Abstract

We analyze and implement mutually modulated cross-gain modulation (MMXGM) in a semiconductor optical amplifier (SOA). In this effect, optical wavelength changes are converted into modulation phase changes with high sensitivity and resolution. In the slow-light transition regime, we demonstrate picometer sensitivity to the optical wavelength. We analyze the spectroscopic performance of the SOA-based MMXGM and the previously developed Brillouin-based MMXGM techniques, and compare them to that of material-dispersion-enhanced, slow-light spectroscopy in a Brillouin amplifier.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd and D. J. Gauthier, “‘Slow’ and ‘fast’ light,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2002), Vol. 43, pp. 497–530.
  2. B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).
    [CrossRef]
  3. Z. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B 25, C136–C143 (2008).
    [CrossRef]
  4. G. T. Purves, C. S. Adams, and I. G. Hughes, “Sagnac interferometry in a slow-light medium,” Phys. Rev. A 74, 0238051 (2006).
    [CrossRef]
  5. M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 0538071 (2007).
    [CrossRef]
  6. M. Chamanzar, B. Momeni, and A. Adibi, “Compact on-chip interferometers with high spectral sensitivity,” Opt. Lett. 34, 220–222 (2009).
    [CrossRef]
  7. U. Bortolozzo, S. Residori, and J.-P. Huignard, “Slow-light birefringence and polarization interferometry,” Opt. Lett. 35, 2076–2078 (2010).
    [CrossRef]
  8. R. W. Boyd, “Material slow light and structural slow light: similarities and differences for nonlinear optics [invited],” J. Opt. Soc. Am. B 28, A34–A38 (2011).
    [CrossRef]
  9. S. Sternklar, E. Sarid, A. Arbel, and Er’el Granot, “Brillouin cross-gain modulation and 10  m/s group velocity,” Opt. Lett. 34, 2832–2834 (2009).
    [CrossRef]
  10. S. Sternklar, E. Sarid, M. Wart, and E. Granot, “Mutually-modulated cross-gain modulation and slow light,” J. Opt. 12, 104016 (2010).
    [CrossRef]
  11. S. Sternklar, M. Wart, A. Lifshitz, S. Bloch, and E. Granot, “Kilohertz laser frequency sensing with Brillouin mutually modulated cross-gain modulation,” Opt. Lett. 36, 4161–4163 (2011).
    [CrossRef]
  12. K. Qian, L. Zhan, L. Zhang, Z. Q. Zhu, J. S. Peng, Z. C. Gu, X. Hu, S. Y. Luo, and Y. X. Xia, “Group velocity manipulation in active fibers using mutually modulated cross-gain modulation: from ultraslow to superluminal propagation,” Opt. Lett. 36, 2185–2187 (2011).
    [CrossRef]
  13. M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. S. Dorren, “Ultrahigh-speed and widely tunable wavelength conversion based on cross-gain modulation in a quantum-dot semiconductor optical amplifier,” Opt. Express 19, B551–B559 (2011).
    [CrossRef]
  14. C. Meuer, J. Kim, M. Laemmlin, S. Liebich, G. Eisenstein, R. Bonk, T. Vallaitis, J. Luethold, A. Kovsh, I. Krestnikov, and D. Bimberg, “High-speed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 microns,” IEEE J. Sel. Top. Quantum Electron. 15, 749–756 (2009).
    [CrossRef]
  15. G. P. Agrawal and N. A. Olson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
    [CrossRef]
  16. A. Zadok, A. Eyal, and M. Tur, “Stimulated Brillouin scattering slow light in optical fibers [invited],” Appl. Opt. 50, E38–E49 (2011).
    [CrossRef]
  17. K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide Brillouin fiber laser,” IEEE Photon. Technol. Lett. 25, 238–241 (2013).
    [CrossRef]

2013 (1)

K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide Brillouin fiber laser,” IEEE Photon. Technol. Lett. 25, 238–241 (2013).
[CrossRef]

2011 (5)

2010 (3)

U. Bortolozzo, S. Residori, and J.-P. Huignard, “Slow-light birefringence and polarization interferometry,” Opt. Lett. 35, 2076–2078 (2010).
[CrossRef]

S. Sternklar, E. Sarid, M. Wart, and E. Granot, “Mutually-modulated cross-gain modulation and slow light,” J. Opt. 12, 104016 (2010).
[CrossRef]

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).
[CrossRef]

2009 (3)

M. Chamanzar, B. Momeni, and A. Adibi, “Compact on-chip interferometers with high spectral sensitivity,” Opt. Lett. 34, 220–222 (2009).
[CrossRef]

S. Sternklar, E. Sarid, A. Arbel, and Er’el Granot, “Brillouin cross-gain modulation and 10  m/s group velocity,” Opt. Lett. 34, 2832–2834 (2009).
[CrossRef]

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, G. Eisenstein, R. Bonk, T. Vallaitis, J. Luethold, A. Kovsh, I. Krestnikov, and D. Bimberg, “High-speed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 microns,” IEEE J. Sel. Top. Quantum Electron. 15, 749–756 (2009).
[CrossRef]

2008 (1)

2007 (1)

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 0538071 (2007).
[CrossRef]

2006 (1)

G. T. Purves, C. S. Adams, and I. G. Hughes, “Sagnac interferometry in a slow-light medium,” Phys. Rev. A 74, 0238051 (2006).
[CrossRef]

1989 (1)

G. P. Agrawal and N. A. Olson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[CrossRef]

Adams, C. S.

G. T. Purves, C. S. Adams, and I. G. Hughes, “Sagnac interferometry in a slow-light medium,” Phys. Rev. A 74, 0238051 (2006).
[CrossRef]

Adibi, A.

Agrawal, G. P.

G. P. Agrawal and N. A. Olson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[CrossRef]

Arbel, A.

Besnard, P.

K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide Brillouin fiber laser,” IEEE Photon. Technol. Lett. 25, 238–241 (2013).
[CrossRef]

Bimberg, D.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, G. Eisenstein, R. Bonk, T. Vallaitis, J. Luethold, A. Kovsh, I. Krestnikov, and D. Bimberg, “High-speed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 microns,” IEEE J. Sel. Top. Quantum Electron. 15, 749–756 (2009).
[CrossRef]

Bloch, S.

Bonk, R.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, G. Eisenstein, R. Bonk, T. Vallaitis, J. Luethold, A. Kovsh, I. Krestnikov, and D. Bimberg, “High-speed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 microns,” IEEE J. Sel. Top. Quantum Electron. 15, 749–756 (2009).
[CrossRef]

Bortolozzo, U.

Boyd, R. W.

R. W. Boyd, “Material slow light and structural slow light: similarities and differences for nonlinear optics [invited],” J. Opt. Soc. Am. B 28, A34–A38 (2011).
[CrossRef]

Z. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B 25, C136–C143 (2008).
[CrossRef]

R. W. Boyd and D. J. Gauthier, “‘Slow’ and ‘fast’ light,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2002), Vol. 43, pp. 497–530.

Brilland, L.

K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide Brillouin fiber laser,” IEEE Photon. Technol. Lett. 25, 238–241 (2013).
[CrossRef]

Calabretta, N.

Chamanzar, M.

Dorren, H. J. S.

Eisenstein, G.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, G. Eisenstein, R. Bonk, T. Vallaitis, J. Luethold, A. Kovsh, I. Krestnikov, and D. Bimberg, “High-speed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 microns,” IEEE J. Sel. Top. Quantum Electron. 15, 749–756 (2009).
[CrossRef]

Eyal, A.

Fresnel, S.

K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide Brillouin fiber laser,” IEEE Photon. Technol. Lett. 25, 238–241 (2013).
[CrossRef]

Gauthier, D. J.

R. W. Boyd and D. J. Gauthier, “‘Slow’ and ‘fast’ light,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2002), Vol. 43, pp. 497–530.

Gomez-Agis, F.

Gopal, V.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 0538071 (2007).
[CrossRef]

Granot, E.

Granot, Er’el

Gu, Z. C.

Hawkins, A. R.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).
[CrossRef]

Hu, X.

Hughes, I. G.

G. T. Purves, C. S. Adams, and I. G. Hughes, “Sagnac interferometry in a slow-light medium,” Phys. Rev. A 74, 0238051 (2006).
[CrossRef]

Huignard, J.-P.

Hulbert, J. F.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).
[CrossRef]

Hurd, K.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).
[CrossRef]

Kim, J.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, G. Eisenstein, R. Bonk, T. Vallaitis, J. Luethold, A. Kovsh, I. Krestnikov, and D. Bimberg, “High-speed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 microns,” IEEE J. Sel. Top. Quantum Electron. 15, 749–756 (2009).
[CrossRef]

Kovsh, A.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, G. Eisenstein, R. Bonk, T. Vallaitis, J. Luethold, A. Kovsh, I. Krestnikov, and D. Bimberg, “High-speed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 microns,” IEEE J. Sel. Top. Quantum Electron. 15, 749–756 (2009).
[CrossRef]

Krestnikov, I.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, G. Eisenstein, R. Bonk, T. Vallaitis, J. Luethold, A. Kovsh, I. Krestnikov, and D. Bimberg, “High-speed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 microns,” IEEE J. Sel. Top. Quantum Electron. 15, 749–756 (2009).
[CrossRef]

Laemmlin, M.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, G. Eisenstein, R. Bonk, T. Vallaitis, J. Luethold, A. Kovsh, I. Krestnikov, and D. Bimberg, “High-speed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 microns,” IEEE J. Sel. Top. Quantum Electron. 15, 749–756 (2009).
[CrossRef]

Léguillon, Y.

K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide Brillouin fiber laser,” IEEE Photon. Technol. Lett. 25, 238–241 (2013).
[CrossRef]

Liebich, S.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, G. Eisenstein, R. Bonk, T. Vallaitis, J. Luethold, A. Kovsh, I. Krestnikov, and D. Bimberg, “High-speed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 microns,” IEEE J. Sel. Top. Quantum Electron. 15, 749–756 (2009).
[CrossRef]

Lifshitz, A.

Luethold, J.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, G. Eisenstein, R. Bonk, T. Vallaitis, J. Luethold, A. Kovsh, I. Krestnikov, and D. Bimberg, “High-speed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 microns,” IEEE J. Sel. Top. Quantum Electron. 15, 749–756 (2009).
[CrossRef]

Lunt, E. J.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).
[CrossRef]

Luo, S. Y.

Matsuura, M.

Méchin, D.

K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide Brillouin fiber laser,” IEEE Photon. Technol. Lett. 25, 238–241 (2013).
[CrossRef]

Messall, M.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 0538071 (2007).
[CrossRef]

Meuer, C.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, G. Eisenstein, R. Bonk, T. Vallaitis, J. Luethold, A. Kovsh, I. Krestnikov, and D. Bimberg, “High-speed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 microns,” IEEE J. Sel. Top. Quantum Electron. 15, 749–756 (2009).
[CrossRef]

Momeni, B.

Olson, N. A.

G. P. Agrawal and N. A. Olson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[CrossRef]

Pati, G. S.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 0538071 (2007).
[CrossRef]

Peng, J. S.

Purves, G. T.

G. T. Purves, C. S. Adams, and I. G. Hughes, “Sagnac interferometry in a slow-light medium,” Phys. Rev. A 74, 0238051 (2006).
[CrossRef]

Qian, K.

Raz, O.

Residori, S.

Salit, K.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 0538071 (2007).
[CrossRef]

Sarid, E.

S. Sternklar, E. Sarid, M. Wart, and E. Granot, “Mutually-modulated cross-gain modulation and slow light,” J. Opt. 12, 104016 (2010).
[CrossRef]

S. Sternklar, E. Sarid, A. Arbel, and Er’el Granot, “Brillouin cross-gain modulation and 10  m/s group velocity,” Opt. Lett. 34, 2832–2834 (2009).
[CrossRef]

Schmidt, H.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).
[CrossRef]

Shahriar, M. S.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 0538071 (2007).
[CrossRef]

Shi, Z.

Sternklar, S.

Toupin, P.

K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide Brillouin fiber laser,” IEEE Photon. Technol. Lett. 25, 238–241 (2013).
[CrossRef]

Tow, K. H.

K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide Brillouin fiber laser,” IEEE Photon. Technol. Lett. 25, 238–241 (2013).
[CrossRef]

Tripathi, R.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 0538071 (2007).
[CrossRef]

Troles, J.

K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide Brillouin fiber laser,” IEEE Photon. Technol. Lett. 25, 238–241 (2013).
[CrossRef]

Tur, M.

Vallaitis, T.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, G. Eisenstein, R. Bonk, T. Vallaitis, J. Luethold, A. Kovsh, I. Krestnikov, and D. Bimberg, “High-speed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 microns,” IEEE J. Sel. Top. Quantum Electron. 15, 749–756 (2009).
[CrossRef]

Wart, M.

Wu, B.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).
[CrossRef]

Xia, Y. X.

Zadok, A.

Zhan, L.

Zhang, L.

Zhu, Z. Q.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

G. P. Agrawal and N. A. Olson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, G. Eisenstein, R. Bonk, T. Vallaitis, J. Luethold, A. Kovsh, I. Krestnikov, and D. Bimberg, “High-speed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 microns,” IEEE J. Sel. Top. Quantum Electron. 15, 749–756 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide Brillouin fiber laser,” IEEE Photon. Technol. Lett. 25, 238–241 (2013).
[CrossRef]

J. Opt. (1)

S. Sternklar, E. Sarid, M. Wart, and E. Granot, “Mutually-modulated cross-gain modulation and slow light,” J. Opt. 12, 104016 (2010).
[CrossRef]

J. Opt. Soc. Am. B (2)

Z. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B 25, C136–C143 (2008).
[CrossRef]

R. W. Boyd, “Material slow light and structural slow light: similarities and differences for nonlinear optics [invited],” J. Opt. Soc. Am. B 28, A34–A38 (2011).
[CrossRef]

Nat. Photonics (1)

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. A (2)

G. T. Purves, C. S. Adams, and I. G. Hughes, “Sagnac interferometry in a slow-light medium,” Phys. Rev. A 74, 0238051 (2006).
[CrossRef]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 0538071 (2007).
[CrossRef]

Other (1)

R. W. Boyd and D. J. Gauthier, “‘Slow’ and ‘fast’ light,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2002), Vol. 43, pp. 497–530.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental system. Counterpropagating pump (beam 1) and signal (beam 2) enter the SOA after each beam is modulated by an electro-optic modulator (EOM). The interaction in the SOA is along the z axis from 0 to L. A small portion of the input signal is directed into detector D1 with the aid of a 1090 coupler, and the output signal is directed into detector D2 with the aid of a circulator. The modulation phase difference between the outputs of the detectors is monitored.

Fig. 2.
Fig. 2.

SOA gain versus wavelength. Solid line, manufacturer’s data (at 0.5 A SOA current); dots, experimental data (at 0.45 A current).

Fig. 3.
Fig. 3.

Modulation phase versus wavelength. Solid curve, theory; dots, experimental data.

Tables (1)

Tables Icon

Table 1. Comparison of Spectral Sensitivity and Resolution for MD-Enhanced Interferometry Based on the Brillouin Amplifier, MMXGM Based on the Brillouin Amplifier, and MMXGM Based on the SOA

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Pz=(gαint)P,
gτ=g0gτcgPEs,
P2(L,τ)=P2(0,τ)exp(h(τ)),
dh(τ)dτ=g0Lh(τ)τcP1(L,τ)Es[exp(h(τ))1].
g0Lh0=P^[exp(h0)1],
dh^(τ)dτ+h^(τ)A=p1(τ)B,
h^(τ)=BeAττp1(s)·eAsds.
(τ)p1(τ)P10·Λ,
p2(L,τ)exp(h0)[p2(0,τ)P20P10Λp1(L,τ)].
p2(L,τ)Ccos(Ωt+Θ),
C=exp(h0)2(1+Λ̑22Λ̑cos(KL))1/2,
Θ=tg1Λ̑sin(KL)1Λ̑cos(KL),
dΘdλ=(dΘdΛ̑)(dΛ̑dG)dGdλ=(KL(Λ̑1)2+2Λ̑(KL)2)(P^(1+P^)(1+P^G)2)dGdλ.
dΘdλ1KLP^GdGdλ,
SMMXGM,BAdΘRFdνStokesπ[m]fmodLfiber
RMMXGM,BAfmodLfiberπ[m]dΘRFmin,
SMMXGM,SOAdΘRFdν=λ2ncdΘRFdλ=λ22π1fmodLSOAP^G(dGdλ)SOA,
RMMXGM,SOA=2πλ2fmodLSOAP^G(dGdλ)SOA1dΘRFmin.

Metrics