Abstract

We study the tuning curve of entangled photons generated by type-0 spontaneous parametric down-conversion in a periodically poled potassium titanyl phosphate crystal. We demonstrate the X-shaped spatiotemporal structure of the spectrum by means of measurements and numerical simulations. Experiments for different pump waists, crystal temperatures, and crystal lengths are in good agreement with numerical simulations.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
    [CrossRef]
  2. A. Zeilinger, “Experiment and the foundations of quantum physics,” Rev. Mod. Phys. 71, S288–S297 (1999).
    [CrossRef]
  3. M. Genovese, “Research on hidden variable theories: a review of recent progresses,” Phys. Rep. 413, 319–396 (2005).
    [CrossRef]
  4. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [CrossRef]
  5. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
    [CrossRef]
  6. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
    [CrossRef]
  7. L. A. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B 4, S176–S183 (2002).
    [CrossRef]
  8. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
    [CrossRef]
  9. D. N. Klyshko, Photons and Nonlinear Optics (Gordon and Breach, 1988).
  10. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
    [CrossRef]
  11. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
    [CrossRef]
  12. C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett. 92, 127903 (2004).
    [CrossRef]
  13. M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
    [CrossRef]
  14. M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
    [CrossRef]
  15. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
    [CrossRef]
  16. A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
    [CrossRef]
  17. F. Zäh, M. Halder, and T. Feurer, “Amplitude and phase modulation of time-energy entangled two-photon states,” Opt. Express 16, 16452–16458 (2008).
    [CrossRef]
  18. B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, “Nonlinear interactions with an ultrahigh flux of broadband entangled photons,” Phys. Rev. Lett. 94, 043602 (2005).
    [CrossRef]
  19. L. Caspani, E. Brambilla, and A. Gatti, “Tailoring the spatiotemporal structure of biphoton entanglement in type-I parametric down-conversion,” Phys. Rev. A 81, 033808 (2010).
    [CrossRef]
  20. A. Gatti, E. Brambilla, L. Caspani, O. Jedrkiewicz, and L. Lugiato, “X entanglement: the nonfactorable spatiotemporal structure of biphoton correlation,” Phys. Rev. Lett. 102, 223601 (2009).
    [CrossRef]
  21. W. Wasilewski, P. Wasylczyk, P. Kolenderski, K. Banaszek, and C. Radzewicz, “Joint spectrum of photon pairs measured by coincidence Fourier spectroscopy,” Opt. Lett. 31, 1130–1132 (2006).
    [CrossRef]
  22. S.-Y. Baek, and Y.-H. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion,” Phys. Rev. A 77, 043807 (2008).
    [CrossRef]
  23. Y.-H. Kim and W. P. Grice, “Measurement of the spectral properties of the two-photon state generated via type II spontaneous parametric downconversion,” Opt. Lett. 30, 908–910 (2005).
    [CrossRef]
  24. M. Hendrych, M. Mičuda, and J. P. Torres, “Tunable control of the frequency correlations of entangled photons,” Opt. Lett. 32, 2339–2341 (2007).
    [CrossRef]
  25. S. Carrasco, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, “Spectral engineering of entangled two-photon states,” Phys. Rev. A 73, 063802 (2006).
    [CrossRef]
  26. E. Lantz, L. Han, A. Lacourt, and J. Zyss, “Simultaneous angle and wavelength one-beam noncritical phase matching in optical parametric amplification,” Opt. Commun. 97, 245–249 (1993).
    [CrossRef]
  27. F. Devaux and E. Lantz, “Spatial and temporal properties of parametric fluorescence around degeneracy in a type I LBO crystal,” Eur. Phys. J. D 8, 117–124 (2000).
    [CrossRef]
  28. O. Jedrkiewicz, J.-L. Blanchet, A. Gatti, E. Brambilla, and P. Di Trapani, “High visibility pump reconstruction via ultra broadband sum frequency mixing of intense phase-conjugated twin beams,” Opt. Express 19, 12903–12912 (2011).
    [CrossRef]
  29. M. Hamar, J. Peřina, O. Haderka, and V. Michálek, “Transverse coherence of photon pairs generated in spontaneous parametric down-conversion,” Phys. Rev. A 81, 043827 (2010).
    [CrossRef]
  30. O. Jedrkiewicz, A. Picozzi, M. Clerici, D. Faccio, and P. Di Trapani, “Emergence of X-shaped spatiotemporal coherence in optical waves,” Phys. Rev. Lett. 97, 243903 (2006).
    [CrossRef]
  31. A. Joobeur, B. E. A. Saleh, and M. C. Teich, “Spatiotemporal coherence properties of entangled light beams generated by parametric down-conversion,” Phys. Rev. A 50, 3349–3361 (1994).
    [CrossRef]
  32. K. Bencheikh, E. Huntziger, and J. A. Levenson, “Quantum noise reduction in quasi-phase-matched optical parametric amplification,” J. Opt. Soc. Am. B 12, 847–852 (1995).
    [CrossRef]
  33. J. Svozilík and J. Peřina, “Properties of entangled photon pairs generated in periodically poled nonlinear crystals,” Phys. Rev. A 80, 023819 (2009).
    [CrossRef]
  34. Y. Shih, “Entangled biphoton source—property and preparation,” Rep. Prog. Phys. 66, 1009–1044 (2003).
    [CrossRef]
  35. R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963).
    [CrossRef]
  36. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [CrossRef]
  37. S. Emanueli and A. Arie, “Temperature-dependent dispersion equations for KTiOPO4 and KTiOAsO4,” Appl. Opt. 42, 6661–6665 (2003).
    [CrossRef]

2011 (1)

2010 (2)

L. Caspani, E. Brambilla, and A. Gatti, “Tailoring the spatiotemporal structure of biphoton entanglement in type-I parametric down-conversion,” Phys. Rev. A 81, 033808 (2010).
[CrossRef]

M. Hamar, J. Peřina, O. Haderka, and V. Michálek, “Transverse coherence of photon pairs generated in spontaneous parametric down-conversion,” Phys. Rev. A 81, 043827 (2010).
[CrossRef]

2009 (3)

J. Svozilík and J. Peřina, “Properties of entangled photon pairs generated in periodically poled nonlinear crystals,” Phys. Rev. A 80, 023819 (2009).
[CrossRef]

A. Gatti, E. Brambilla, L. Caspani, O. Jedrkiewicz, and L. Lugiato, “X entanglement: the nonfactorable spatiotemporal structure of biphoton correlation,” Phys. Rev. Lett. 102, 223601 (2009).
[CrossRef]

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[CrossRef]

2008 (3)

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef]

S.-Y. Baek, and Y.-H. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion,” Phys. Rev. A 77, 043807 (2008).
[CrossRef]

F. Zäh, M. Halder, and T. Feurer, “Amplitude and phase modulation of time-energy entangled two-photon states,” Opt. Express 16, 16452–16458 (2008).
[CrossRef]

2007 (3)

M. Hendrych, M. Mičuda, and J. P. Torres, “Tunable control of the frequency correlations of entangled photons,” Opt. Lett. 32, 2339–2341 (2007).
[CrossRef]

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[CrossRef]

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

2006 (3)

S. Carrasco, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, “Spectral engineering of entangled two-photon states,” Phys. Rev. A 73, 063802 (2006).
[CrossRef]

W. Wasilewski, P. Wasylczyk, P. Kolenderski, K. Banaszek, and C. Radzewicz, “Joint spectrum of photon pairs measured by coincidence Fourier spectroscopy,” Opt. Lett. 31, 1130–1132 (2006).
[CrossRef]

O. Jedrkiewicz, A. Picozzi, M. Clerici, D. Faccio, and P. Di Trapani, “Emergence of X-shaped spatiotemporal coherence in optical waves,” Phys. Rev. Lett. 97, 243903 (2006).
[CrossRef]

2005 (4)

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[CrossRef]

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, “Nonlinear interactions with an ultrahigh flux of broadband entangled photons,” Phys. Rev. Lett. 94, 043602 (2005).
[CrossRef]

Y.-H. Kim and W. P. Grice, “Measurement of the spectral properties of the two-photon state generated via type II spontaneous parametric downconversion,” Opt. Lett. 30, 908–910 (2005).
[CrossRef]

M. Genovese, “Research on hidden variable theories: a review of recent progresses,” Phys. Rep. 413, 319–396 (2005).
[CrossRef]

2004 (1)

C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett. 92, 127903 (2004).
[CrossRef]

2003 (3)

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef]

S. Emanueli and A. Arie, “Temperature-dependent dispersion equations for KTiOPO4 and KTiOAsO4,” Appl. Opt. 42, 6661–6665 (2003).
[CrossRef]

Y. Shih, “Entangled biphoton source—property and preparation,” Rep. Prog. Phys. 66, 1009–1044 (2003).
[CrossRef]

2002 (3)

L. A. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B 4, S176–S183 (2002).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[CrossRef]

2000 (1)

F. Devaux and E. Lantz, “Spatial and temporal properties of parametric fluorescence around degeneracy in a type I LBO crystal,” Eur. Phys. J. D 8, 117–124 (2000).
[CrossRef]

1999 (2)

A. Zeilinger, “Experiment and the foundations of quantum physics,” Rev. Mod. Phys. 71, S288–S297 (1999).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

1995 (1)

1994 (2)

A. Joobeur, B. E. A. Saleh, and M. C. Teich, “Spatiotemporal coherence properties of entangled light beams generated by parametric down-conversion,” Phys. Rev. A 50, 3349–3361 (1994).
[CrossRef]

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[CrossRef]

1993 (1)

E. Lantz, L. Han, A. Lacourt, and J. Zyss, “Simultaneous angle and wavelength one-beam noncritical phase matching in optical parametric amplification,” Opt. Commun. 97, 245–249 (1993).
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

1963 (1)

R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963).
[CrossRef]

Abouraddy, A. F.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

Arie, A.

Baek, S.-Y.

S.-Y. Baek, and Y.-H. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion,” Phys. Rev. A 77, 043807 (2008).
[CrossRef]

Banaszek, K.

Bencheikh, K.

Blanchet, J.-L.

Brambilla, E.

O. Jedrkiewicz, J.-L. Blanchet, A. Gatti, E. Brambilla, and P. Di Trapani, “High visibility pump reconstruction via ultra broadband sum frequency mixing of intense phase-conjugated twin beams,” Opt. Express 19, 12903–12912 (2011).
[CrossRef]

L. Caspani, E. Brambilla, and A. Gatti, “Tailoring the spatiotemporal structure of biphoton entanglement in type-I parametric down-conversion,” Phys. Rev. A 81, 033808 (2010).
[CrossRef]

A. Gatti, E. Brambilla, L. Caspani, O. Jedrkiewicz, and L. Lugiato, “X entanglement: the nonfactorable spatiotemporal structure of biphoton correlation,” Phys. Rev. Lett. 102, 223601 (2009).
[CrossRef]

L. A. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B 4, S176–S183 (2002).
[CrossRef]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Carrasco, S.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef]

S. Carrasco, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, “Spectral engineering of entangled two-photon states,” Phys. Rev. A 73, 063802 (2006).
[CrossRef]

Caspani, L.

L. Caspani, E. Brambilla, and A. Gatti, “Tailoring the spatiotemporal structure of biphoton entanglement in type-I parametric down-conversion,” Phys. Rev. A 81, 033808 (2010).
[CrossRef]

A. Gatti, E. Brambilla, L. Caspani, O. Jedrkiewicz, and L. Lugiato, “X entanglement: the nonfactorable spatiotemporal structure of biphoton correlation,” Phys. Rev. Lett. 102, 223601 (2009).
[CrossRef]

Clerici, M.

O. Jedrkiewicz, A. Picozzi, M. Clerici, D. Faccio, and P. Di Trapani, “Emergence of X-shaped spatiotemporal coherence in optical waves,” Phys. Rev. Lett. 97, 243903 (2006).
[CrossRef]

Dayan, B.

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[CrossRef]

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, “Nonlinear interactions with an ultrahigh flux of broadband entangled photons,” Phys. Rev. Lett. 94, 043602 (2005).
[CrossRef]

Devaux, F.

F. Devaux and E. Lantz, “Spatial and temporal properties of parametric fluorescence around degeneracy in a type I LBO crystal,” Eur. Phys. J. D 8, 117–124 (2000).
[CrossRef]

Di Trapani, P.

O. Jedrkiewicz, J.-L. Blanchet, A. Gatti, E. Brambilla, and P. Di Trapani, “High visibility pump reconstruction via ultra broadband sum frequency mixing of intense phase-conjugated twin beams,” Opt. Express 19, 12903–12912 (2011).
[CrossRef]

O. Jedrkiewicz, A. Picozzi, M. Clerici, D. Faccio, and P. Di Trapani, “Emergence of X-shaped spatiotemporal coherence in optical waves,” Phys. Rev. Lett. 97, 243903 (2006).
[CrossRef]

Dowling, J. P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

Eberly, J. H.

C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett. 92, 127903 (2004).
[CrossRef]

Emanueli, S.

Faccio, D.

O. Jedrkiewicz, A. Picozzi, M. Clerici, D. Faccio, and P. Di Trapani, “Emergence of X-shaped spatiotemporal coherence in optical waves,” Phys. Rev. Lett. 97, 243903 (2006).
[CrossRef]

Fejer, M. M.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Feurer, T.

Friesem, A. A.

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, “Nonlinear interactions with an ultrahigh flux of broadband entangled photons,” Phys. Rev. Lett. 94, 043602 (2005).
[CrossRef]

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[CrossRef]

Gatti, A.

O. Jedrkiewicz, J.-L. Blanchet, A. Gatti, E. Brambilla, and P. Di Trapani, “High visibility pump reconstruction via ultra broadband sum frequency mixing of intense phase-conjugated twin beams,” Opt. Express 19, 12903–12912 (2011).
[CrossRef]

L. Caspani, E. Brambilla, and A. Gatti, “Tailoring the spatiotemporal structure of biphoton entanglement in type-I parametric down-conversion,” Phys. Rev. A 81, 033808 (2010).
[CrossRef]

A. Gatti, E. Brambilla, L. Caspani, O. Jedrkiewicz, and L. Lugiato, “X entanglement: the nonfactorable spatiotemporal structure of biphoton correlation,” Phys. Rev. Lett. 102, 223601 (2009).
[CrossRef]

L. A. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B 4, S176–S183 (2002).
[CrossRef]

Genovese, M.

M. Genovese, “Research on hidden variable theories: a review of recent progresses,” Phys. Rep. 413, 319–396 (2005).
[CrossRef]

Gisin, N.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Glauber, R. J.

R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963).
[CrossRef]

Grice, W. P.

Haderka, O.

M. Hamar, J. Peřina, O. Haderka, and V. Michálek, “Transverse coherence of photon pairs generated in spontaneous parametric down-conversion,” Phys. Rev. A 81, 043827 (2010).
[CrossRef]

Halder, M.

Hamar, M.

M. Hamar, J. Peřina, O. Haderka, and V. Michálek, “Transverse coherence of photon pairs generated in spontaneous parametric down-conversion,” Phys. Rev. A 81, 043827 (2010).
[CrossRef]

Han, L.

E. Lantz, L. Han, A. Lacourt, and J. Zyss, “Simultaneous angle and wavelength one-beam noncritical phase matching in optical parametric amplification,” Opt. Commun. 97, 245–249 (1993).
[CrossRef]

Hendrych, M.

Horodecki, K.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[CrossRef]

Horodecki, M.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[CrossRef]

Horodecki, P.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[CrossRef]

Horodecki, R.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[CrossRef]

Hum, D. S.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef]

Huntziger, E.

Jedrkiewicz, O.

O. Jedrkiewicz, J.-L. Blanchet, A. Gatti, E. Brambilla, and P. Di Trapani, “High visibility pump reconstruction via ultra broadband sum frequency mixing of intense phase-conjugated twin beams,” Opt. Express 19, 12903–12912 (2011).
[CrossRef]

A. Gatti, E. Brambilla, L. Caspani, O. Jedrkiewicz, and L. Lugiato, “X entanglement: the nonfactorable spatiotemporal structure of biphoton correlation,” Phys. Rev. Lett. 102, 223601 (2009).
[CrossRef]

O. Jedrkiewicz, A. Picozzi, M. Clerici, D. Faccio, and P. Di Trapani, “Emergence of X-shaped spatiotemporal coherence in optical waves,” Phys. Rev. Lett. 97, 243903 (2006).
[CrossRef]

Joobeur, A.

A. Joobeur, B. E. A. Saleh, and M. C. Teich, “Spatiotemporal coherence properties of entangled light beams generated by parametric down-conversion,” Phys. Rev. A 50, 3349–3361 (1994).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Kim, Y.-H.

S.-Y. Baek, and Y.-H. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion,” Phys. Rev. A 77, 043807 (2008).
[CrossRef]

Y.-H. Kim and W. P. Grice, “Measurement of the spectral properties of the two-photon state generated via type II spontaneous parametric downconversion,” Opt. Lett. 30, 908–910 (2005).
[CrossRef]

Klyshko, D. N.

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[CrossRef]

D. N. Klyshko, Photons and Nonlinear Optics (Gordon and Breach, 1988).

Kok, P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Kolenderski, P.

Kwiat, P. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

Lacourt, A.

E. Lantz, L. Han, A. Lacourt, and J. Zyss, “Simultaneous angle and wavelength one-beam noncritical phase matching in optical parametric amplification,” Opt. Commun. 97, 245–249 (1993).
[CrossRef]

Lantz, E.

F. Devaux and E. Lantz, “Spatial and temporal properties of parametric fluorescence around degeneracy in a type I LBO crystal,” Eur. Phys. J. D 8, 117–124 (2000).
[CrossRef]

E. Lantz, L. Han, A. Lacourt, and J. Zyss, “Simultaneous angle and wavelength one-beam noncritical phase matching in optical parametric amplification,” Opt. Commun. 97, 245–249 (1993).
[CrossRef]

Law, C. K.

C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett. 92, 127903 (2004).
[CrossRef]

Levenson, J. A.

Lugiato, L.

A. Gatti, E. Brambilla, L. Caspani, O. Jedrkiewicz, and L. Lugiato, “X entanglement: the nonfactorable spatiotemporal structure of biphoton correlation,” Phys. Rev. Lett. 102, 223601 (2009).
[CrossRef]

Lugiato, L. A.

L. A. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B 4, S176–S183 (2002).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[CrossRef]

Michálek, V.

M. Hamar, J. Peřina, O. Haderka, and V. Michálek, “Transverse coherence of photon pairs generated in spontaneous parametric down-conversion,” Phys. Rev. A 81, 043827 (2010).
[CrossRef]

Micuda, M.

Milburn, G. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Munro, W. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Nasr, M. B.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Nemoto, K.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Pe’er, A.

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, “Nonlinear interactions with an ultrahigh flux of broadband entangled photons,” Phys. Rev. Lett. 94, 043602 (2005).
[CrossRef]

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[CrossRef]

Perina, J.

M. Hamar, J. Peřina, O. Haderka, and V. Michálek, “Transverse coherence of photon pairs generated in spontaneous parametric down-conversion,” Phys. Rev. A 81, 043827 (2010).
[CrossRef]

J. Svozilík and J. Peřina, “Properties of entangled photon pairs generated in periodically poled nonlinear crystals,” Phys. Rev. A 80, 023819 (2009).
[CrossRef]

Picozzi, A.

O. Jedrkiewicz, A. Picozzi, M. Clerici, D. Faccio, and P. Di Trapani, “Emergence of X-shaped spatiotemporal coherence in optical waves,” Phys. Rev. Lett. 97, 243903 (2006).
[CrossRef]

Radzewicz, C.

Ralph, T. C.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Rubin, M. H.

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[CrossRef]

Saleh, B. E. A.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef]

S. Carrasco, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, “Spectral engineering of entangled two-photon states,” Phys. Rev. A 73, 063802 (2006).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

A. Joobeur, B. E. A. Saleh, and M. C. Teich, “Spatiotemporal coherence properties of entangled light beams generated by parametric down-conversion,” Phys. Rev. A 50, 3349–3361 (1994).
[CrossRef]

Sergienko, A. V.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef]

S. Carrasco, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, “Spectral engineering of entangled two-photon states,” Phys. Rev. A 73, 063802 (2006).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[CrossRef]

Shih, Y.

Y. Shih, “Entangled biphoton source—property and preparation,” Rep. Prog. Phys. 66, 1009–1044 (2003).
[CrossRef]

Shih, Y. H.

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[CrossRef]

Silberberg, Y.

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[CrossRef]

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, “Nonlinear interactions with an ultrahigh flux of broadband entangled photons,” Phys. Rev. Lett. 94, 043602 (2005).
[CrossRef]

Svozilík, J.

J. Svozilík and J. Peřina, “Properties of entangled photon pairs generated in periodically poled nonlinear crystals,” Phys. Rev. A 80, 023819 (2009).
[CrossRef]

Teich, M. C.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef]

S. Carrasco, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, “Spectral engineering of entangled two-photon states,” Phys. Rev. A 73, 063802 (2006).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

A. Joobeur, B. E. A. Saleh, and M. C. Teich, “Spatiotemporal coherence properties of entangled light beams generated by parametric down-conversion,” Phys. Rev. A 50, 3349–3361 (1994).
[CrossRef]

Thew, R.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Torner, L.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef]

S. Carrasco, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, “Spectral engineering of entangled two-photon states,” Phys. Rev. A 73, 063802 (2006).
[CrossRef]

Torres, J. P.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef]

M. Hendrych, M. Mičuda, and J. P. Torres, “Tunable control of the frequency correlations of entangled photons,” Opt. Lett. 32, 2339–2341 (2007).
[CrossRef]

S. Carrasco, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, “Spectral engineering of entangled two-photon states,” Phys. Rev. A 73, 063802 (2006).
[CrossRef]

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[CrossRef]

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

Wasilewski, W.

Wasylczyk, P.

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[CrossRef]

White, A. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

Zäh, F.

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[CrossRef]

A. Zeilinger, “Experiment and the foundations of quantum physics,” Rev. Mod. Phys. 71, S288–S297 (1999).
[CrossRef]

Zyss, J.

E. Lantz, L. Han, A. Lacourt, and J. Zyss, “Simultaneous angle and wavelength one-beam noncritical phase matching in optical parametric amplification,” Opt. Commun. 97, 245–249 (1993).
[CrossRef]

Appl. Opt. (1)

Eur. Phys. J. D (1)

F. Devaux and E. Lantz, “Spatial and temporal properties of parametric fluorescence around degeneracy in a type I LBO crystal,” Eur. Phys. J. D 8, 117–124 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

J. Opt. B (1)

L. A. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B 4, S176–S183 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[CrossRef]

Nature (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[CrossRef]

Opt. Commun. (1)

E. Lantz, L. Han, A. Lacourt, and J. Zyss, “Simultaneous angle and wavelength one-beam noncritical phase matching in optical parametric amplification,” Opt. Commun. 97, 245–249 (1993).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rep. (1)

M. Genovese, “Research on hidden variable theories: a review of recent progresses,” Phys. Rep. 413, 319–396 (2005).
[CrossRef]

Phys. Rev. (1)

R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963).
[CrossRef]

Phys. Rev. A (9)

A. Joobeur, B. E. A. Saleh, and M. C. Teich, “Spatiotemporal coherence properties of entangled light beams generated by parametric down-conversion,” Phys. Rev. A 50, 3349–3361 (1994).
[CrossRef]

J. Svozilík and J. Peřina, “Properties of entangled photon pairs generated in periodically poled nonlinear crystals,” Phys. Rev. A 80, 023819 (2009).
[CrossRef]

M. Hamar, J. Peřina, O. Haderka, and V. Michálek, “Transverse coherence of photon pairs generated in spontaneous parametric down-conversion,” Phys. Rev. A 81, 043827 (2010).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

S. Carrasco, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, “Spectral engineering of entangled two-photon states,” Phys. Rev. A 73, 063802 (2006).
[CrossRef]

S.-Y. Baek, and Y.-H. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion,” Phys. Rev. A 77, 043807 (2008).
[CrossRef]

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[CrossRef]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

L. Caspani, E. Brambilla, and A. Gatti, “Tailoring the spatiotemporal structure of biphoton entanglement in type-I parametric down-conversion,” Phys. Rev. A 81, 033808 (2010).
[CrossRef]

Phys. Rev. Lett. (7)

A. Gatti, E. Brambilla, L. Caspani, O. Jedrkiewicz, and L. Lugiato, “X entanglement: the nonfactorable spatiotemporal structure of biphoton correlation,” Phys. Rev. Lett. 102, 223601 (2009).
[CrossRef]

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[CrossRef]

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, “Nonlinear interactions with an ultrahigh flux of broadband entangled photons,” Phys. Rev. Lett. 94, 043602 (2005).
[CrossRef]

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef]

C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett. 92, 127903 (2004).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef]

O. Jedrkiewicz, A. Picozzi, M. Clerici, D. Faccio, and P. Di Trapani, “Emergence of X-shaped spatiotemporal coherence in optical waves,” Phys. Rev. Lett. 97, 243903 (2006).
[CrossRef]

Rep. Prog. Phys. (1)

Y. Shih, “Entangled biphoton source—property and preparation,” Rep. Prog. Phys. 66, 1009–1044 (2003).
[CrossRef]

Rev. Mod. Phys. (4)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[CrossRef]

A. Zeilinger, “Experiment and the foundations of quantum physics,” Rev. Mod. Phys. 71, S288–S297 (1999).
[CrossRef]

Other (1)

D. N. Klyshko, Photons and Nonlinear Optics (Gordon and Breach, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematics of the experimental setup for measuring the spectral density.

Fig. 2.
Fig. 2.

Typical normalized measured (solid curve) and simulated (dashed curve) spectral densities for two different fiber positions (x=0mm) (a) and (x=1mm) (b). The narrow peak in (a) at ωp/2 comes from remaining light of the Verdi, which is neither frequency doubled nor filtered. In (c), the fiber at x=0mm is replaced by a collimator. The measured (solid curve) spectral density shows the same structure at 0.95×ωp/2 and 1.05×ωp/2 as the simulation (dashed curve), originating from the sinc term in Eq. (2). The asymmetry in the measured curve arises because a photon with frequency ωp/2ω0 (ω0>0rad/s) diverges more than its twin photon with frequency ωp/2+ω0, giving rise to a lower coupling efficiency.

Fig. 3.
Fig. 3.

Simulation of the spectral density Eq. (8) [normalized to the maximum of (b)] generated by a Gaussian beam in a PPKTP crystal. The parameters are w0=23.27μm, T=25°C, and L0=7.5mm, and (a) G0=9.00μm, (b) G0=9.02μm, and (c) G0=9.04μm. The plots on the top result from integration along the qs,x-axis.

Fig. 4.
Fig. 4.

Measurement (a) and (c), and simulation (b) and (d) of the normalized spectral density for different beam waists w0. (a) and (b) f1=150mm and w0=23.27μm, (c) and (d) f1=300mm and w0=46.53μm. The other parameters are L0=7.5mm, T=25°C, and G0=9.018μm.

Fig. 5.
Fig. 5.

Measurements (a), (c), and (e) and simulations (b), (d), and (f) of the normalized spectral density for T=15°C [(a) and (b)], T=25°C [(c) and (d)], and T=35°C [(e) and (f)]. The other parameters are w0=46.53μm, L0=7.5mm, and G0=9.018μm.

Fig. 6.
Fig. 6.

Measurements (a) and (c), and simulations (b), (d), and (e) of the normalized spectral density for L0=7.5mm [(a) and (b)] and L0=12mm [(c), (d), and (e)]. The other parameters are w0=46.53μm, T=25°C, and G0=9.018μm. In (e), the poling period is changed to 9.016 μm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

|Ψ=|0+d2qid2qsdωsΛ(qi,ωpωs,qs,ωs)a^i(qi,ωpωs)a^s(qs,ωs)|0,
Λ(qi,ωpωs,qs,ωs)=2iϵ0χ0(2)L(T)e(ωpωs)e(ωs)3(2π)5n(ωpωs,T)n(ωs,T)Ep+(qi+qs)sinc[(Δkz+2πG(T))L(T)2],
Δkz=(ωpωscn(ωpωs,T))2qi2+(ωscn(ωs,T))2qs2(ωpcn(ωp,T))2(qi+qs)2
Δkz+2πG(T)0.
e(ωj)=iωj2(2π)3ϵ0c
E^j(qj,ωj,z)=E^j+(qj,ωj,z)+E^j(qj,ωj,z)=e(ωj)a^j(qj,ωj)eikj,zz+h.c.,
S(qs,ωs,z)=Gs(1)(qs,ωs,z)=Tr{ρ^sE^s,z(qs,ωs,z)E^s,z+(qs,ωs,z)}
S(qs,ωs)=d2qi|Λ(qi,ωpωs,qs,ωs)|2.
Ep+(qi+qs)exp(w02(qi+qs)24),

Metrics