Abstract

Optical vector network analyzers (OVNAs) based on optical single-sideband (OSSB) modulation are of great interest thanks to the potentially high measurement resolution. However, the measurement accuracy of the OSSB-based OVNA is limited by the high-order sidebands in the OSSB signal. To study the influence of the high-order optical sidebands in OSSB signals on the measurement accuracy, an analytical model is established to present the expression of the measurement error and a numerical simulation is performed. For the OSSB-based OVNA implemented by a 90-deg electrical hybrid coupler and a dual-drive modulator, when the 1st order sideband is fully suppressed by the OSSB modulation, the existence of the +2nd-order sideband severely degrades the resolution of the measurement, while the 3rd and 2nd order sidebands place a restriction on the dynamic range of the measurement. In addition, these sidebands also introduce evident measurement errors to the phase response. The study may provide a good guidance in designing the high performance OVNA.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 1334–1336 (2001).
    [CrossRef]
  2. G. D. VanWiggeren, A. R. Motamedi, and D. M. Baney, “Single-scan interferometric component analyzer,” IEEE Photon. Technol. Lett. 15, 263–265 (2003).
    [CrossRef]
  3. J. E. Román, M. Y. Frankel, and R. D. Esman, “Spectral characterization of fiber gratings with high resolution,” Opt. Lett. 23, 939–941 (1998).
    [CrossRef]
  4. R. Hernandez, A. Loayssa, and D. Benito, “Optical vector network analysis based on single-sideband modulation,” Opt. Eng. 43, 2418–2421 (2004).
    [CrossRef]
  5. M. Sagues, M. Perez, and A. Loayssa, “Measurement of polarization dependent loss, polarization mode dispersion and group delay of optical components using swept optical single sideband modulated signals,” Opt. Express 16, 16181–16188 (2008).
    [CrossRef]
  6. M. Sagues and A. Loayssa, “Spectral characterisation of polarisation dependent loss of optical components using optical single sideband modulation,” Electron. Lett. 47, 47–48 (2011).
    [CrossRef]
  7. M. Sagues and A. Loayssa, “Swept optical single sideband modulation for spectral measurement applications using stimulated Brillouin scattering,” Opt. Express 18, 17555–17568 (2010).
    [CrossRef]
  8. Z. Z. Tang, S. L. Pan, and J. P. Yao, “A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator,” Opt. Express 20, 6555–6560 (2012).
    [CrossRef]
  9. G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).
    [CrossRef]
  10. J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550 nm millimetre-wave optical transmission,” Electron. Lett. 33, 512–513 (1997).
    [CrossRef]
  11. S. R. Blais and J. P. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 2230–2232 (2006).
    [CrossRef]
  12. G. Ning, J. Q. Zhou, L. Cheng, S. Aditya, and P. Shum, “Generation of different modulation formats using Sagnac fiber loop with one electroabsorption modulator,” IEEE Photon. Technol. Lett. 20, 297–299 (2008).
    [CrossRef]
  13. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photon. Technol. Lett. 23, 558–560 (2011).
    [CrossRef]
  14. A. Villafranca, J. A. Lazaro, I. Salinas, and I. Garces, “Stimulated Brillouin scattering gain profile characterization by interaction between two narrow-linewidth optical sources,” Opt. Express 13, 7336–7341 (2005).
    [CrossRef]
  15. A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems, 2nd ed. (Prentice-Hall, 1997).

2012 (1)

2011 (2)

Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photon. Technol. Lett. 23, 558–560 (2011).
[CrossRef]

M. Sagues and A. Loayssa, “Spectral characterisation of polarisation dependent loss of optical components using optical single sideband modulation,” Electron. Lett. 47, 47–48 (2011).
[CrossRef]

2010 (1)

2008 (2)

M. Sagues, M. Perez, and A. Loayssa, “Measurement of polarization dependent loss, polarization mode dispersion and group delay of optical components using swept optical single sideband modulated signals,” Opt. Express 16, 16181–16188 (2008).
[CrossRef]

G. Ning, J. Q. Zhou, L. Cheng, S. Aditya, and P. Shum, “Generation of different modulation formats using Sagnac fiber loop with one electroabsorption modulator,” IEEE Photon. Technol. Lett. 20, 297–299 (2008).
[CrossRef]

2006 (1)

S. R. Blais and J. P. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 2230–2232 (2006).
[CrossRef]

2005 (1)

2004 (1)

R. Hernandez, A. Loayssa, and D. Benito, “Optical vector network analysis based on single-sideband modulation,” Opt. Eng. 43, 2418–2421 (2004).
[CrossRef]

2003 (1)

G. D. VanWiggeren, A. R. Motamedi, and D. M. Baney, “Single-scan interferometric component analyzer,” IEEE Photon. Technol. Lett. 15, 263–265 (2003).
[CrossRef]

2001 (1)

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 1334–1336 (2001).
[CrossRef]

1998 (1)

1997 (2)

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).
[CrossRef]

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550 nm millimetre-wave optical transmission,” Electron. Lett. 33, 512–513 (1997).
[CrossRef]

Aditya, S.

G. Ning, J. Q. Zhou, L. Cheng, S. Aditya, and P. Shum, “Generation of different modulation formats using Sagnac fiber loop with one electroabsorption modulator,” IEEE Photon. Technol. Lett. 20, 297–299 (2008).
[CrossRef]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).
[CrossRef]

Baney, D. M.

G. D. VanWiggeren, A. R. Motamedi, and D. M. Baney, “Single-scan interferometric component analyzer,” IEEE Photon. Technol. Lett. 15, 263–265 (2003).
[CrossRef]

Benito, D.

R. Hernandez, A. Loayssa, and D. Benito, “Optical vector network analysis based on single-sideband modulation,” Opt. Eng. 43, 2418–2421 (2004).
[CrossRef]

Blais, S. R.

S. R. Blais and J. P. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 2230–2232 (2006).
[CrossRef]

Cheng, L.

G. Ning, J. Q. Zhou, L. Cheng, S. Aditya, and P. Shum, “Generation of different modulation formats using Sagnac fiber loop with one electroabsorption modulator,” IEEE Photon. Technol. Lett. 20, 297–299 (2008).
[CrossRef]

Chi, H.

Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photon. Technol. Lett. 23, 558–560 (2011).
[CrossRef]

Esman, R. D.

Frankel, M. Y.

Garces, I.

Hernandez, R.

R. Hernandez, A. Loayssa, and D. Benito, “Optical vector network analysis based on single-sideband modulation,” Opt. Eng. 43, 2418–2421 (2004).
[CrossRef]

Lau, K. Y.

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550 nm millimetre-wave optical transmission,” Electron. Lett. 33, 512–513 (1997).
[CrossRef]

Lazaro, J. A.

Li, Z.

Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photon. Technol. Lett. 23, 558–560 (2011).
[CrossRef]

Loayssa, A.

M. Sagues and A. Loayssa, “Spectral characterisation of polarisation dependent loss of optical components using optical single sideband modulation,” Electron. Lett. 47, 47–48 (2011).
[CrossRef]

M. Sagues and A. Loayssa, “Swept optical single sideband modulation for spectral measurement applications using stimulated Brillouin scattering,” Opt. Express 18, 17555–17568 (2010).
[CrossRef]

M. Sagues, M. Perez, and A. Loayssa, “Measurement of polarization dependent loss, polarization mode dispersion and group delay of optical components using swept optical single sideband modulated signals,” Opt. Express 16, 16181–16188 (2008).
[CrossRef]

R. Hernandez, A. Loayssa, and D. Benito, “Optical vector network analysis based on single-sideband modulation,” Opt. Eng. 43, 2418–2421 (2004).
[CrossRef]

Ludvigsen, H.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 1334–1336 (2001).
[CrossRef]

Motamedi, A. R.

G. D. VanWiggeren, A. R. Motamedi, and D. M. Baney, “Single-scan interferometric component analyzer,” IEEE Photon. Technol. Lett. 15, 263–265 (2003).
[CrossRef]

Nawab, S. H.

A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems, 2nd ed. (Prentice-Hall, 1997).

Niemi, T.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 1334–1336 (2001).
[CrossRef]

Ning, G.

G. Ning, J. Q. Zhou, L. Cheng, S. Aditya, and P. Shum, “Generation of different modulation formats using Sagnac fiber loop with one electroabsorption modulator,” IEEE Photon. Technol. Lett. 20, 297–299 (2008).
[CrossRef]

Novak, D.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).
[CrossRef]

Oppenheim, A. V.

A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems, 2nd ed. (Prentice-Hall, 1997).

Pan, S. L.

Park, J.

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550 nm millimetre-wave optical transmission,” Electron. Lett. 33, 512–513 (1997).
[CrossRef]

Perez, M.

Román, J. E.

Sagues, M.

Salinas, I.

Shum, P.

G. Ning, J. Q. Zhou, L. Cheng, S. Aditya, and P. Shum, “Generation of different modulation formats using Sagnac fiber loop with one electroabsorption modulator,” IEEE Photon. Technol. Lett. 20, 297–299 (2008).
[CrossRef]

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).
[CrossRef]

Sorin, W. V.

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550 nm millimetre-wave optical transmission,” Electron. Lett. 33, 512–513 (1997).
[CrossRef]

Tang, Z. Z.

Uusimaa, M.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 1334–1336 (2001).
[CrossRef]

VanWiggeren, G. D.

G. D. VanWiggeren, A. R. Motamedi, and D. M. Baney, “Single-scan interferometric component analyzer,” IEEE Photon. Technol. Lett. 15, 263–265 (2003).
[CrossRef]

Villafranca, A.

Willsky, A. S.

A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems, 2nd ed. (Prentice-Hall, 1997).

Yao, J. P.

Z. Z. Tang, S. L. Pan, and J. P. Yao, “A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator,” Opt. Express 20, 6555–6560 (2012).
[CrossRef]

Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photon. Technol. Lett. 23, 558–560 (2011).
[CrossRef]

S. R. Blais and J. P. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 2230–2232 (2006).
[CrossRef]

Zhang, X. M.

Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photon. Technol. Lett. 23, 558–560 (2011).
[CrossRef]

Zhou, J. Q.

G. Ning, J. Q. Zhou, L. Cheng, S. Aditya, and P. Shum, “Generation of different modulation formats using Sagnac fiber loop with one electroabsorption modulator,” IEEE Photon. Technol. Lett. 20, 297–299 (2008).
[CrossRef]

Electron. Lett. (2)

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550 nm millimetre-wave optical transmission,” Electron. Lett. 33, 512–513 (1997).
[CrossRef]

M. Sagues and A. Loayssa, “Spectral characterisation of polarisation dependent loss of optical components using optical single sideband modulation,” Electron. Lett. 47, 47–48 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 1334–1336 (2001).
[CrossRef]

G. D. VanWiggeren, A. R. Motamedi, and D. M. Baney, “Single-scan interferometric component analyzer,” IEEE Photon. Technol. Lett. 15, 263–265 (2003).
[CrossRef]

S. R. Blais and J. P. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 2230–2232 (2006).
[CrossRef]

G. Ning, J. Q. Zhou, L. Cheng, S. Aditya, and P. Shum, “Generation of different modulation formats using Sagnac fiber loop with one electroabsorption modulator,” IEEE Photon. Technol. Lett. 20, 297–299 (2008).
[CrossRef]

Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photon. Technol. Lett. 23, 558–560 (2011).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).
[CrossRef]

Opt. Eng. (1)

R. Hernandez, A. Loayssa, and D. Benito, “Optical vector network analysis based on single-sideband modulation,” Opt. Eng. 43, 2418–2421 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Other (1)

A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems, 2nd ed. (Prentice-Hall, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic diagram of the OSSB-based OVNA. LD, laser diode; RF, radio frequency; MZM, Mach–Zehnder modulator; DUT, device under test; PD, photodetector, PMD, phase-magnitude detector.

Fig. 2.
Fig. 2.

Errors introduced by the components beat by the mth and (m+1)th order sidebands.

Fig. 3.
Fig. 3.

Typical curve of the measurement dynamic range as a function of the modulation index.

Fig. 4.
Fig. 4.

Actual responses of the PS-FBG. (a) The magnitude response and (b) the phase response.

Fig. 5.
Fig. 5.

Simulated measurement of the PS-FBG when the phase modulation indices are 0.5 and 0.7, respectively. (a) The magnitude response and (b) the phase response.

Fig. 6.
Fig. 6.

Influence of the 4th, 3rd, 2nd, and +2nd order sidebands on (a) the notch depth, (b) center frequency, and (c) 3 dB bandwidth.

Fig. 7.
Fig. 7.

Influence of the 4th, 3rd, and 2nd order sidebands on (a) the center frequency and (b) the 3 dB bandwidth with the +2nd order sideband removed.

Fig. 8.
Fig. 8.

Influence of the 4th, 3rd, 2nd, and +2nd order sidebands on the measured phase-shift of the PS-FBG.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

ESSBin(t)=exp(iωot){exp[i(βcosωetπ2)]+exp(iβsinωet)},
ESSBin(t)=m={Jm(β)(im1+1)exp[i(ωo+mωe)t]},
ESSBin(ω)=m={2πJm(β)(im1+1)*δ[ω(ωo+mωe)]}.
ESSBout(ω)=ESSBin(ω)·H(ω)=m={2πH(ωo+mωe)Jm(β)(im1+1)*δ[ω(ωo+mωe)]},
iPD(t)=ηESSBout(t)·ESSBout*(t),
ESSBout(t)=m={H(ωo+mωe)Jm(β)(im1+1)exp[i(ωo+mωe)t]}.
iPD,ωe(t)=ηm={(im+1)(im1+1)*Jm+1(β)Jm(β)·H[ωo+(m+1)ωe]H*(ωo+mωe)exp(iωet)+(im+1)*(im1+1)Jm+1(β)Jm(β)·H*[ωo+(m+1)ωe]H(ωo+mωe)exp(iωet)}=2ηRe{m=[(im+1)(im1+1)*Jm+1(β)Jm(β)H[ωo+(m+1)ωe]H*(ωo+mωe)exp(iωet)]}.
iPD,ωe(t)=2ηm={(im+1)(im1+1)*Jm+1(β)Jm(β)H[ωo+(m+1)ωe]H*(ωo+mωe)exp(iωet)}.
im=0(t)=42ηJ0(β)J1(β)H(ωo+ωe)H*(ωo)exp[i(ωet+π4)].
H(ωo+ωe)=im=0(t)42ηJ0(β)J1(β)H*(ωo)exp[i(ωet+π4)].
Hmeasured(ωo+ωe)=im=0(t)42ηJ0(β)J1(β)H*(ωo)exp[i(ωetπ4)]+Δ=H(ωo+ωe)+Δ,
Δ=m=m0{(im+1)(im1+1)*Jm+1(β)Jm(β)H[ωo+(m+1)ωe]H*(ωo+mωe)}22J0(β)J1(β)H*(ωo)exp(iπ4).
Δ=m=m0[(im+1)(im1+1)*Jm+1(β)Jm(β)]22J0(β)J1(β)exp(iπ4).
Δ=J3(β)J4(β)J0(β)J1(β)+J2(β)J3(β)J0(β)J1(β)+J2(β)J1(β)J0(β)J1(β).

Metrics