Abstract

The optical properties of the Au/Al2O3/Ag plasmonic metawaveguide with two-dimensional periodic stub resonators were numerically investigated. The modes of this design can be characterized by the waveguide mode and stub resonance. The guided modes, which propagate inside the Al2O3 layer, can be modulated by interacting with the stub resonators. In this situation, the negative group velocity dispersion relations in the near-infrared region can be realized. Focusing characteristics of this design were investigated by changing the design of the unit cell and the dispersion characteristics were discussed. In addition, the simplified design of the stub resonators was proposed. It was suggested that the proposed structure has the property to function as a nanotransmission line structure, which shows negative refraction at near infrared.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [CrossRef]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schults, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
    [CrossRef]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [CrossRef]
  5. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
    [CrossRef]
  6. J. A. Dionne, E. Verhagen, A. Polman, and H. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three-plasmonic geometries,” Opt. Express 16, 19001–19017 (2008).
    [CrossRef]
  7. H. J. Lezec, J. Dionne, and H. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
    [CrossRef]
  8. H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett. 89, 211126 (2006).
    [CrossRef]
  9. C. Min, and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17, 10757–10766 (2009).
    [CrossRef]
  10. A. V. Krasavin, and A. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18, 11791–11799 (2010).
    [CrossRef]
  11. T. Baba, “Analysis of optical properties of metal/insulator/metal plasmonic metawaveguides with serial stub resonators,” Opt. Express 20, 18377–18386 (2012).
    [CrossRef]
  12. A. Pannipitiya, I. D. Rukhlenko, M. Premarantne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express 18, 6191–6203 (2010).
    [CrossRef]
  13. J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Surface plasmon reflector based on serial stub structure,” Opt. Express 17, 20134–20139 (2009).
    [CrossRef]
  14. L. Yang, C. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett. 35, 4184–4186 (2010).
    [CrossRef]
  15. M. Notomi, “Negative refraction in photonic crystals,” Opt. Quantum Electron. 34, 133–143 (2002).
    [CrossRef]
  16. C. Caloz, and T. Itoh, Electromagnetic Metamaterials (Wiley, 2006).
  17. G. V. Eleftheriades and K. G. Balmain, Negative-Refraction Metamaterials (Wiley, 2005).
  18. http://www.optiwave.com/ .
  19. D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, 1985).

2012 (1)

2010 (3)

2009 (2)

2008 (1)

2007 (1)

H. J. Lezec, J. Dionne, and H. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
[CrossRef]

2006 (2)

H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett. 89, 211126 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

2002 (1)

M. Notomi, “Negative refraction in photonic crystals,” Opt. Quantum Electron. 34, 133–143 (2002).
[CrossRef]

2001 (1)

R. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef]

2000 (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schults, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Agrawal, G. P.

Atwater, H.

Baba, T.

Balmain, K. G.

G. V. Eleftheriades and K. G. Balmain, Negative-Refraction Metamaterials (Wiley, 2005).

Caloz, C.

C. Caloz, and T. Itoh, Electromagnetic Metamaterials (Wiley, 2006).

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Dionne, J.

H. J. Lezec, J. Dionne, and H. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
[CrossRef]

Dionne, J. A.

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Eleftheriades, G. V.

G. V. Eleftheriades and K. G. Balmain, Negative-Refraction Metamaterials (Wiley, 2005).

Fang, G.

Hattori, H. T.

Itoh, T.

C. Caloz, and T. Itoh, Electromagnetic Metamaterials (Wiley, 2006).

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Krasavin, A. V.

Kurokawa, Y.

H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett. 89, 211126 (2006).
[CrossRef]

Lezec, H. J.

H. J. Lezec, J. Dionne, and H. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
[CrossRef]

Liu, J.

Liu, S.

Min, C.

Miyazaki, H. T.

H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett. 89, 211126 (2006).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schults, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef]

Notomi, M.

M. Notomi, “Negative refraction in photonic crystals,” Opt. Quantum Electron. 34, 133–143 (2002).
[CrossRef]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schults, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef]

Pannipitiya, A.

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

Polman, A.

Pozar, D. M.

D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, 1985).

Premarantne, M.

Rukhlenko, I. D.

Schults, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schults, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef]

Schultz, S.

R. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Shelby, R.

R. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

R. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schults, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Verhagen, E.

Veronis, G.

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schults, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef]

Yang, L.

Zayats, A.

Zhang, Y.

Zhao, H.

Appl. Phys. Lett. (1)

H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett. 89, 211126 (2006).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

M. Notomi, “Negative refraction in photonic crystals,” Opt. Quantum Electron. 34, 133–143 (2002).
[CrossRef]

Phys. Rev. (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Phys. Rev. Lett. (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schults, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

Science (3)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

H. J. Lezec, J. Dionne, and H. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
[CrossRef]

R. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef]

Other (4)

C. Caloz, and T. Itoh, Electromagnetic Metamaterials (Wiley, 2006).

G. V. Eleftheriades and K. G. Balmain, Negative-Refraction Metamaterials (Wiley, 2005).

http://www.optiwave.com/ .

D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Schematic of the plasmonic waveguide with two-dimensional periodic stub resonators. The pitch and the width of the stub resonator correspond to a and w , respectively. The gap between the Au dots behaves as a stub resonator.

Fig. 2.
Fig. 2.

(a) Schematic of the FDTD simulation set up for Γ X dispersion calculation. The periodic boundary condition was set for the boundary of the y -axis and the perfect absorbing boundary condition was set for the boundary of z - and x -axis. The structure was contacted by the periodic boundary for y -direction. (b) Simulation setup of the observation points, where these were positioned under the Au dots. The distance between these points is a .

Fig. 3.
Fig. 3.

Calculation result of the dispersion relation for Γ X , where the a and w are 250 and 30 nm, respectively. Only positive group velocity dispersion relation is presented.

Fig. 4.
Fig. 4.

Magnetic field amplitude distributions for various energies of input light (a) 1.4 eV, (b) 1.2 eV, (c) 1.05 eV.

Fig. 5.
Fig. 5.

Equivalent energy surfaces of the plasmonic waveguide with two-dimensional periodic stub resonators for various energies.

Fig. 6.
Fig. 6.

Dispersion relation for Γ X . a and w are 100 and 20 nm, respectively. (a) The thickness of Au dots are 150 nm and (b) the thickness of Au dots are 100 nm.

Fig. 7.
Fig. 7.

Equivalent energy surface near the plasmonic metawaveguide with two-dimensional periodic stub resonators near the 1 eV, where a and w are 100 and 20 nm, respectively. The thickness of Au dots is 100 nm.

Fig. 8.
Fig. 8.

Simulation setup for the focusing analysis. (a) Side view and (b) top view.

Fig. 9.
Fig. 9.

Simulation results of negative refractive flat lens for various input energies. The amplitude distributions of magnetic field are presented, where a = 250 nm , d = 0.3 μm , and w = 30 nm . The energies of liput light were (a) 1.65 eV, (b) 1.38 eV, (c) 1.03 eV, (d) 0.83 eV.

Fig. 10.
Fig. 10.

Simulation results of negative refractive flat lens for various positions of point source. The amplitude distributions of magnetic field are presented, where a = 250 nm and w = 30 nm . The energies of liput light were (a) 1.38 eV and (b) 1.03 eV.

Fig. 11.
Fig. 11.

Simulation results of negative refractive flat lens for various positions of point source. The amplitude distributions of magnetic field are presented, where a = 100 nm and w = 20 nm and the energy of input light was nearly 1 eV. (a)  d = 0.1 μm , (b)  d = 0.3 μm , (c)  d = 0.5 μm .

Fig. 12.
Fig. 12.

Magnitude distributions of pointing vector are presented, where a = 100 nm and w = 20 nm and the energy of input light was nearly 1 eV. (a)  d = 0.1 μm , (b)  d = 0.3 μm , and (c)  d = 0.5 μm .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( 1 e i k x a ) 2 e i k x a + ( 1 e i k y a ) 2 e i k y a Z Y = 0 .

Metrics