Abstract

We study laser intensity absorption, at the wavelength of 780 nm, in neutral rubidium vapor using a tunable external cavity diode laser close to the Rb85D2 line. The dependence of laser transmission, as a function of laser intensity, was calculated using the optical Bloch equations and compared with the experiment. The calculations were extended to the saturated absorption case and compared to saturated absorption spectra. Excellent agreement between theory and experiment is observed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B At. Mol. Opt. Phys. 41, 155004 (2008).
    [CrossRef]
  2. P. Siddons, C. S. Adams, and I. G. Hughes, “Off-resonance absorption and dispersion in vapours of hot alkali-metal atoms,” J. Phys. B At. Mol. Opt. Phys. 42, 175004 (2009).
    [CrossRef]
  3. W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review (rev1),” Prog. Quantum Electron. 36, 4–28 (2012).
    [CrossRef]
  4. W. Ya-Juan, P. Bai-Liang, Z. Qi, and Y. Jing, “A kinetic model for diode pumped rubidium vapor laser,” Opt. Commun. 284, 4045–4048 (2011).
    [CrossRef]
  5. D. Bhattacharyya, B. K. Dutta, B. Ray, and P. N. Ghosh, “Line shape simulation and saturated absorption and spectroscopic measurement of Rb-D2 transition,” Chem. Phys. Lett. 389, 113–118 (2004).
    [CrossRef]
  6. I. E. Olivares, A. E. Duarte, T. Lokajczyk, A. Dinklage, and F. J. Duarte, “Doppler-free spectroscopy and collisional studies with tunable diode lasers of lithium isotopes in a heat-pipe oven,” J. Opt. Soc. Am. B 15, 1932–1939 (1998).
    [CrossRef]
  7. A. Dinklage, T. Lokajczyk, H.-J. Kunze, B. Schweer, and I. E. Olivares, “In-situ density control for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
    [CrossRef]
  8. I. E. Olivares, J. A. Cuadra, F. A. Aguilar, J. G. Aguirre Gomez, and F. J. Duarte, “Optical method using rotating Glan–Thompson polarizers to independently vary the power of the excitation and repumping lasers in laser cooling experiments,” J. Mod. Opt. 56, 1780–1784 (2009).
    [CrossRef]
  9. E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
    [CrossRef]
  10. I. E. Olivares and A. E. Duarte, “Resonance ionization spectroscopy in a thermal lithium beam by means of diode lasers,” Appl. Opt. 38, 7481–7485 (1999).
    [CrossRef]
  11. I. E. Olivares, A. E. Duarte, E. A. Saravia, and F. J. Duarte, “Lithium isotope separation with tunable diode lasers,” Appl. Opt. 41, 2973–2977 (2002).
    [CrossRef]
  12. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation, 2nd ed. (Springer, 1998).
  13. P. Zorabedian, “Tunable external-cavity semiconductor lasers,” in Tunable Lasers Handbook, F. J. Duarte, ed. (Academic, 1995), pp. 349–442.
  14. F. J. Duarte, “Broadly tunable external-cavity semiconductor lasers,” in Tunable Laser Applications (CRC, 2009), pp. 143–178.

2012

W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review (rev1),” Prog. Quantum Electron. 36, 4–28 (2012).
[CrossRef]

2011

W. Ya-Juan, P. Bai-Liang, Z. Qi, and Y. Jing, “A kinetic model for diode pumped rubidium vapor laser,” Opt. Commun. 284, 4045–4048 (2011).
[CrossRef]

2009

P. Siddons, C. S. Adams, and I. G. Hughes, “Off-resonance absorption and dispersion in vapours of hot alkali-metal atoms,” J. Phys. B At. Mol. Opt. Phys. 42, 175004 (2009).
[CrossRef]

I. E. Olivares, J. A. Cuadra, F. A. Aguilar, J. G. Aguirre Gomez, and F. J. Duarte, “Optical method using rotating Glan–Thompson polarizers to independently vary the power of the excitation and repumping lasers in laser cooling experiments,” J. Mod. Opt. 56, 1780–1784 (2009).
[CrossRef]

2008

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B At. Mol. Opt. Phys. 41, 155004 (2008).
[CrossRef]

2004

D. Bhattacharyya, B. K. Dutta, B. Ray, and P. N. Ghosh, “Line shape simulation and saturated absorption and spectroscopic measurement of Rb-D2 transition,” Chem. Phys. Lett. 389, 113–118 (2004).
[CrossRef]

2002

1999

1998

I. E. Olivares, A. E. Duarte, T. Lokajczyk, A. Dinklage, and F. J. Duarte, “Doppler-free spectroscopy and collisional studies with tunable diode lasers of lithium isotopes in a heat-pipe oven,” J. Opt. Soc. Am. B 15, 1932–1939 (1998).
[CrossRef]

A. Dinklage, T. Lokajczyk, H.-J. Kunze, B. Schweer, and I. E. Olivares, “In-situ density control for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[CrossRef]

1996

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
[CrossRef]

Adams, C. S.

P. Siddons, C. S. Adams, and I. G. Hughes, “Off-resonance absorption and dispersion in vapours of hot alkali-metal atoms,” J. Phys. B At. Mol. Opt. Phys. 42, 175004 (2009).
[CrossRef]

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B At. Mol. Opt. Phys. 41, 155004 (2008).
[CrossRef]

Aguilar, F. A.

I. E. Olivares, J. A. Cuadra, F. A. Aguilar, J. G. Aguirre Gomez, and F. J. Duarte, “Optical method using rotating Glan–Thompson polarizers to independently vary the power of the excitation and repumping lasers in laser cooling experiments,” J. Mod. Opt. 56, 1780–1784 (2009).
[CrossRef]

Arimondo, E.

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
[CrossRef]

Bai-Liang, P.

W. Ya-Juan, P. Bai-Liang, Z. Qi, and Y. Jing, “A kinetic model for diode pumped rubidium vapor laser,” Opt. Commun. 284, 4045–4048 (2011).
[CrossRef]

Bhattacharyya, D.

D. Bhattacharyya, B. K. Dutta, B. Ray, and P. N. Ghosh, “Line shape simulation and saturated absorption and spectroscopic measurement of Rb-D2 transition,” Chem. Phys. Lett. 389, 113–118 (2004).
[CrossRef]

Cuadra, J. A.

I. E. Olivares, J. A. Cuadra, F. A. Aguilar, J. G. Aguirre Gomez, and F. J. Duarte, “Optical method using rotating Glan–Thompson polarizers to independently vary the power of the excitation and repumping lasers in laser cooling experiments,” J. Mod. Opt. 56, 1780–1784 (2009).
[CrossRef]

Demtröder, W.

W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation, 2nd ed. (Springer, 1998).

Dinklage, A.

A. Dinklage, T. Lokajczyk, H.-J. Kunze, B. Schweer, and I. E. Olivares, “In-situ density control for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[CrossRef]

I. E. Olivares, A. E. Duarte, T. Lokajczyk, A. Dinklage, and F. J. Duarte, “Doppler-free spectroscopy and collisional studies with tunable diode lasers of lithium isotopes in a heat-pipe oven,” J. Opt. Soc. Am. B 15, 1932–1939 (1998).
[CrossRef]

Duarte, A. E.

Duarte, F. J.

I. E. Olivares, J. A. Cuadra, F. A. Aguilar, J. G. Aguirre Gomez, and F. J. Duarte, “Optical method using rotating Glan–Thompson polarizers to independently vary the power of the excitation and repumping lasers in laser cooling experiments,” J. Mod. Opt. 56, 1780–1784 (2009).
[CrossRef]

I. E. Olivares, A. E. Duarte, E. A. Saravia, and F. J. Duarte, “Lithium isotope separation with tunable diode lasers,” Appl. Opt. 41, 2973–2977 (2002).
[CrossRef]

I. E. Olivares, A. E. Duarte, T. Lokajczyk, A. Dinklage, and F. J. Duarte, “Doppler-free spectroscopy and collisional studies with tunable diode lasers of lithium isotopes in a heat-pipe oven,” J. Opt. Soc. Am. B 15, 1932–1939 (1998).
[CrossRef]

F. J. Duarte, “Broadly tunable external-cavity semiconductor lasers,” in Tunable Laser Applications (CRC, 2009), pp. 143–178.

Dutta, B. K.

D. Bhattacharyya, B. K. Dutta, B. Ray, and P. N. Ghosh, “Line shape simulation and saturated absorption and spectroscopic measurement of Rb-D2 transition,” Chem. Phys. Lett. 389, 113–118 (2004).
[CrossRef]

Ge, C.

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B At. Mol. Opt. Phys. 41, 155004 (2008).
[CrossRef]

Ghosh, P. N.

D. Bhattacharyya, B. K. Dutta, B. Ray, and P. N. Ghosh, “Line shape simulation and saturated absorption and spectroscopic measurement of Rb-D2 transition,” Chem. Phys. Lett. 389, 113–118 (2004).
[CrossRef]

Gomez, J. G. Aguirre

I. E. Olivares, J. A. Cuadra, F. A. Aguilar, J. G. Aguirre Gomez, and F. J. Duarte, “Optical method using rotating Glan–Thompson polarizers to independently vary the power of the excitation and repumping lasers in laser cooling experiments,” J. Mod. Opt. 56, 1780–1784 (2009).
[CrossRef]

Hughes, I. G.

P. Siddons, C. S. Adams, and I. G. Hughes, “Off-resonance absorption and dispersion in vapours of hot alkali-metal atoms,” J. Phys. B At. Mol. Opt. Phys. 42, 175004 (2009).
[CrossRef]

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B At. Mol. Opt. Phys. 41, 155004 (2008).
[CrossRef]

Jing, Y.

W. Ya-Juan, P. Bai-Liang, Z. Qi, and Y. Jing, “A kinetic model for diode pumped rubidium vapor laser,” Opt. Commun. 284, 4045–4048 (2011).
[CrossRef]

Krupke, W. F.

W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review (rev1),” Prog. Quantum Electron. 36, 4–28 (2012).
[CrossRef]

Kunze, H.-J.

A. Dinklage, T. Lokajczyk, H.-J. Kunze, B. Schweer, and I. E. Olivares, “In-situ density control for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[CrossRef]

Lokajczyk, T.

A. Dinklage, T. Lokajczyk, H.-J. Kunze, B. Schweer, and I. E. Olivares, “In-situ density control for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[CrossRef]

I. E. Olivares, A. E. Duarte, T. Lokajczyk, A. Dinklage, and F. J. Duarte, “Doppler-free spectroscopy and collisional studies with tunable diode lasers of lithium isotopes in a heat-pipe oven,” J. Opt. Soc. Am. B 15, 1932–1939 (1998).
[CrossRef]

Olivares, I. E.

I. E. Olivares, J. A. Cuadra, F. A. Aguilar, J. G. Aguirre Gomez, and F. J. Duarte, “Optical method using rotating Glan–Thompson polarizers to independently vary the power of the excitation and repumping lasers in laser cooling experiments,” J. Mod. Opt. 56, 1780–1784 (2009).
[CrossRef]

I. E. Olivares, A. E. Duarte, E. A. Saravia, and F. J. Duarte, “Lithium isotope separation with tunable diode lasers,” Appl. Opt. 41, 2973–2977 (2002).
[CrossRef]

I. E. Olivares and A. E. Duarte, “Resonance ionization spectroscopy in a thermal lithium beam by means of diode lasers,” Appl. Opt. 38, 7481–7485 (1999).
[CrossRef]

A. Dinklage, T. Lokajczyk, H.-J. Kunze, B. Schweer, and I. E. Olivares, “In-situ density control for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[CrossRef]

I. E. Olivares, A. E. Duarte, T. Lokajczyk, A. Dinklage, and F. J. Duarte, “Doppler-free spectroscopy and collisional studies with tunable diode lasers of lithium isotopes in a heat-pipe oven,” J. Opt. Soc. Am. B 15, 1932–1939 (1998).
[CrossRef]

Qi, Z.

W. Ya-Juan, P. Bai-Liang, Z. Qi, and Y. Jing, “A kinetic model for diode pumped rubidium vapor laser,” Opt. Commun. 284, 4045–4048 (2011).
[CrossRef]

Ray, B.

D. Bhattacharyya, B. K. Dutta, B. Ray, and P. N. Ghosh, “Line shape simulation and saturated absorption and spectroscopic measurement of Rb-D2 transition,” Chem. Phys. Lett. 389, 113–118 (2004).
[CrossRef]

Saravia, E. A.

Schweer, B.

A. Dinklage, T. Lokajczyk, H.-J. Kunze, B. Schweer, and I. E. Olivares, “In-situ density control for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[CrossRef]

Siddons, P.

P. Siddons, C. S. Adams, and I. G. Hughes, “Off-resonance absorption and dispersion in vapours of hot alkali-metal atoms,” J. Phys. B At. Mol. Opt. Phys. 42, 175004 (2009).
[CrossRef]

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B At. Mol. Opt. Phys. 41, 155004 (2008).
[CrossRef]

Ya-Juan, W.

W. Ya-Juan, P. Bai-Liang, Z. Qi, and Y. Jing, “A kinetic model for diode pumped rubidium vapor laser,” Opt. Commun. 284, 4045–4048 (2011).
[CrossRef]

Zorabedian, P.

P. Zorabedian, “Tunable external-cavity semiconductor lasers,” in Tunable Lasers Handbook, F. J. Duarte, ed. (Academic, 1995), pp. 349–442.

Appl. Opt.

Chem. Phys. Lett.

D. Bhattacharyya, B. K. Dutta, B. Ray, and P. N. Ghosh, “Line shape simulation and saturated absorption and spectroscopic measurement of Rb-D2 transition,” Chem. Phys. Lett. 389, 113–118 (2004).
[CrossRef]

J. Mod. Opt.

I. E. Olivares, J. A. Cuadra, F. A. Aguilar, J. G. Aguirre Gomez, and F. J. Duarte, “Optical method using rotating Glan–Thompson polarizers to independently vary the power of the excitation and repumping lasers in laser cooling experiments,” J. Mod. Opt. 56, 1780–1784 (2009).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B At. Mol. Opt. Phys.

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B At. Mol. Opt. Phys. 41, 155004 (2008).
[CrossRef]

P. Siddons, C. S. Adams, and I. G. Hughes, “Off-resonance absorption and dispersion in vapours of hot alkali-metal atoms,” J. Phys. B At. Mol. Opt. Phys. 42, 175004 (2009).
[CrossRef]

Opt. Commun.

W. Ya-Juan, P. Bai-Liang, Z. Qi, and Y. Jing, “A kinetic model for diode pumped rubidium vapor laser,” Opt. Commun. 284, 4045–4048 (2011).
[CrossRef]

Prog. Opt.

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
[CrossRef]

Prog. Quantum Electron.

W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review (rev1),” Prog. Quantum Electron. 36, 4–28 (2012).
[CrossRef]

Rev. Sci. Instrum.

A. Dinklage, T. Lokajczyk, H.-J. Kunze, B. Schweer, and I. E. Olivares, “In-situ density control for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[CrossRef]

Other

W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation, 2nd ed. (Springer, 1998).

P. Zorabedian, “Tunable external-cavity semiconductor lasers,” in Tunable Lasers Handbook, F. J. Duarte, ed. (Academic, 1995), pp. 349–442.

F. J. Duarte, “Broadly tunable external-cavity semiconductor lasers,” in Tunable Laser Applications (CRC, 2009), pp. 143–178.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Energy level diagram with the corresponding multiplet numbers.

Fig. 2.
Fig. 2.

Setup of the absorption experiment. PD, photodiode; M1 to M6, mirrors; PBSC, polarizing beam splitter cube; GP, glass plate; ID, iris diaphragm; OGD, optical glass divider; HWP, half-wave plate; OP, optical powermeter; BE, beam expander.

Fig. 3.
Fig. 3.

Saturated absorption configuration.

Fig. 4.
Fig. 4.

Transmission measured at resonance versus laser intensity.

Fig. 5.
Fig. 5.

Saturated absorption experimental (solid line) and theoretical (thin line) spectrum of the Rb85D2 line. T=20.5°C, diameters of pump and probe lasers Dp=1.91mm and Dd=1.85mm, respectively. Pump and probe intensities before entering the cell were Ip=8.17mW/cm2 and Id=0.244mW/cm2, respectively. The cell length was L=70mm.

Tables (1)

Tables Icon

Table 1. Values for Nifq=|i|Dq|f|2/D2 for Each Transition of Rb85 between Ground States Labeled with i and Excited States Labeled with ja

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ρ˙ii=fWif(ρffρii)+γT(ρii0ρii)+fafiρffρ˙ff=iWif(ρiiρff)+γT(ρff0ρff)γρff.
afi=4ω3Ke3c3q|i|Dq|f|2
Wif=12|Ωif|2Γ(ωωifkυ)2+Γ2
|i|Dq|f|2=1/3C(FiFfmi,mf;1q)2(2Fi+1)×(2Ff+1)W(JiI1Ff;FiJf)2δSi,Sf×(2Ji+1)(2Jf+1)×W(LiSi1Jf;JiLf)2D2,
D2=1τ·3c3(2Lf+1)4ω3Ke
|Ωif|2=8πIKec2|i|D0|f|2
ρ˙11=W13(ρ33g3g1ρ11)+W14(ρ44g4g1ρ11)+W15(ρ55g5g1ρ11)+γ(ρ33+79ρ44+49ρ55)+γT(512ρ11),ρ˙22=W24(ρ44g4g2·ρ22)+W25(ρ55g5g2ρ22)+W26(ρ66g6g2ρ22)+γ(29ρ44+59ρ55+ρ66)+γT(712ρ22),ρ˙33=W13(g3g1ρ11ρ33)(γ+γT)ρ33,ρ˙44=W14(g4g1ρ11ρ44)+W24(g4g2ρ22ρ44)(γ+γT)ρ44,ρ˙55=W15(g5g1ρ11ρ55)+W25(g5g2ρ22ρ55)(γ+γT)ρ55,1=ρ11+ρ22+ρ33+ρ44+ρ55+ρ66,
Wjk=12·(8πKec2D2)·Γ((ωω0)(ωjωk)kυ)2+Γ2·Njk·I
dI=hνifnifWif(ρffρii)dx=hνifnγρedx.
F(υ)=(m2πkBT)1/2exp(mυ22kBT),
log10Pvapor(Torr)=2.881+4.85742157/T(°K).
dI=hνifnifWif+(ρffρii)dx,

Metrics