Abstract

We report a theoretical scheme for laser cooling of solids based on energy transfer usually found in rare-earth codoped materials. The cooling scheme enables a large enhancement in the cooling efficiency with regard to the standard anti-Stokes fluorescence cooling. A Ho3+ and Tm3+-codoped low-phonon crystal (LiYF4) sample is investigated to find that the cooling efficiency increases, and then decreases with the increasing of the resonant absorption. The optimal cooling efficiency is predicted to exceed 5%. The maximum cooling power density could be promoted greatly by applying the codoped cooling scheme. The cooling scheme is also valid for other rare-earth (for example, Tm3+ and Er3+, or Er3+ and Yb3+) codoped materials.

© 2013 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photon. 4, 78–107 (2012).
    [CrossRef]
  2. P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturestrahlung,” Z. Phys. 57, 739–746 (1929).
    [CrossRef]
  3. L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. 10, 503–506 (1946).
  4. T. Kushida and J. E. Geusic, “Optical refrigeration in Nd-doped yttrium aluminum garnet,” Phys. Rev. Lett. 21, 1172–1175 (1968).
    [CrossRef]
  5. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
    [CrossRef]
  6. A. Mendioroz, J. Fernandez, M. Voda, M. Al-Saleh, R. Balda, and A. J. Garcia-Adeva, “Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal,” Opt. Lett. 27, 1525–1527 (2002).
    [CrossRef]
  7. J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86, 154107 (2005).
    [CrossRef]
  8. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603(2000).
    [CrossRef]
  9. W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. I. Epstein, “Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8,” Opt. Express 16, 1704–1710 (2008).
    [CrossRef]
  10. J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97, 033001 (2006).
    [CrossRef]
  11. M. P. Hehlen, “Crystal-field effects in fluoride crystals for optical refrigeration,” Proc. SPIE. 7614, 761404 (2010).
    [CrossRef]
  12. D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19, 18229–18236 (2011).
    [CrossRef]
  13. M. P. Hehlen, “Novel materials for laser refrigeration,” Proc. SPIE. 7228, 72280E (2009).
    [CrossRef]
  14. B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4-BaF2-LaF3-AlF3-NaF glass,” Phys. Rev. A 70, 021401 (2004).
    [CrossRef]
  15. D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96, 181106 (2010).
    [CrossRef]
  16. X. L. Ruan and M. Kaviany, “Enhanced laser cooling of rare-earth-ion-doped nanocrystalline powders,” Phys. Rev. B 73, 155422 (2006).
    [CrossRef]
  17. A. J. Garcia-Adeva, R. Balda, and J. Fernandez, “Upconversion cooling of Er-doped low-phonon fluorescent solids,” Phys. Rev. B 79, 033110 (2009).
    [CrossRef]
  18. G. Nemova and R. Kashyap, “Laser cooling of Er3+-doped solids,” Opt. Commun. 283, 3736–3739 (2010).
    [CrossRef]
  19. E. K. Bashkirov, “Dynamics of phonon mode in superradiance regime of laser cooling of crystals,” Phys. Lett. A 341, 345–351 (2005).
    [CrossRef]
  20. G. Nemova and R. Kashyap, “Alternative technique for laser cooling with superradiance,” Phys. Rev. A 83, 013404 (2011).
    [CrossRef]
  21. S. C. Rand, “Raman laser cooling of solids,” J. Lumin. 133, 10–14 (2013).
    [CrossRef]
  22. M. Tomes, F. Marquardt, G. Bahl, and T. Carmon, “Quantum-mechanical theory of optomechanical Brillouin cooling,” Phys. Rev. A 84, 063806 (2011).
    [CrossRef]
  23. B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “On the distribution of energy between the Tm F43 and Ho I75 manifolds in Tm-sensitized Ho luminescence,” J. Lumin. 75, 89–98 (1997).
    [CrossRef]
  24. B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004).
    [CrossRef]
  25. M. Faiconieri and G. Salvetti, “Effects of co-dopant concentrations and excitation conditions on the 2 μm fluorescence dynamics in Tm, Ho: YLF crystals,” Appl. Phys. A 59, 253–258(1994).
    [CrossRef]
  26. R. Powell, Physics of Solid-State Laser Materials (Springer-Verlag, 1998).
  27. C. W. Hoyt, M. P. Hasselbeck, and M. Sheik-Bahae, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20, 1066–1074 (2003).
    [CrossRef]
  28. B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “The temperature dependence of energy transfer between the Tm F43 and Ho I75 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin. 90, 39–48 (2000).
    [CrossRef]
  29. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
    [CrossRef]
  30. J. M. F. van Dijk and M. F. H. Schuurmans, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f−4f transitions in rare-earth ions,” J. Chem. Phys. 78, 5317–5323 (1983).
    [CrossRef]
  31. B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
    [CrossRef]

2013 (1)

S. C. Rand, “Raman laser cooling of solids,” J. Lumin. 133, 10–14 (2013).
[CrossRef]

2012 (1)

2011 (3)

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19, 18229–18236 (2011).
[CrossRef]

G. Nemova and R. Kashyap, “Alternative technique for laser cooling with superradiance,” Phys. Rev. A 83, 013404 (2011).
[CrossRef]

M. Tomes, F. Marquardt, G. Bahl, and T. Carmon, “Quantum-mechanical theory of optomechanical Brillouin cooling,” Phys. Rev. A 84, 063806 (2011).
[CrossRef]

2010 (4)

G. Nemova and R. Kashyap, “Laser cooling of Er3+-doped solids,” Opt. Commun. 283, 3736–3739 (2010).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96, 181106 (2010).
[CrossRef]

M. P. Hehlen, “Crystal-field effects in fluoride crystals for optical refrigeration,” Proc. SPIE. 7614, 761404 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

2009 (2)

M. P. Hehlen, “Novel materials for laser refrigeration,” Proc. SPIE. 7228, 72280E (2009).
[CrossRef]

A. J. Garcia-Adeva, R. Balda, and J. Fernandez, “Upconversion cooling of Er-doped low-phonon fluorescent solids,” Phys. Rev. B 79, 033110 (2009).
[CrossRef]

2008 (1)

2006 (2)

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97, 033001 (2006).
[CrossRef]

X. L. Ruan and M. Kaviany, “Enhanced laser cooling of rare-earth-ion-doped nanocrystalline powders,” Phys. Rev. B 73, 155422 (2006).
[CrossRef]

2005 (2)

E. K. Bashkirov, “Dynamics of phonon mode in superradiance regime of laser cooling of crystals,” Phys. Lett. A 341, 345–351 (2005).
[CrossRef]

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86, 154107 (2005).
[CrossRef]

2004 (2)

B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4-BaF2-LaF3-AlF3-NaF glass,” Phys. Rev. A 70, 021401 (2004).
[CrossRef]

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004).
[CrossRef]

2003 (1)

2002 (1)

2000 (2)

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “The temperature dependence of energy transfer between the Tm F43 and Ho I75 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin. 90, 39–48 (2000).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603(2000).
[CrossRef]

1998 (1)

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

1997 (1)

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “On the distribution of energy between the Tm F43 and Ho I75 manifolds in Tm-sensitized Ho luminescence,” J. Lumin. 75, 89–98 (1997).
[CrossRef]

1995 (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

1994 (1)

M. Faiconieri and G. Salvetti, “Effects of co-dopant concentrations and excitation conditions on the 2 μm fluorescence dynamics in Tm, Ho: YLF crystals,” Appl. Phys. A 59, 253–258(1994).
[CrossRef]

1983 (1)

J. M. F. van Dijk and M. F. H. Schuurmans, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f−4f transitions in rare-earth ions,” J. Chem. Phys. 78, 5317–5323 (1983).
[CrossRef]

1968 (1)

T. Kushida and J. E. Geusic, “Optical refrigeration in Nd-doped yttrium aluminum garnet,” Phys. Rev. Lett. 21, 1172–1175 (1968).
[CrossRef]

1946 (1)

L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. 10, 503–506 (1946).

1929 (1)

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturestrahlung,” Z. Phys. 57, 739–746 (1929).
[CrossRef]

Al-Saleh, M.

Anderson, J. E.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603(2000).
[CrossRef]

Bahl, G.

M. Tomes, F. Marquardt, G. Bahl, and T. Carmon, “Quantum-mechanical theory of optomechanical Brillouin cooling,” Phys. Rev. A 84, 063806 (2011).
[CrossRef]

Balda, R.

A. J. Garcia-Adeva, R. Balda, and J. Fernandez, “Upconversion cooling of Er-doped low-phonon fluorescent solids,” Phys. Rev. B 79, 033110 (2009).
[CrossRef]

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97, 033001 (2006).
[CrossRef]

A. Mendioroz, J. Fernandez, M. Voda, M. Al-Saleh, R. Balda, and A. J. Garcia-Adeva, “Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal,” Opt. Lett. 27, 1525–1527 (2002).
[CrossRef]

Barnes, N. P.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004).
[CrossRef]

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “The temperature dependence of energy transfer between the Tm F43 and Ho I75 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin. 90, 39–48 (2000).
[CrossRef]

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “On the distribution of energy between the Tm F43 and Ho I75 manifolds in Tm-sensitized Ho luminescence,” J. Lumin. 75, 89–98 (1997).
[CrossRef]

Bartolo, B. D.

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “The temperature dependence of energy transfer between the Tm F43 and Ho I75 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin. 90, 39–48 (2000).
[CrossRef]

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “On the distribution of energy between the Tm F43 and Ho I75 manifolds in Tm-sensitized Ho luminescence,” J. Lumin. 75, 89–98 (1997).
[CrossRef]

Bashkirov, E. K.

E. K. Bashkirov, “Dynamics of phonon mode in superradiance regime of laser cooling of crystals,” Phys. Lett. A 341, 345–351 (2005).
[CrossRef]

Bigotta, S.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. I. Epstein, “Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8,” Opt. Express 16, 1704–1710 (2008).
[CrossRef]

Buchwald, M. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Carmon, T.

M. Tomes, F. Marquardt, G. Bahl, and T. Carmon, “Quantum-mechanical theory of optomechanical Brillouin cooling,” Phys. Rev. A 84, 063806 (2011).
[CrossRef]

DeBarber, P. A.

B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4-BaF2-LaF3-AlF3-NaF glass,” Phys. Rev. A 70, 021401 (2004).
[CrossRef]

Distel, J.

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86, 154107 (2005).
[CrossRef]

Edwards, B. C.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603(2000).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Epstein, R. I.

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photon. 4, 78–107 (2012).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19, 18229–18236 (2011).
[CrossRef]

W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. I. Epstein, “Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8,” Opt. Express 16, 1704–1710 (2008).
[CrossRef]

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86, 154107 (2005).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603(2000).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Faiconieri, M.

M. Faiconieri and G. Salvetti, “Effects of co-dopant concentrations and excitation conditions on the 2 μm fluorescence dynamics in Tm, Ho: YLF crystals,” Appl. Phys. A 59, 253–258(1994).
[CrossRef]

Fernandez, J.

A. J. Garcia-Adeva, R. Balda, and J. Fernandez, “Upconversion cooling of Er-doped low-phonon fluorescent solids,” Phys. Rev. B 79, 033110 (2009).
[CrossRef]

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97, 033001 (2006).
[CrossRef]

A. Mendioroz, J. Fernandez, M. Voda, M. Al-Saleh, R. Balda, and A. J. Garcia-Adeva, “Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal,” Opt. Lett. 27, 1525–1527 (2002).
[CrossRef]

Garcia-Adeva, A. J.

A. J. Garcia-Adeva, R. Balda, and J. Fernandez, “Upconversion cooling of Er-doped low-phonon fluorescent solids,” Phys. Rev. B 79, 033110 (2009).
[CrossRef]

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97, 033001 (2006).
[CrossRef]

A. Mendioroz, J. Fernandez, M. Voda, M. Al-Saleh, R. Balda, and A. J. Garcia-Adeva, “Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal,” Opt. Lett. 27, 1525–1527 (2002).
[CrossRef]

Geusic, J. E.

T. Kushida and J. E. Geusic, “Optical refrigeration in Nd-doped yttrium aluminum garnet,” Phys. Rev. Lett. 21, 1172–1175 (1968).
[CrossRef]

Gosnell, T. R.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Greenfield, S. R.

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86, 154107 (2005).
[CrossRef]

Hasselbeck, M. P.

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96, 181106 (2010).
[CrossRef]

C. W. Hoyt, M. P. Hasselbeck, and M. Sheik-Bahae, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20, 1066–1074 (2003).
[CrossRef]

Heeg, B.

B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4-BaF2-LaF3-AlF3-NaF glass,” Phys. Rev. A 70, 021401 (2004).
[CrossRef]

Hehlen, M. P.

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photon. 4, 78–107 (2012).
[CrossRef]

M. P. Hehlen, “Crystal-field effects in fluoride crystals for optical refrigeration,” Proc. SPIE. 7614, 761404 (2010).
[CrossRef]

M. P. Hehlen, “Novel materials for laser refrigeration,” Proc. SPIE. 7228, 72280E (2009).
[CrossRef]

Hoyt, C. W.

C. W. Hoyt, M. P. Hasselbeck, and M. Sheik-Bahae, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20, 1066–1074 (2003).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603(2000).
[CrossRef]

Kashyap, R.

G. Nemova and R. Kashyap, “Alternative technique for laser cooling with superradiance,” Phys. Rev. A 83, 013404 (2011).
[CrossRef]

G. Nemova and R. Kashyap, “Laser cooling of Er3+-doped solids,” Opt. Commun. 283, 3736–3739 (2010).
[CrossRef]

Kaviany, M.

X. L. Ruan and M. Kaviany, “Enhanced laser cooling of rare-earth-ion-doped nanocrystalline powders,” Phys. Rev. B 73, 155422 (2006).
[CrossRef]

Khizhnyak, A.

B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4-BaF2-LaF3-AlF3-NaF glass,” Phys. Rev. A 70, 021401 (2004).
[CrossRef]

Kushida, T.

T. Kushida and J. E. Geusic, “Optical refrigeration in Nd-doped yttrium aluminum garnet,” Phys. Rev. Lett. 21, 1172–1175 (1968).
[CrossRef]

Landau, L.

L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. 10, 503–506 (1946).

Lieto, A. D.

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19, 18229–18236 (2011).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

Marquardt, F.

M. Tomes, F. Marquardt, G. Bahl, and T. Carmon, “Quantum-mechanical theory of optomechanical Brillouin cooling,” Phys. Rev. A 84, 063806 (2011).
[CrossRef]

Melgaard, S. D.

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19, 18229–18236 (2011).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

Mendioroz, A.

Mills, G.

B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4-BaF2-LaF3-AlF3-NaF glass,” Phys. Rev. A 70, 021401 (2004).
[CrossRef]

Mungan, C. E.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Nemova, G.

G. Nemova and R. Kashyap, “Alternative technique for laser cooling with superradiance,” Phys. Rev. A 83, 013404 (2011).
[CrossRef]

G. Nemova and R. Kashyap, “Laser cooling of Er3+-doped solids,” Opt. Commun. 283, 3736–3739 (2010).
[CrossRef]

Parisi, D.

Patterson, W.

Petros, M.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004).
[CrossRef]

Powell, R.

R. Powell, Physics of Solid-State Laser Materials (Springer-Verlag, 1998).

Pringsheim, P.

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturestrahlung,” Z. Phys. 57, 739–746 (1929).
[CrossRef]

Rand, S. C.

S. C. Rand, “Raman laser cooling of solids,” J. Lumin. 133, 10–14 (2013).
[CrossRef]

Ruan, X. L.

X. L. Ruan and M. Kaviany, “Enhanced laser cooling of rare-earth-ion-doped nanocrystalline powders,” Phys. Rev. B 73, 155422 (2006).
[CrossRef]

Rumbles, G.

B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4-BaF2-LaF3-AlF3-NaF glass,” Phys. Rev. A 70, 021401 (2004).
[CrossRef]

Salvetti, G.

M. Faiconieri and G. Salvetti, “Effects of co-dopant concentrations and excitation conditions on the 2 μm fluorescence dynamics in Tm, Ho: YLF crystals,” Appl. Phys. A 59, 253–258(1994).
[CrossRef]

Schuurmans, M. F. H.

J. M. F. van Dijk and M. F. H. Schuurmans, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f−4f transitions in rare-earth ions,” J. Chem. Phys. 78, 5317–5323 (1983).
[CrossRef]

Seletskiy, D. V.

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photon. 4, 78–107 (2012).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19, 18229–18236 (2011).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96, 181106 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

Sheik-Bahae, M.

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photon. 4, 78–107 (2012).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19, 18229–18236 (2011).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96, 181106 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. I. Epstein, “Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8,” Opt. Express 16, 1704–1710 (2008).
[CrossRef]

C. W. Hoyt, M. P. Hasselbeck, and M. Sheik-Bahae, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20, 1066–1074 (2003).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603(2000).
[CrossRef]

Singh, U. N.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004).
[CrossRef]

Stone, M. D.

B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4-BaF2-LaF3-AlF3-NaF glass,” Phys. Rev. A 70, 021401 (2004).
[CrossRef]

Thiede, J.

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86, 154107 (2005).
[CrossRef]

Tomes, M.

M. Tomes, F. Marquardt, G. Bahl, and T. Carmon, “Quantum-mechanical theory of optomechanical Brillouin cooling,” Phys. Rev. A 84, 063806 (2011).
[CrossRef]

Tonelli, M.

van Dijk, J. M. F.

J. M. F. van Dijk and M. F. H. Schuurmans, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f−4f transitions in rare-earth ions,” J. Chem. Phys. 78, 5317–5323 (1983).
[CrossRef]

Voda, M.

Walsh, B. M.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004).
[CrossRef]

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “The temperature dependence of energy transfer between the Tm F43 and Ho I75 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin. 90, 39–48 (2000).
[CrossRef]

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “On the distribution of energy between the Tm F43 and Ho I75 manifolds in Tm-sensitized Ho luminescence,” J. Lumin. 75, 89–98 (1997).
[CrossRef]

Yu, J.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Phys. A (1)

M. Faiconieri and G. Salvetti, “Effects of co-dopant concentrations and excitation conditions on the 2 μm fluorescence dynamics in Tm, Ho: YLF crystals,” Appl. Phys. A 59, 253–258(1994).
[CrossRef]

Appl. Phys. Lett. (2)

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86, 154107 (2005).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96, 181106 (2010).
[CrossRef]

J. Appl. Phys. (2)

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004).
[CrossRef]

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

J. Chem. Phys. (1)

J. M. F. van Dijk and M. F. H. Schuurmans, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f−4f transitions in rare-earth ions,” J. Chem. Phys. 78, 5317–5323 (1983).
[CrossRef]

J. Lumin. (3)

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “The temperature dependence of energy transfer between the Tm F43 and Ho I75 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin. 90, 39–48 (2000).
[CrossRef]

S. C. Rand, “Raman laser cooling of solids,” J. Lumin. 133, 10–14 (2013).
[CrossRef]

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “On the distribution of energy between the Tm F43 and Ho I75 manifolds in Tm-sensitized Ho luminescence,” J. Lumin. 75, 89–98 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. (1)

L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. 10, 503–506 (1946).

Nat. Photonics (1)

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

Nature (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Opt. Commun. (1)

G. Nemova and R. Kashyap, “Laser cooling of Er3+-doped solids,” Opt. Commun. 283, 3736–3739 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Lett. A (1)

E. K. Bashkirov, “Dynamics of phonon mode in superradiance regime of laser cooling of crystals,” Phys. Lett. A 341, 345–351 (2005).
[CrossRef]

Phys. Rev. A (3)

G. Nemova and R. Kashyap, “Alternative technique for laser cooling with superradiance,” Phys. Rev. A 83, 013404 (2011).
[CrossRef]

B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4-BaF2-LaF3-AlF3-NaF glass,” Phys. Rev. A 70, 021401 (2004).
[CrossRef]

M. Tomes, F. Marquardt, G. Bahl, and T. Carmon, “Quantum-mechanical theory of optomechanical Brillouin cooling,” Phys. Rev. A 84, 063806 (2011).
[CrossRef]

Phys. Rev. B (2)

X. L. Ruan and M. Kaviany, “Enhanced laser cooling of rare-earth-ion-doped nanocrystalline powders,” Phys. Rev. B 73, 155422 (2006).
[CrossRef]

A. J. Garcia-Adeva, R. Balda, and J. Fernandez, “Upconversion cooling of Er-doped low-phonon fluorescent solids,” Phys. Rev. B 79, 033110 (2009).
[CrossRef]

Phys. Rev. Lett. (3)

T. Kushida and J. E. Geusic, “Optical refrigeration in Nd-doped yttrium aluminum garnet,” Phys. Rev. Lett. 21, 1172–1175 (1968).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603(2000).
[CrossRef]

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97, 033001 (2006).
[CrossRef]

Proc. SPIE. (2)

M. P. Hehlen, “Crystal-field effects in fluoride crystals for optical refrigeration,” Proc. SPIE. 7614, 761404 (2010).
[CrossRef]

M. P. Hehlen, “Novel materials for laser refrigeration,” Proc. SPIE. 7228, 72280E (2009).
[CrossRef]

Z. Phys. (1)

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturestrahlung,” Z. Phys. 57, 739–746 (1929).
[CrossRef]

Other (1)

R. Powell, Physics of Solid-State Laser Materials (Springer-Verlag, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics