Abstract

We have obtained spectral broadening by pumping a nonmicrostructured highly nonlinear fiber with a continuous wave signal from a Raman fiber laser. The experiment was simulated using a generalized Schrödinger equation containing the actual Raman response of the fiber as calculated from the experimental Raman gain. A different input-noise model, that reproduces well the power spectral density of the laser, was used and compared with others previously proposed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 a via fourphoton coupling in glass,” Phys. Rev. Lett. 24, 584587 (1970).
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  3. D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105, 233902 (2010).
    [CrossRef]
  4. S. P. Stark, A. Podlipensky, N. Y. Joly, and P. S. J. Russell, “Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fiber,” J. Opt. Soc. Am. B 27, 592–598 (2010).
    [CrossRef]
  5. E. J. R. Kelleher, J. C. Travers, S. V. Popov, and J. R. Taylor, “Role of pump coherence in the evolution of continuous-wave supercontinuum generation initiated by modulation instability,” J. Opt. Soc. Am. B 29, 502–512 (2012).
    [CrossRef]
  6. B. Washburn and N. Newbury, “Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber,” Opt. Express 12, 2166–2175 (2004).
    [CrossRef]
  7. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  8. Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol. 21, 3085–3103 (2003).
    [CrossRef]
  9. G. Busch, R. Jones, and P. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett. 18, 178–185 (1973).
    [CrossRef]
  10. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,” Opt. Lett. 27, 2010–2012 (2002).
    [CrossRef]
  11. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765–771 (2002).
    [CrossRef]
  12. G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, “Enhanced bandwidth of supercontinuum generated in microstructured fibers,” Opt. Express 12, 3471–3480 (2004).
    [CrossRef]
  13. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, “Spectral broadening of a partially coherent cw laser beam in single-mode optical fibers,” Opt. Express 12, 2838–2843 (2004).
    [CrossRef]
  14. S. M. Kobtsev and S. V. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Express 13, 6912–6918 (2005).
    [CrossRef]
  15. F. Vanholsbeeck, S. Martin-Lopez, M. Gonzalez-Herraez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Opt. Express 13, 6615–6625 (2005).
    [CrossRef]
  16. A. E. El-Taher, J. D. Ania-Castañón, V. Karalekas, and P. Harper, “High efficiency supercontinuum generation using ultra-long raman fiber cavities,” Opt. Express 17, 17909–17915 (2009).
    [CrossRef]
  17. A. K. Abeeluck and C. Headley, “Supercontinuum growth in a highly nonlinear fiber with a low-coherence semiconductor laser diode,” Appl. Phys. Lett. 85, 4863–4865 (2004).
    [CrossRef]
  18. M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006).
    [CrossRef]
  19. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010).
    [CrossRef]
  20. J. Travers, S. Popov, and J. Taylor, “A new model for cw supercontinuum generation,” in Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science (IEEE, 2008), pp. 1–2.
  21. G. Vannucci and M. C. Teich, “Computer simulation of superposed coherent and cahotic radiation,” Appl. Opt. 19, 548–553(1980).
    [CrossRef]
  22. N. Silva, N. Muga, and A. Pinto, “Effective nonlinear parameter measurement using fwm in optical fibers in a low power regime,” IEEE J. Quantum Electron. 46, 285–291 (2010).
    [CrossRef]
  23. J. Nicholson, A. Abeeluck, C. Headley, M. Yan, and C. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
    [CrossRef]
  24. A. K. Abeeluck, and C. Headley, “Continuous-wave pumping in the anomalous- and normal-dispersionregimes of nonlinear fibers for supercontinuum generation,” Opt. Lett. 30, 61–63 (2005).
    [CrossRef]
  25. G. P. Agrawal, Nonlinear fiber optics (Academic, 1995).
  26. C. R. Menyuk, M. N. Islam, and J. P. Gordon, “Raman effect in birefringent optical fibers,” Opt. Lett. 16, 566–568 (1991).
    [CrossRef]
  27. R. Hellwarth, J. Cherlow, and T.-T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964–967 (1975).
    [CrossRef]
  28. C. Headley and G. P. Agrawal, “Unified description of ultrafast stimulated Raman scattering in optical fibers,” J. Opt. Soc. Am. B 13, 2170–2177 (1996).
    [CrossRef]
  29. M. Facão, A. Lopes, A. L. Silva, and P. Silva, “Computer simulation for calculating the second-order correlation function of classical and quantum light,” Eur. J. Phys. 32, 925–934(2011).
    [CrossRef]
  30. S. Coen, S. G. Murdoch, and F. Vanholsbeeck, “Interaction of four-wave mixing and stimulated Raman scattering in optical fibers,” in Supercontinuum generation in optical fibers (Cambridge University, 2010), pp. 199–225.

2012 (1)

2011 (1)

M. Facão, A. Lopes, A. L. Silva, and P. Silva, “Computer simulation for calculating the second-order correlation function of classical and quantum light,” Eur. J. Phys. 32, 925–934(2011).
[CrossRef]

2010 (4)

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105, 233902 (2010).
[CrossRef]

N. Silva, N. Muga, and A. Pinto, “Effective nonlinear parameter measurement using fwm in optical fibers in a low power regime,” IEEE J. Quantum Electron. 46, 285–291 (2010).
[CrossRef]

S. P. Stark, A. Podlipensky, N. Y. Joly, and P. S. J. Russell, “Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fiber,” J. Opt. Soc. Am. B 27, 592–598 (2010).
[CrossRef]

M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010).
[CrossRef]

2009 (1)

2006 (2)

M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

2005 (3)

2004 (4)

2003 (2)

Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol. 21, 3085–3103 (2003).
[CrossRef]

J. Nicholson, A. Abeeluck, C. Headley, M. Yan, and C. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

2002 (2)

2000 (1)

1996 (1)

1991 (1)

1980 (1)

1975 (1)

R. Hellwarth, J. Cherlow, and T.-T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964–967 (1975).
[CrossRef]

1973 (1)

G. Busch, R. Jones, and P. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett. 18, 178–185 (1973).
[CrossRef]

1970 (1)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 a via fourphoton coupling in glass,” Phys. Rev. Lett. 24, 584587 (1970).

Abeeluck, A.

J. Nicholson, A. Abeeluck, C. Headley, M. Yan, and C. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Abeeluck, A. K.

A. K. Abeeluck, and C. Headley, “Continuous-wave pumping in the anomalous- and normal-dispersionregimes of nonlinear fibers for supercontinuum generation,” Opt. Lett. 30, 61–63 (2005).
[CrossRef]

A. K. Abeeluck and C. Headley, “Supercontinuum growth in a highly nonlinear fiber with a low-coherence semiconductor laser diode,” Appl. Phys. Lett. 85, 4863–4865 (2004).
[CrossRef]

Agrawal, G. P.

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 a via fourphoton coupling in glass,” Phys. Rev. Lett. 24, 584587 (1970).

Ania-Castañón, J. D.

Bang, O.

Bjarklev, A.

Boppart, S. A.

Busch, G.

G. Busch, R. Jones, and P. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett. 18, 178–185 (1973).
[CrossRef]

Cherlow, J.

R. Hellwarth, J. Cherlow, and T.-T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964–967 (1975).
[CrossRef]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

F. Vanholsbeeck, S. Martin-Lopez, M. Gonzalez-Herraez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Opt. Express 13, 6615–6625 (2005).
[CrossRef]

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765–771 (2002).
[CrossRef]

S. Coen, S. G. Murdoch, and F. Vanholsbeeck, “Interaction of four-wave mixing and stimulated Raman scattering in optical fibers,” in Supercontinuum generation in optical fibers (Cambridge University, 2010), pp. 199–225.

Dudley, J. M.

Eggleton, B. J.

El-Taher, A. E.

Facão, M.

M. Facão, A. Lopes, A. L. Silva, and P. Silva, “Computer simulation for calculating the second-order correlation function of classical and quantum light,” Eur. J. Phys. 32, 925–934(2011).
[CrossRef]

Finot, C.

Frosz, M. H.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, “Enhanced bandwidth of supercontinuum generated in microstructured fibers,” Opt. Express 12, 3471–3480 (2004).
[CrossRef]

Gonzalez-Herraez, M.

Gordon, J. P.

Grossard, N.

Han, Y.

Harper, P.

Headley, C.

A. K. Abeeluck, and C. Headley, “Continuous-wave pumping in the anomalous- and normal-dispersionregimes of nonlinear fibers for supercontinuum generation,” Opt. Lett. 30, 61–63 (2005).
[CrossRef]

A. K. Abeeluck and C. Headley, “Supercontinuum growth in a highly nonlinear fiber with a low-coherence semiconductor laser diode,” Appl. Phys. Lett. 85, 4863–4865 (2004).
[CrossRef]

J. Nicholson, A. Abeeluck, C. Headley, M. Yan, and C. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

C. Headley and G. P. Agrawal, “Unified description of ultrafast stimulated Raman scattering in optical fibers,” J. Opt. Soc. Am. B 13, 2170–2177 (1996).
[CrossRef]

Hellwarth, R.

R. Hellwarth, J. Cherlow, and T.-T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964–967 (1975).
[CrossRef]

Islam, M. N.

Jalali, B.

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105, 233902 (2010).
[CrossRef]

Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol. 21, 3085–3103 (2003).
[CrossRef]

Joly, N. Y.

Jones, R.

G. Busch, R. Jones, and P. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett. 18, 178–185 (1973).
[CrossRef]

Jørgensen, C.

J. Nicholson, A. Abeeluck, C. Headley, M. Yan, and C. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Kaivola, M.

Karalekas, V.

Kelleher, E. J. R.

Kobtsev, S. M.

Lantz, E.

Lehtonen, M.

Lopes, A.

M. Facão, A. Lopes, A. L. Silva, and P. Silva, “Computer simulation for calculating the second-order correlation function of classical and quantum light,” Eur. J. Phys. 32, 925–934(2011).
[CrossRef]

Ludvigsen, H.

Maillotte, H.

Marks, D. L.

Martin-Lopez, S.

Menyuk, C. R.

Muga, N.

N. Silva, N. Muga, and A. Pinto, “Effective nonlinear parameter measurement using fwm in optical fibers in a low power regime,” IEEE J. Quantum Electron. 46, 285–291 (2010).
[CrossRef]

Murdoch, S. G.

S. Coen, S. G. Murdoch, and F. Vanholsbeeck, “Interaction of four-wave mixing and stimulated Raman scattering in optical fibers,” in Supercontinuum generation in optical fibers (Cambridge University, 2010), pp. 199–225.

Mussot, A.

Newbury, N.

Nicholson, J.

J. Nicholson, A. Abeeluck, C. Headley, M. Yan, and C. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Oldenburg, A. L.

Pinto, A.

N. Silva, N. Muga, and A. Pinto, “Effective nonlinear parameter measurement using fwm in optical fibers in a low power regime,” IEEE J. Quantum Electron. 46, 285–291 (2010).
[CrossRef]

Pitois, S.

Podlipensky, A.

Popov, S.

J. Travers, S. Popov, and J. Taylor, “A new model for cw supercontinuum generation,” in Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science (IEEE, 2008), pp. 1–2.

Popov, S. V.

Provino, L.

Ranka, J. K.

Rentzepis, P.

G. Busch, R. Jones, and P. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett. 18, 178–185 (1973).
[CrossRef]

Reynolds, J. J.

Ropers, C.

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105, 233902 (2010).
[CrossRef]

Russell, P. S. J.

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 a via fourphoton coupling in glass,” Phys. Rev. Lett. 24, 584587 (1970).

Silva, A. L.

M. Facão, A. Lopes, A. L. Silva, and P. Silva, “Computer simulation for calculating the second-order correlation function of classical and quantum light,” Eur. J. Phys. 32, 925–934(2011).
[CrossRef]

Silva, N.

N. Silva, N. Muga, and A. Pinto, “Effective nonlinear parameter measurement using fwm in optical fibers in a low power regime,” IEEE J. Quantum Electron. 46, 285–291 (2010).
[CrossRef]

Silva, P.

M. Facão, A. Lopes, A. L. Silva, and P. Silva, “Computer simulation for calculating the second-order correlation function of classical and quantum light,” Eur. J. Phys. 32, 925–934(2011).
[CrossRef]

Smirnov, S. V.

Solli, D. R.

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105, 233902 (2010).
[CrossRef]

Stark, S. P.

Stentz, A. J.

Sylvestre, T.

Taylor, J.

J. Travers, S. Popov, and J. Taylor, “A new model for cw supercontinuum generation,” in Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science (IEEE, 2008), pp. 1–2.

Taylor, J. R.

Teich, M. C.

Travers, J.

J. Travers, S. Popov, and J. Taylor, “A new model for cw supercontinuum generation,” in Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science (IEEE, 2008), pp. 1–2.

Travers, J. C.

Vanholsbeeck, F.

F. Vanholsbeeck, S. Martin-Lopez, M. Gonzalez-Herraez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Opt. Express 13, 6615–6625 (2005).
[CrossRef]

S. Coen, S. G. Murdoch, and F. Vanholsbeeck, “Interaction of four-wave mixing and stimulated Raman scattering in optical fibers,” in Supercontinuum generation in optical fibers (Cambridge University, 2010), pp. 199–225.

Vannucci, G.

Washburn, B.

Windeler, R. S.

Yan, M.

J. Nicholson, A. Abeeluck, C. Headley, M. Yan, and C. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Yang, T.-T.

R. Hellwarth, J. Cherlow, and T.-T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964–967 (1975).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

J. Nicholson, A. Abeeluck, C. Headley, M. Yan, and C. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

A. K. Abeeluck and C. Headley, “Supercontinuum growth in a highly nonlinear fiber with a low-coherence semiconductor laser diode,” Appl. Phys. Lett. 85, 4863–4865 (2004).
[CrossRef]

Chem. Phys. Lett. (1)

G. Busch, R. Jones, and P. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett. 18, 178–185 (1973).
[CrossRef]

Eur. J. Phys. (1)

M. Facão, A. Lopes, A. L. Silva, and P. Silva, “Computer simulation for calculating the second-order correlation function of classical and quantum light,” Eur. J. Phys. 32, 925–934(2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. Silva, N. Muga, and A. Pinto, “Effective nonlinear parameter measurement using fwm in optical fibers in a low power regime,” IEEE J. Quantum Electron. 46, 285–291 (2010).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (4)

Opt. Express (8)

M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010).
[CrossRef]

B. Washburn and N. Newbury, “Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber,” Opt. Express 12, 2166–2175 (2004).
[CrossRef]

A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, “Spectral broadening of a partially coherent cw laser beam in single-mode optical fibers,” Opt. Express 12, 2838–2843 (2004).
[CrossRef]

G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, “Enhanced bandwidth of supercontinuum generated in microstructured fibers,” Opt. Express 12, 3471–3480 (2004).
[CrossRef]

F. Vanholsbeeck, S. Martin-Lopez, M. Gonzalez-Herraez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Opt. Express 13, 6615–6625 (2005).
[CrossRef]

S. M. Kobtsev and S. V. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Express 13, 6912–6918 (2005).
[CrossRef]

M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006).
[CrossRef]

A. E. El-Taher, J. D. Ania-Castañón, V. Karalekas, and P. Harper, “High efficiency supercontinuum generation using ultra-long raman fiber cavities,” Opt. Express 17, 17909–17915 (2009).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. B (1)

R. Hellwarth, J. Cherlow, and T.-T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964–967 (1975).
[CrossRef]

Phys. Rev. Lett. (2)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 a via fourphoton coupling in glass,” Phys. Rev. Lett. 24, 584587 (1970).

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105, 233902 (2010).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Other (3)

J. Travers, S. Popov, and J. Taylor, “A new model for cw supercontinuum generation,” in Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science (IEEE, 2008), pp. 1–2.

G. P. Agrawal, Nonlinear fiber optics (Academic, 1995).

S. Coen, S. G. Murdoch, and F. Vanholsbeeck, “Interaction of four-wave mixing and stimulated Raman scattering in optical fibers,” in Supercontinuum generation in optical fibers (Cambridge University, 2010), pp. 199–225.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Power spectrum density of the Raman fiber laser (black dashed line) and its numerical reproduction using the Van-noise (gray line).

Fig. 3.
Fig. 3.

Spectral output after propagation in 800 m of the HNLF for several input powers.

Fig. 4.
Fig. 4.

Raman gain coefficient over effective area of the fiber versus frequency shift.

Fig. 5.
Fig. 5.

Normalized Raman (a) spectral and (b) temporal responses.

Fig. 6.
Fig. 6.

Example of power profiles for an average power of 1 W: (a) Van-noise, (b) F-noise with Lorentzian linewidth equal to the estimated linewidth of the Raman laser PSD, and (c) F-noise with linewidth 10 times larger.

Fig. 7.
Fig. 7.

Phase profiles of the signals whose power profiles are shown in Fig. 6.

Fig. 8.
Fig. 8.

Input and output spectra for 2 W and two input noise models: (a) PDM (phase diffusion model) and (b) OPPM (one photon per mode).

Fig. 9.
Fig. 9.

Comparison of experimental and numerical results using both Van-noise and F-noise for (a) 0.9 W, (b) 1.4 W, and (c) 2.0 W. F-noise was used with two choices for the width of the backing Lorentzian.

Fig. 10.
Fig. 10.

Example of input and output power profiles for the Van-noise and (a) 0.9 W and (b) 2 W. The line correspondent to the input is somehow hidden behind the output line.

Fig. 11.
Fig. 11.

Spectral evolution and final spectrum as simulated for a Van-noise input power of 6 W and 800 m of the HNLF.

Tables (1)

Tables Icon

Table 1. Fiber Parameters for λ = 1480 nm

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

G ( Ω ) = 10 log 10 P on ( f ) P off ( f ) = 4.343 g R P 0 L eff k A eff ,
A x z + i 2 β 2 2 A x t 2 1 6 β 3 3 A x t 3 = α 2 A x + i γ ( 1 f R ) ( | A x | 2 A x + 2 3 | A y | 2 A x + 1 3 A x * A y 2 ) + i γ f R { A x 0 ( [ f a h a ( t ) + f b h b ( t ) ] | A x ( t t ) | 2 + f a h a ( t ) | A y ( t t ) | 2 ) d t + 1 2 A y 0 f b h b ( t ) [ A y * ( t t ) A x ( t t ) + A y ( t t ) A x * ( t t ) ] d t } ,
g A eff = 2 γ R Im ( f a h ˜ a ( Ω ) + f b h ˜ b ( Ω ) ) , g A eff = γ R f b Im ( h ˜ b ( Ω ) ) .
A x z + i 2 β 2 2 A x t 2 1 6 β 3 3 A x t 3 = α 2 A x + i γ ( 1 f R ) ( | A x | 2 A x + 2 3 | A y | 2 A x + 1 3 A x * A y 2 ) + i γ f R A x 0 h a ( t ) [ | A x ( t t ) | 2 + | A y ( t t ) | 2 ] d t
g R ( Ω ) A eff = 2 γ R Im ( h ˜ a ( Ω ) ) ,
A j exp ( i ω n t + i ϕ j ) ,
A n ( t ) = j A j exp ( i ω n t + i ϕ j ) = Z n exp ( i ω n t ) ,
Z n = a n + i b n = j A j ( cos ϕ j + i sin ϕ j ) .
A ( t ) = n = N / 2 N / 2 Z n exp [ i ( ω 0 t + n Δ ω t ) ] = Z ˜ ( t ) exp ( i ω 0 t )
Z ˜ ( t ) = n = N / 2 N / 2 Z n exp ( i n Δ ω t ) .

Metrics