associated to solvable quantum systems using the nonlinear coherent states approach,” Opt. Commun. 282, 2192–2198 (2009).

[CrossRef]

G. R. Honarasa, M. K. Tavassoly, and M. Hatami, “Number–phase entropic uncertainty relations and Wigner functions for solvable quantum systems with discrete spectra,” Phys. Lett. A 373, 3931–3936 (2009).

[CrossRef]

M. K. Tavassoly, “New nonlinear coherent states associated with inverse bosonic and f-deformed ladder operators,” J. Phys. A 41, 285305 (2008).

[CrossRef]

R. H. Xie, G. O. Xu, and D. H. Liu, “Numerical study of non-classical effects and the effect of virtual photon fields in the Jaynes–Cummings model,” Phys. Lett. A 202, 28–33 (1995).

[CrossRef]

R. H. Xie, G. O. Xu, and D. H. Liu, “Numerical study of non-classical effects and the effect of virtual photon fields in the Jaynes–Cummings model,” Phys. Lett. A 202, 28–33 (1995).

[CrossRef]

M. K. Tavassoly and F. Yadollahi, “Dynamics of states in the nonlinear interaction regime between a three-level atom and generalized coherent states and their non-classical features,” Int. J. Mod. Phys. B 26, 1250027 (2012).

[CrossRef]

V. I. Manko, G. Marmo, and F. Zaccaria, “Moyal and tomographic probability representations for f-oscillator quantum states,” Phys. Scr. 81, 045004 (2010).

[CrossRef]

V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, “f-oscillators and nonlinear coherent states,” Phys. Scr. 55, 528–541 (1997).

[CrossRef]

R. A. Zait, “Nonclassical statistical properties of a three-level atom interacting with a single-mode field in a Kerr medium with intensity dependent coupling,” Phys. Lett. A 319, 461–474 (2003).

[CrossRef]

V. I. Koroli and V. V. Zalamai, “Dynamics of a laser-cooled and trapped radiator interacting with the Holstein–Primakoff SU(1,1) coherent state,” J. Phys. B 42, 035505 (2009).

[CrossRef]

F. An-fu and W. Zhi-wei, “Phase, coherence properties, and the numerical analysis of the field in the nonresonant Jaynes–Cummings model,” Phys. Rev. A 49, 1509–1512 (1994).

[CrossRef]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 2001).

M. Araki and E. Leib, “Entropy inequalities,” Commun. Math. Phys. 18, 160–170 (1970).

[CrossRef]

I. Białynicki-Birula and J. Mycielski, “Uncertainty relations for information entropy in wave mechanics,” Commun. Math. Phys. 44, 129–132 (1975).

[CrossRef]

M. J. Faghihi and M. K. Tavassoly, “Nonlinear quantum optical springs and their nonclassical properties,” Commun. Theor. Phys. 56, 327–332 (2011).

[CrossRef]

M. Abdel-Aty and A. S. F. Obada, “Engineering entanglement of a general three-level system interacting with a correlated two-mode nonlinear coherent state,” Eur. Phys. J. D 23, 155–165 (2003).

[CrossRef]

F. Eftekhari, and M. K. Tavassoly, “On a general formalism of nonlinear charge coherent states, their quantum statistics and nonclassical properties,” Int. J. Mod. Phys. A 25, 3481–3504 (2010).

[CrossRef]

M. K. Tavassoly and F. Yadollahi, “Dynamics of states in the nonlinear interaction regime between a three-level atom and generalized coherent states and their non-classical features,” Int. J. Mod. Phys. B 26, 1250027 (2012).

[CrossRef]

E. C. G. Sudarshan, “Diagonal harmonious state representations,” Int. J. Theor. Phys. 32, 1069–1076 (1993).

[CrossRef]

B. Buck and C. V. Sukumar, “Solution of the Heisenberg equations for an atom interacting with radiation,” J. Phys. A 17, 877 (1984).

[CrossRef]

M. K. Tavassoly, “New nonlinear coherent states associated with inverse bosonic and f-deformed ladder operators,” J. Phys. A 41, 285305 (2008).

[CrossRef]

E. Piroozi and M. K. Tavassoly, “Nonlinear semi-coherent states, their nonclassical features and phase properties,” J. Phys. A 45, 135301 (2012).

[CrossRef]

O. Safaeian and M. K. Tavassoly, “Deformed photon-added nonlinear coherent states and their non-classical properties,” J. Phys. A 44, 225301 (2011).

[CrossRef]

S. Cordero and J. Récamier, “Algebraic treatment of the time-dependent Jaynes–Cummings Hamiltonian including nonlinear terms,” J. Phys. A 45, 385303 (2012).

[CrossRef]

O. de los Santos-Sánchez and J. Récamier, “The f-deformed Jaynes–Cummings model and its nonlinear coherent states,” J. Phys. B 45, 015502 (2012).

M. J. Faghihi and M. K. Tavassoly, “Dynamics of entropy and nonclassical properties of the state of a Λ-type three-level atom interacting with a single-mode cavity field with intensity-dependent coupling in a Kerr medium,” J. Phys. B 45, 035502 (2012).

[CrossRef]

V. I. Koroli and V. V. Zalamai, “Dynamics of a laser-cooled and trapped radiator interacting with the Holstein–Primakoff SU(1,1) coherent state,” J. Phys. B 42, 035505 (2009).

[CrossRef]

J. L. Guo, Y. B. Sun, and Z. D. Li, “Entropy exchange and entanglement in Jaynes–Cummings model with Kerr-like medium and intensity-depend coupling,” Opt. Commun. 284, 896–901 (2011).

[CrossRef]

M. K. Tavassoly, “On the non-classicality features of new classes of nonlinear coherent states,” Opt. Commun. 283, 5081–5091 (2010).

[CrossRef]

G. R. Honarasa, M. K. Tavassoly, and M. Hatami, “Quantum phase properties associated to solvable quantum systems using the nonlinear coherent states approach,” Opt. Commun. 282, 2192–2198 (2009).

[CrossRef]

G. R. Honarasa, M. K. Tavassoly, and M. Hatami, “Number–phase entropic uncertainty relations and Wigner functions for solvable quantum systems with discrete spectra,” Phys. Lett. A 373, 3931–3936 (2009).

[CrossRef]

R. A. Zait, “Nonclassical statistical properties of a three-level atom interacting with a single-mode field in a Kerr medium with intensity dependent coupling,” Phys. Lett. A 319, 461–474 (2003).

[CrossRef]

M. F. Fang and H. E. Liu, “Properties of entropy and phase of the field in the two-photon Jaynes–Cummings model with an added Kerr medium,” Phys. Lett. A 200, 250–256 (1995).

[CrossRef]

A. Y. Kazakov, “Modified Jaynes–Cummings model: interaction of the two-level atom with two modes,” Phys. Lett. A 206, 229–234 (1995).

[CrossRef]

R. H. Xie, G. O. Xu, and D. H. Liu, “Numerical study of non-classical effects and the effect of virtual photon fields in the Jaynes–Cummings model,” Phys. Lett. A 202, 28–33 (1995).

[CrossRef]

B. Buck and C. V. Sukumar, “Exactly soluble model of atom–phonon coupling showing periodic decay and revival,” Phys. Lett. A 81, 132–135 (1981).

[CrossRef]

C. V. Sukumar and B. Buck, “Multi-phonon generalisation of the Jaynes–Cummings model,” Phys. Lett. A 83, 211–213(1981).

[CrossRef]

V. Bužek, “Jaynes–Cummings model with intensity-dependent coupling interacting with Holstein–Primakoff SU(1, 1) coherent state, Phys. Rev. A 39, 3196–3199 (1989).

[CrossRef]

F. An-fu and W. Zhi-wei, “Phase, coherence properties, and the numerical analysis of the field in the nonresonant Jaynes–Cummings model,” Phys. Rev. A 49, 1509–1512 (1994).

[CrossRef]

F. W. Cummings, “Stimulated emission of radiation in a single mode,” Phys. Rev. A 140, 1051–1056 (1965).

[CrossRef]

J. Crnugelj, M. Martinis, and V. Mikuta-Martinis, “Properties of a deformed Jaynes–Cummings model,” Phys. Rev. A 50, 1785–1791 (1994).

[CrossRef]

S. J. D. Phoenix and P. L. Knight, “Establishment of an entangled atom–field state in the Jaynes–Cummings model,” Phys. Rev. A 44, 6023–6029 (1991).

[CrossRef]

S. M. Barnett and S. J. D. Phoenix, “Information theory, squeezing, and quantum correlations,” Phys. Rev. A 44, 535–545 (1991).

[CrossRef]

G. S. Agarwal and S. Singh, “Effect of pump fluctuations on line shapes in coherent anti-Stokes Raman scattering,” Phys. Rev. A 25, 3195–3205 (1982).

[CrossRef]

A. Orłowski, “Information entropy and squeezing of quantum fluctuations,” Phys. Rev. A 56, 2545–2548 (1997).

[CrossRef]

V. I. Manko, G. Marmo, and F. Zaccaria, “Moyal and tomographic probability representations for f-oscillator quantum states,” Phys. Scr. 81, 045004 (2010).

[CrossRef]

V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, “f-oscillators and nonlinear coherent states,” Phys. Scr. 55, 528–541 (1997).

[CrossRef]

G. R. Honarasa and M. K. Tavassoly, “Generalized deformed Kerr states and their physical properties,” Phys. Scr. 86, 035401 (2012).

[CrossRef]

N. H. Abdel-Wahab and M. F. Mourad, “On the interaction between two two-level atoms and a two mode cavity field in the presence of detuning and cross-Kerr nonlinearity,” Phys. Scr. 84, 015401 (2011).

[CrossRef]

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE. 51, 89–109 (1963).

[CrossRef]

W. Heisenberg, “The actual content of quantum theoretical kinematics and mechanics,” Z. Phys. 43, 172–198 (1927).

[CrossRef]

N. C. Lindsay, A Concrete Introduction to Higher Algebra, 3rd ed. (Springer, 2008).

G. Benenti, G. Casati, and G. Strini, Principles of Quantum Computation and Information, Vols I and II (World Scientific, 2007).

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 2001).