Abstract

Single-photon transport properties in a one-dimensional coupled resonator waveguide, coupled to a whispering-gallery resonator interacting with two separated two-level atoms, are theoretically investigated. Based on the real-space approach, the transmission and reflection amplitudes of the single photon are deduced. Numerical results demonstrate that the transmission and reflection depend on the resonator–atom coupling, the intermode backscattering, and especially the phase difference between these two separated atoms. Effects of dissipation on single-photon transport properties are also discussed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
    [CrossRef]
  2. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
    [CrossRef]
  3. K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
    [CrossRef]
  4. L. F. Wei, Y. X. Liu, C. P. Sun, and F. Nori, “Probing tiny motions of nanomechanical resonators: classical or quantum mechanical?,” Phys. Rev. Lett. 97, 237201 (2006).
    [CrossRef]
  5. J. T. Shen and S. H. Fan, “Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system,” Phys. Rev. Lett. 98, 153003 (2007).
    [CrossRef]
  6. S. Hughes, “Coupled-cavity QED using planar photonic crystals,” Phys. Rev. Lett. 98, 083603 (2007).
    [CrossRef]
  7. K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system,” Nature 450, 862–865 (2007).
    [CrossRef]
  8. L. Zhou, H. Dong, Y. X. Liu, C. P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008).
    [CrossRef]
  9. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
    [CrossRef]
  10. J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
    [CrossRef]
  11. M. T. Chen, Y. Q. Lu, P. Z. Wang, and G. X. Zhao, “Coherent controlling plasmon transport properties in metal nanowire coupled to quantum dot,” Appl. Phys. Lett. 97, 191903 (2010).
    [CrossRef]
  12. X. Zang and C. Jiang, “Single-photon transport properties in a waveguide–cavity system,” J. Phys. B 43, 065505 (2010).
    [CrossRef]
  13. D. Roy, “Two-photon scattering by a driven three-level emitter in a one-dimensional waveguide and electromagnetically induced transparency,” Phys. Rev. Lett. 106, 053601 (2011).
    [CrossRef]
  14. P. Kolchin, R. F. Oulton, and X. Zhan, “Nonlinear quantum optics in a waveguide: distinct single photons strongly interacting at the single atom level,” Phys. Rev. Lett. 106, 113601 (2011).
    [CrossRef]
  15. W. Chen, G. Y. Chen, and Y. N. Chen, “Controlling Fano resonance of nanowire surface plasmons,” Opt. Lett. 36, 3602–3604 (2011).
    [CrossRef]
  16. M. T. Cheng and Y. Y. Song, “Fano resonance analysis in a pair of semiconductor quantum dots coupling to a metal nanowire,” Opt. Lett. 37, 978–980 (2012).
    [CrossRef]
  17. J. T. Shen and S. H. Fan, “Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett. 95, 213001 (2005).
    [CrossRef]
  18. C. H. Yan, L. F. Wei, W. Z. Jia, and J. T. Shen, “Controlling resonant photonic transport along optical waveguides by two-level atoms,” Phys. Rev. A 84, 045801 (2011).
    [CrossRef]
  19. J. T. Shen and S. H. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
    [CrossRef]
  20. L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
    [CrossRef]
  21. Y. Shen and J. T. Shen, “Nanoparticle sensing using whispering-gallery-mode resonators: plasmonic and Rayleigh scatterers,” Phys. Rev. A 85, 013801 (2012).
    [CrossRef]
  22. Y. Shen and J. T. Shen, “Statistical theory of nanoparticle sensing using a whispering-gallery-mode resonator,” Phys. Rev. A 85, 063808 (2012).
    [CrossRef]
  23. X. Zang and C. Jiang, “Single-photon transport properties in a one-dimensional resonator waveguide coupled to a whispering-gallery resonator,” J. Phys. B 43, 215501 (2010).
    [CrossRef]
  24. Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
    [CrossRef]
  25. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
    [CrossRef]
  26. K. Di, C. D. Xie, and J. Zhang, “Coupled-resonator-induced transparency with a squeezed vacuum,” Phys. Rev. Lett. 106, 153602 (2011).
    [CrossRef]
  27. S. Darmawan, L. Y. M. Tobing, and D. H. Zhang, “Experimental demonstration of coupled-resonator-induced-transparency in silicon-on-insulator based ring-bus-ring geometry,” Opt. Express 19, 17813 (2011).
    [CrossRef]

2012 (3)

M. T. Cheng and Y. Y. Song, “Fano resonance analysis in a pair of semiconductor quantum dots coupling to a metal nanowire,” Opt. Lett. 37, 978–980 (2012).
[CrossRef]

Y. Shen and J. T. Shen, “Nanoparticle sensing using whispering-gallery-mode resonators: plasmonic and Rayleigh scatterers,” Phys. Rev. A 85, 013801 (2012).
[CrossRef]

Y. Shen and J. T. Shen, “Statistical theory of nanoparticle sensing using a whispering-gallery-mode resonator,” Phys. Rev. A 85, 063808 (2012).
[CrossRef]

2011 (6)

K. Di, C. D. Xie, and J. Zhang, “Coupled-resonator-induced transparency with a squeezed vacuum,” Phys. Rev. Lett. 106, 153602 (2011).
[CrossRef]

S. Darmawan, L. Y. M. Tobing, and D. H. Zhang, “Experimental demonstration of coupled-resonator-induced-transparency in silicon-on-insulator based ring-bus-ring geometry,” Opt. Express 19, 17813 (2011).
[CrossRef]

C. H. Yan, L. F. Wei, W. Z. Jia, and J. T. Shen, “Controlling resonant photonic transport along optical waveguides by two-level atoms,” Phys. Rev. A 84, 045801 (2011).
[CrossRef]

D. Roy, “Two-photon scattering by a driven three-level emitter in a one-dimensional waveguide and electromagnetically induced transparency,” Phys. Rev. Lett. 106, 053601 (2011).
[CrossRef]

P. Kolchin, R. F. Oulton, and X. Zhan, “Nonlinear quantum optics in a waveguide: distinct single photons strongly interacting at the single atom level,” Phys. Rev. Lett. 106, 113601 (2011).
[CrossRef]

W. Chen, G. Y. Chen, and Y. N. Chen, “Controlling Fano resonance of nanowire surface plasmons,” Opt. Lett. 36, 3602–3604 (2011).
[CrossRef]

2010 (3)

M. T. Chen, Y. Q. Lu, P. Z. Wang, and G. X. Zhao, “Coherent controlling plasmon transport properties in metal nanowire coupled to quantum dot,” Appl. Phys. Lett. 97, 191903 (2010).
[CrossRef]

X. Zang and C. Jiang, “Single-photon transport properties in a waveguide–cavity system,” J. Phys. B 43, 065505 (2010).
[CrossRef]

X. Zang and C. Jiang, “Single-photon transport properties in a one-dimensional resonator waveguide coupled to a whispering-gallery resonator,” J. Phys. B 43, 215501 (2010).
[CrossRef]

2009 (2)

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

J. T. Shen and S. H. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
[CrossRef]

2008 (3)

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[CrossRef]

L. Zhou, H. Dong, Y. X. Liu, C. P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008).
[CrossRef]

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[CrossRef]

2007 (4)

J. T. Shen and S. H. Fan, “Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system,” Phys. Rev. Lett. 98, 153003 (2007).
[CrossRef]

S. Hughes, “Coupled-cavity QED using planar photonic crystals,” Phys. Rev. Lett. 98, 083603 (2007).
[CrossRef]

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system,” Nature 450, 862–865 (2007).
[CrossRef]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef]

2006 (2)

Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef]

L. F. Wei, Y. X. Liu, C. P. Sun, and F. Nori, “Probing tiny motions of nanomechanical resonators: classical or quantum mechanical?,” Phys. Rev. Lett. 97, 237201 (2006).
[CrossRef]

2005 (2)

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[CrossRef]

J. T. Shen and S. H. Fan, “Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett. 95, 213001 (2005).
[CrossRef]

2004 (2)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef]

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[CrossRef]

An, J. H.

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

Aoki, T.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[CrossRef]

Birnbaum, K. M.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[CrossRef]

Blais, A.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[CrossRef]

Boca, A.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[CrossRef]

Boozer, A. D.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[CrossRef]

Chen, G. Y.

Chen, M. T.

M. T. Chen, Y. Q. Lu, P. Z. Wang, and G. X. Zhao, “Coherent controlling plasmon transport properties in metal nanowire coupled to quantum dot,” Appl. Phys. Lett. 97, 191903 (2010).
[CrossRef]

Chen, W.

Chen, Y. N.

Cheng, M. T.

Darmawan, S.

Dayan, B.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[CrossRef]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef]

Di, K.

K. Di, C. D. Xie, and J. Zhang, “Coupled-resonator-induced transparency with a squeezed vacuum,” Phys. Rev. Lett. 106, 153602 (2011).
[CrossRef]

Dong, H.

L. Zhou, H. Dong, Y. X. Liu, C. P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008).
[CrossRef]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef]

Fan, S. H.

J. T. Shen and S. H. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
[CrossRef]

J. T. Shen and S. H. Fan, “Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system,” Phys. Rev. Lett. 98, 153003 (2007).
[CrossRef]

Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef]

J. T. Shen and S. H. Fan, “Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett. 95, 213001 (2005).
[CrossRef]

Feng, M.

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

Frunzio, L.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[CrossRef]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef]

Girvin, S. M.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[CrossRef]

Gong, Z. R.

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[CrossRef]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef]

Huang, R. S.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[CrossRef]

Hughes, S.

S. Hughes, “Coupled-cavity QED using planar photonic crystals,” Phys. Rev. Lett. 98, 083603 (2007).
[CrossRef]

Jia, W. Z.

C. H. Yan, L. F. Wei, W. Z. Jia, and J. T. Shen, “Controlling resonant photonic transport along optical waveguides by two-level atoms,” Phys. Rev. A 84, 045801 (2011).
[CrossRef]

Jiang, C.

X. Zang and C. Jiang, “Single-photon transport properties in a waveguide–cavity system,” J. Phys. B 43, 065505 (2010).
[CrossRef]

X. Zang and C. Jiang, “Single-photon transport properties in a one-dimensional resonator waveguide coupled to a whispering-gallery resonator,” J. Phys. B 43, 215501 (2010).
[CrossRef]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef]

Kimble, H. J.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[CrossRef]

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[CrossRef]

Kobayashi, N.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef]

Kolchin, P.

P. Kolchin, R. F. Oulton, and X. Zhan, “Nonlinear quantum optics in a waveguide: distinct single photons strongly interacting at the single atom level,” Phys. Rev. Lett. 106, 113601 (2011).
[CrossRef]

Kumar, S.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[CrossRef]

Lipson, M.

Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef]

Liu, Y. X.

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[CrossRef]

L. Zhou, H. Dong, Y. X. Liu, C. P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008).
[CrossRef]

L. F. Wei, Y. X. Liu, C. P. Sun, and F. Nori, “Probing tiny motions of nanomechanical resonators: classical or quantum mechanical?,” Phys. Rev. Lett. 97, 237201 (2006).
[CrossRef]

Lu, Y. Q.

M. T. Chen, Y. Q. Lu, P. Z. Wang, and G. X. Zhao, “Coherent controlling plasmon transport properties in metal nanowire coupled to quantum dot,” Appl. Phys. Lett. 97, 191903 (2010).
[CrossRef]

Majer, J.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[CrossRef]

Miller, R.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[CrossRef]

Nori, F.

L. Zhou, H. Dong, Y. X. Liu, C. P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008).
[CrossRef]

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[CrossRef]

L. F. Wei, Y. X. Liu, C. P. Sun, and F. Nori, “Probing tiny motions of nanomechanical resonators: classical or quantum mechanical?,” Phys. Rev. Lett. 97, 237201 (2006).
[CrossRef]

Northup, T. E.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[CrossRef]

Oh, C. H.

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

Ostby, E. P.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[CrossRef]

Oulton, R. F.

P. Kolchin, R. F. Oulton, and X. Zhan, “Nonlinear quantum optics in a waveguide: distinct single photons strongly interacting at the single atom level,” Phys. Rev. Lett. 106, 113601 (2011).
[CrossRef]

Painter, O.

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system,” Nature 450, 862–865 (2007).
[CrossRef]

Parkins, A. S.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[CrossRef]

Povinelli, M. L.

Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef]

Roy, D.

D. Roy, “Two-photon scattering by a driven three-level emitter in a one-dimensional waveguide and electromagnetically induced transparency,” Phys. Rev. Lett. 106, 053601 (2011).
[CrossRef]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef]

Sandhu, S.

Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef]

Schoelkopf, R. J.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[CrossRef]

Schuster, D. I.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[CrossRef]

Shakya, J.

Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef]

Shen, J. T.

Y. Shen and J. T. Shen, “Nanoparticle sensing using whispering-gallery-mode resonators: plasmonic and Rayleigh scatterers,” Phys. Rev. A 85, 013801 (2012).
[CrossRef]

Y. Shen and J. T. Shen, “Statistical theory of nanoparticle sensing using a whispering-gallery-mode resonator,” Phys. Rev. A 85, 063808 (2012).
[CrossRef]

C. H. Yan, L. F. Wei, W. Z. Jia, and J. T. Shen, “Controlling resonant photonic transport along optical waveguides by two-level atoms,” Phys. Rev. A 84, 045801 (2011).
[CrossRef]

J. T. Shen and S. H. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
[CrossRef]

J. T. Shen and S. H. Fan, “Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system,” Phys. Rev. Lett. 98, 153003 (2007).
[CrossRef]

J. T. Shen and S. H. Fan, “Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett. 95, 213001 (2005).
[CrossRef]

Shen, Y.

Y. Shen and J. T. Shen, “Statistical theory of nanoparticle sensing using a whispering-gallery-mode resonator,” Phys. Rev. A 85, 063808 (2012).
[CrossRef]

Y. Shen and J. T. Shen, “Nanoparticle sensing using whispering-gallery-mode resonators: plasmonic and Rayleigh scatterers,” Phys. Rev. A 85, 013801 (2012).
[CrossRef]

Song, Y. Y.

Srinivasan, K.

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system,” Nature 450, 862–865 (2007).
[CrossRef]

Sun, C. P.

L. Zhou, H. Dong, Y. X. Liu, C. P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008).
[CrossRef]

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[CrossRef]

L. F. Wei, Y. X. Liu, C. P. Sun, and F. Nori, “Probing tiny motions of nanomechanical resonators: classical or quantum mechanical?,” Phys. Rev. Lett. 97, 237201 (2006).
[CrossRef]

Tobing, L. Y. M.

Tomita, M.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef]

Totsuka, K.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef]

Vahala, K. J.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[CrossRef]

Wallraff, A.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[CrossRef]

Wang, P. Z.

M. T. Chen, Y. Q. Lu, P. Z. Wang, and G. X. Zhao, “Coherent controlling plasmon transport properties in metal nanowire coupled to quantum dot,” Appl. Phys. Lett. 97, 191903 (2010).
[CrossRef]

Wei, L. F.

C. H. Yan, L. F. Wei, W. Z. Jia, and J. T. Shen, “Controlling resonant photonic transport along optical waveguides by two-level atoms,” Phys. Rev. A 84, 045801 (2011).
[CrossRef]

L. F. Wei, Y. X. Liu, C. P. Sun, and F. Nori, “Probing tiny motions of nanomechanical resonators: classical or quantum mechanical?,” Phys. Rev. Lett. 97, 237201 (2006).
[CrossRef]

Xie, C. D.

K. Di, C. D. Xie, and J. Zhang, “Coupled-resonator-induced transparency with a squeezed vacuum,” Phys. Rev. Lett. 106, 153602 (2011).
[CrossRef]

Xu, Q. F.

Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef]

Yan, C. H.

C. H. Yan, L. F. Wei, W. Z. Jia, and J. T. Shen, “Controlling resonant photonic transport along optical waveguides by two-level atoms,” Phys. Rev. A 84, 045801 (2011).
[CrossRef]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef]

Zang, X.

X. Zang and C. Jiang, “Single-photon transport properties in a waveguide–cavity system,” J. Phys. B 43, 065505 (2010).
[CrossRef]

X. Zang and C. Jiang, “Single-photon transport properties in a one-dimensional resonator waveguide coupled to a whispering-gallery resonator,” J. Phys. B 43, 215501 (2010).
[CrossRef]

Zhan, X.

P. Kolchin, R. F. Oulton, and X. Zhan, “Nonlinear quantum optics in a waveguide: distinct single photons strongly interacting at the single atom level,” Phys. Rev. Lett. 106, 113601 (2011).
[CrossRef]

Zhang, D. H.

Zhang, J.

K. Di, C. D. Xie, and J. Zhang, “Coupled-resonator-induced transparency with a squeezed vacuum,” Phys. Rev. Lett. 106, 153602 (2011).
[CrossRef]

Zhao, G. X.

M. T. Chen, Y. Q. Lu, P. Z. Wang, and G. X. Zhao, “Coherent controlling plasmon transport properties in metal nanowire coupled to quantum dot,” Appl. Phys. Lett. 97, 191903 (2010).
[CrossRef]

Zhou, L.

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[CrossRef]

L. Zhou, H. Dong, Y. X. Liu, C. P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

M. T. Chen, Y. Q. Lu, P. Z. Wang, and G. X. Zhao, “Coherent controlling plasmon transport properties in metal nanowire coupled to quantum dot,” Appl. Phys. Lett. 97, 191903 (2010).
[CrossRef]

J. Phys. B (2)

X. Zang and C. Jiang, “Single-photon transport properties in a waveguide–cavity system,” J. Phys. B 43, 065505 (2010).
[CrossRef]

X. Zang and C. Jiang, “Single-photon transport properties in a one-dimensional resonator waveguide coupled to a whispering-gallery resonator,” J. Phys. B 43, 215501 (2010).
[CrossRef]

Nature (4)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef]

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[CrossRef]

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[CrossRef]

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system,” Nature 450, 862–865 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (6)

L. Zhou, H. Dong, Y. X. Liu, C. P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008).
[CrossRef]

C. H. Yan, L. F. Wei, W. Z. Jia, and J. T. Shen, “Controlling resonant photonic transport along optical waveguides by two-level atoms,” Phys. Rev. A 84, 045801 (2011).
[CrossRef]

J. T. Shen and S. H. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
[CrossRef]

Y. Shen and J. T. Shen, “Nanoparticle sensing using whispering-gallery-mode resonators: plasmonic and Rayleigh scatterers,” Phys. Rev. A 85, 013801 (2012).
[CrossRef]

Y. Shen and J. T. Shen, “Statistical theory of nanoparticle sensing using a whispering-gallery-mode resonator,” Phys. Rev. A 85, 063808 (2012).
[CrossRef]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

Phys. Rev. Lett. (10)

Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef]

K. Di, C. D. Xie, and J. Zhang, “Coupled-resonator-induced transparency with a squeezed vacuum,” Phys. Rev. Lett. 106, 153602 (2011).
[CrossRef]

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[CrossRef]

J. T. Shen and S. H. Fan, “Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett. 95, 213001 (2005).
[CrossRef]

L. F. Wei, Y. X. Liu, C. P. Sun, and F. Nori, “Probing tiny motions of nanomechanical resonators: classical or quantum mechanical?,” Phys. Rev. Lett. 97, 237201 (2006).
[CrossRef]

J. T. Shen and S. H. Fan, “Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system,” Phys. Rev. Lett. 98, 153003 (2007).
[CrossRef]

S. Hughes, “Coupled-cavity QED using planar photonic crystals,” Phys. Rev. Lett. 98, 083603 (2007).
[CrossRef]

D. Roy, “Two-photon scattering by a driven three-level emitter in a one-dimensional waveguide and electromagnetically induced transparency,” Phys. Rev. Lett. 106, 053601 (2011).
[CrossRef]

P. Kolchin, R. F. Oulton, and X. Zhan, “Nonlinear quantum optics in a waveguide: distinct single photons strongly interacting at the single atom level,” Phys. Rev. Lett. 106, 113601 (2011).
[CrossRef]

Science (1)

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of optical system consisting of an optical waveguide, coupled to a whispering-gallery resonator interacting with two separated two-level atoms.

Fig. 2.
Fig. 2.

Single-photon transmission spectrum versus the δ = 2 ξ cos k in the nondissipative case with ω c = ω a b = Ω = 2 ξ and η 0 = 0.5 ξ . The blue line is for 2 θ = 2 n π ( n is an integer), the red dash line for 2 θ = ( 2 n + 1 ) π , and the green dash-dotted line for 2 θ = 0.7 π . (a)  h = g = 0 , (b)  h = 0.5 ξ , g = 0 , (c)  h = 0 , g = 0.5 ξ , and (d)  h = 0.5 ξ , g = 0.5 ξ .

Fig. 3.
Fig. 3.

Single-photon transmission spectrum versus the δ = 2 ξ cos k in the dissipative case for ω c = ω a b = Ω = 2 ξ , η 0 = 0.5 ξ , h = g = 0.5 ξ , and 1 / T a = 1 / T w = 0.05 ξ . (a)  2 θ = 2 n π ( n is an integer), (b)  2 θ = ( 2 n + 1 ) π , and (c)  2 θ = 0.7 π .

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

H eff = H = H W + H R + H A + H I ,
H W = ω c j c j c j ξ j ( c j c j + 1 + c j + 1 c j ) H R = ω a b ( a a + b b ) + h ( a b + b a ) H A = Ω 1 | e 1 e 1 | + Ω 2 | e 2 e 2 | H I = η 0 ( c 0 a + a c 0 + c 0 b + b c 0 ) + k ˜ = k , k [ ( g 1 , k ˜ | e 1 g 1 | a k ˜ + g 2 , k ˜ e i k ˜ d | e 2 g 2 | a k ˜ ) + H · C ] ,
| E k = j u k ( j ) c j | 0 , 0 , g 1 , g 2 + ( u a a + u b b ) | 0 , 0 , g 1 , g 2 + u e 1 | 0 , 0 , e 1 , g 2 + u e 2 | 0 , 0 , g 1 , e 2 ,
[ ( ω c E k ) j u k ( j ) c j η 0 ( u a + u b ) j δ j , 0 c j ] | 0 , 0 , g 1 , g 2 = ξ j [ u k ( j + 1 ) + u k ( j 1 ) ] c j | 0 , 0 , g 1 , g 2 [ ω a , b u b b + h u a b + ( g 1. b u e 1 + g 2. b u e 2 e i k d ) b ] | 0 , 0 , g 1 , g 2 η 0 u k ( 0 ) b | 0 , 0 , g 1 , g 2 = E k u b b | 0 , 0 , g 1 , g 2 ( Ω 1 u e 1 + g 1 , a u a + g 1 , b u b ) | 0 , 0 , e 1 , g 2 = E k u e 1 | 0 , 0 , e 1 , g 2 ( Ω 2 u e 2 + e i k d g 2 , a u a + e i k d g 2 , b u b ) | 0 , 0 , g 1 , e 2 = E k u e 2 | 0 , 0 , g 1 , e 2 .
( ω c E k F j δ j , 0 ) u k ( j ) = ξ [ u k ( j + 1 ) + u k ( j 1 ) ] ,
u k ( j ) = { e i k j + r e i k j j < 0 t e i k j j > 0 .
{ t = 2 i ξ sin k 2 i ξ sin k + F j δ j , 0 r = F j δ j , 0 2 i ξ sin k + F j δ j , 0 .

Metrics