Abstract

We report a demonstration of composite Raman pulses that achieve broadband population inversion and are used to increase the momentum splitting of an atom interferometer up to 18k (corresponding to an increase in the inertial signal by a factor of nine). Composite Raman pulses suppress the effects of pulse length and detuning errors, providing higher transfer efficiency and velocity acceptance than single square pulses. We implement two composite pulse sequences, π/20°π90°π/20° and π/20°π180°3π/20°, and use the latter composite pulse to demonstrate large-area atom interferometry with stimulated Raman transitions. In addition to enabling larger momentum transfer and higher sensitivity, we argue that composite pulses can improve the robustness of atom interferometers operating in dynamic environments.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Peters, K. Chung, and S. Chu, “Measurement of gravitational acceleration by dropping atoms,” Nature 400, 849–852(1999).
    [CrossRef]
  2. T. Gustavson, A. Landragin, and M. Kasevich, “Rotation sensing with a dual atom-interferometer Sagnac gyroscope,” Class. Quantum Grav. 17, 2385–2398 (2000).
    [CrossRef]
  3. J. Fixler, G. Foster, J. McGuirk, and M. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315, 74–77 (2007).
    [CrossRef]
  4. D. L. Butts, J. M. Kinast, B. P. Timmons, and R. E. Stoner, “Light pulse atom interferometry at short interrogation times,” J. Opt. Soc. Am. B 28, 416–421 (2011).
    [CrossRef]
  5. H. J. McGuinness, A. V. Rakholia, and G. W. Biedermann, “High data-rate atom interferometer for measuring acceleration,” Appl. Phys. Lett. 100, 011106 (2012).
    [CrossRef]
  6. B. Young, M. Kasevich, and S. Chu, Precision Atom Interferometry with Light Pulses (Academic, 1997), pp. 363–406.
  7. H. Müller, S.-W. Chiow, Q. Long, S. Herrmann, and S. Chu, “Atom interferometry with up to 24-photon-momentum-transfer beam splitters,” Phys. Rev. Lett. 100, 180405 (2008).
    [CrossRef]
  8. T. Kovachy, S.-W. Chiow, and M. A. Kasevich, “Adiabatic-rapid-passage multiphoton Bragg atom optics,” Phys. Rev. A 86, 011606 (2012).
    [CrossRef]
  9. S.-W. Chiow, T. Kovachy, H.-C. Chien, and M. A. Kasevich, “102ℏk large area atom interferometers,” Phys. Rev. Lett. 107, 130403 (2011).
    [CrossRef]
  10. P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “Large momentum beam splitter using Bloch oscillations,” Phys. Rev. Lett. 102, 240402 (2009).
    [CrossRef]
  11. D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip-based system for high repetition rate production of Bose–Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).
    [CrossRef]
  12. J. M. McGuirk, M. J. Snadden, and M. A. Kasevich, “Large area light-pulse atom interferometry,” Phys. Rev. Lett. 85, 4498–4501 (2000).
    [CrossRef]
  13. J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002).
    [CrossRef]
  14. M. H. Levitt, “Composite pulses,” Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986).
    [CrossRef]
  15. L. M. K. Vandersypen and I. L. Chuang, “NMR techniques for quantum control and computation,” Rev. Mod. Phys. 76, 1037–1069 (2005).
    [CrossRef]
  16. A. J. Shaka, J. Keeler, T. Frenkiel, and R. Freeman, “An improved sequence for broadband decoupling: WALTZ-16,” J. Magn. Reson. 52, 335–338 (1983).
  17. M. H. Levitt and R. Freeman, “NMR population inversion using a composite pulse,” J. Magn. Reson. 33, 473–476 (1979).
    [CrossRef]
  18. A. J. Shaka, J. Keeler, and R. Freeman, “Evaluation of a new broadband decoupling sequence: WALTZ-16,” J. Magn. Reson. 53, 313–340 (1983).
    [CrossRef]
  19. K. Takase, “Precision rotation rate measurements with a mobile atom interferometer,” Ph.D. thesis (Stanford University, 2008), pp. 70–73.
  20. R. Stoner, D. Butts, J. Kinast, and B. Timmons, “Analytical framework for dynamic light pulse atom interferometry at short interrogation times,” J. Opt. Soc. Am. B 28, 2418–2429 (2011).
    [CrossRef]
  21. T. Lévèque, A. Gauguet, F. Michaud, F. Pereira Dos Santos, and A. Landragin, “Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique,” Phys. Rev. Lett. 103, 080405 (2009).
    [CrossRef]

2012

H. J. McGuinness, A. V. Rakholia, and G. W. Biedermann, “High data-rate atom interferometer for measuring acceleration,” Appl. Phys. Lett. 100, 011106 (2012).
[CrossRef]

T. Kovachy, S.-W. Chiow, and M. A. Kasevich, “Adiabatic-rapid-passage multiphoton Bragg atom optics,” Phys. Rev. A 86, 011606 (2012).
[CrossRef]

2011

2010

D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip-based system for high repetition rate production of Bose–Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).
[CrossRef]

2009

T. Lévèque, A. Gauguet, F. Michaud, F. Pereira Dos Santos, and A. Landragin, “Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique,” Phys. Rev. Lett. 103, 080405 (2009).
[CrossRef]

P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “Large momentum beam splitter using Bloch oscillations,” Phys. Rev. Lett. 102, 240402 (2009).
[CrossRef]

2008

H. Müller, S.-W. Chiow, Q. Long, S. Herrmann, and S. Chu, “Atom interferometry with up to 24-photon-momentum-transfer beam splitters,” Phys. Rev. Lett. 100, 180405 (2008).
[CrossRef]

2007

J. Fixler, G. Foster, J. McGuirk, and M. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315, 74–77 (2007).
[CrossRef]

2005

L. M. K. Vandersypen and I. L. Chuang, “NMR techniques for quantum control and computation,” Rev. Mod. Phys. 76, 1037–1069 (2005).
[CrossRef]

2002

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002).
[CrossRef]

2000

J. M. McGuirk, M. J. Snadden, and M. A. Kasevich, “Large area light-pulse atom interferometry,” Phys. Rev. Lett. 85, 4498–4501 (2000).
[CrossRef]

T. Gustavson, A. Landragin, and M. Kasevich, “Rotation sensing with a dual atom-interferometer Sagnac gyroscope,” Class. Quantum Grav. 17, 2385–2398 (2000).
[CrossRef]

1999

A. Peters, K. Chung, and S. Chu, “Measurement of gravitational acceleration by dropping atoms,” Nature 400, 849–852(1999).
[CrossRef]

1986

M. H. Levitt, “Composite pulses,” Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986).
[CrossRef]

1983

A. J. Shaka, J. Keeler, T. Frenkiel, and R. Freeman, “An improved sequence for broadband decoupling: WALTZ-16,” J. Magn. Reson. 52, 335–338 (1983).

A. J. Shaka, J. Keeler, and R. Freeman, “Evaluation of a new broadband decoupling sequence: WALTZ-16,” J. Magn. Reson. 53, 313–340 (1983).
[CrossRef]

1979

M. H. Levitt and R. Freeman, “NMR population inversion using a composite pulse,” J. Magn. Reson. 33, 473–476 (1979).
[CrossRef]

Anderson, D. Z.

D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip-based system for high repetition rate production of Bose–Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).
[CrossRef]

Biedermann, G. W.

H. J. McGuinness, A. V. Rakholia, and G. W. Biedermann, “High data-rate atom interferometer for measuring acceleration,” Appl. Phys. Lett. 100, 011106 (2012).
[CrossRef]

Biraben, F.

P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “Large momentum beam splitter using Bloch oscillations,” Phys. Rev. Lett. 102, 240402 (2009).
[CrossRef]

Butts, D.

Butts, D. L.

Chien, H.-C.

S.-W. Chiow, T. Kovachy, H.-C. Chien, and M. A. Kasevich, “102ℏk large area atom interferometers,” Phys. Rev. Lett. 107, 130403 (2011).
[CrossRef]

Chiow, S.-W.

T. Kovachy, S.-W. Chiow, and M. A. Kasevich, “Adiabatic-rapid-passage multiphoton Bragg atom optics,” Phys. Rev. A 86, 011606 (2012).
[CrossRef]

S.-W. Chiow, T. Kovachy, H.-C. Chien, and M. A. Kasevich, “102ℏk large area atom interferometers,” Phys. Rev. Lett. 107, 130403 (2011).
[CrossRef]

H. Müller, S.-W. Chiow, Q. Long, S. Herrmann, and S. Chu, “Atom interferometry with up to 24-photon-momentum-transfer beam splitters,” Phys. Rev. Lett. 100, 180405 (2008).
[CrossRef]

Chu, S.

H. Müller, S.-W. Chiow, Q. Long, S. Herrmann, and S. Chu, “Atom interferometry with up to 24-photon-momentum-transfer beam splitters,” Phys. Rev. Lett. 100, 180405 (2008).
[CrossRef]

A. Peters, K. Chung, and S. Chu, “Measurement of gravitational acceleration by dropping atoms,” Nature 400, 849–852(1999).
[CrossRef]

B. Young, M. Kasevich, and S. Chu, Precision Atom Interferometry with Light Pulses (Academic, 1997), pp. 363–406.

Chuang, I. L.

L. M. K. Vandersypen and I. L. Chuang, “NMR techniques for quantum control and computation,” Rev. Mod. Phys. 76, 1037–1069 (2005).
[CrossRef]

Chung, K.

A. Peters, K. Chung, and S. Chu, “Measurement of gravitational acceleration by dropping atoms,” Nature 400, 849–852(1999).
[CrossRef]

Cladé, P.

P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “Large momentum beam splitter using Bloch oscillations,” Phys. Rev. Lett. 102, 240402 (2009).
[CrossRef]

Farkas, D. M.

D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip-based system for high repetition rate production of Bose–Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).
[CrossRef]

Fixler, J.

J. Fixler, G. Foster, J. McGuirk, and M. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315, 74–77 (2007).
[CrossRef]

Fixler, J. B.

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002).
[CrossRef]

Foster, G.

J. Fixler, G. Foster, J. McGuirk, and M. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315, 74–77 (2007).
[CrossRef]

Foster, G. T.

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002).
[CrossRef]

Freeman, R.

A. J. Shaka, J. Keeler, T. Frenkiel, and R. Freeman, “An improved sequence for broadband decoupling: WALTZ-16,” J. Magn. Reson. 52, 335–338 (1983).

A. J. Shaka, J. Keeler, and R. Freeman, “Evaluation of a new broadband decoupling sequence: WALTZ-16,” J. Magn. Reson. 53, 313–340 (1983).
[CrossRef]

M. H. Levitt and R. Freeman, “NMR population inversion using a composite pulse,” J. Magn. Reson. 33, 473–476 (1979).
[CrossRef]

Frenkiel, T.

A. J. Shaka, J. Keeler, T. Frenkiel, and R. Freeman, “An improved sequence for broadband decoupling: WALTZ-16,” J. Magn. Reson. 52, 335–338 (1983).

Gauguet, A.

T. Lévèque, A. Gauguet, F. Michaud, F. Pereira Dos Santos, and A. Landragin, “Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique,” Phys. Rev. Lett. 103, 080405 (2009).
[CrossRef]

Guellati-Khélifa, S.

P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “Large momentum beam splitter using Bloch oscillations,” Phys. Rev. Lett. 102, 240402 (2009).
[CrossRef]

Gustavson, T.

T. Gustavson, A. Landragin, and M. Kasevich, “Rotation sensing with a dual atom-interferometer Sagnac gyroscope,” Class. Quantum Grav. 17, 2385–2398 (2000).
[CrossRef]

Herrmann, S.

H. Müller, S.-W. Chiow, Q. Long, S. Herrmann, and S. Chu, “Atom interferometry with up to 24-photon-momentum-transfer beam splitters,” Phys. Rev. Lett. 100, 180405 (2008).
[CrossRef]

Hudek, K. M.

D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip-based system for high repetition rate production of Bose–Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).
[CrossRef]

Kasevich, M.

J. Fixler, G. Foster, J. McGuirk, and M. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315, 74–77 (2007).
[CrossRef]

T. Gustavson, A. Landragin, and M. Kasevich, “Rotation sensing with a dual atom-interferometer Sagnac gyroscope,” Class. Quantum Grav. 17, 2385–2398 (2000).
[CrossRef]

B. Young, M. Kasevich, and S. Chu, Precision Atom Interferometry with Light Pulses (Academic, 1997), pp. 363–406.

Kasevich, M. A.

T. Kovachy, S.-W. Chiow, and M. A. Kasevich, “Adiabatic-rapid-passage multiphoton Bragg atom optics,” Phys. Rev. A 86, 011606 (2012).
[CrossRef]

S.-W. Chiow, T. Kovachy, H.-C. Chien, and M. A. Kasevich, “102ℏk large area atom interferometers,” Phys. Rev. Lett. 107, 130403 (2011).
[CrossRef]

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002).
[CrossRef]

J. M. McGuirk, M. J. Snadden, and M. A. Kasevich, “Large area light-pulse atom interferometry,” Phys. Rev. Lett. 85, 4498–4501 (2000).
[CrossRef]

Keeler, J.

A. J. Shaka, J. Keeler, T. Frenkiel, and R. Freeman, “An improved sequence for broadband decoupling: WALTZ-16,” J. Magn. Reson. 52, 335–338 (1983).

A. J. Shaka, J. Keeler, and R. Freeman, “Evaluation of a new broadband decoupling sequence: WALTZ-16,” J. Magn. Reson. 53, 313–340 (1983).
[CrossRef]

Kinast, J.

Kinast, J. M.

Kovachy, T.

T. Kovachy, S.-W. Chiow, and M. A. Kasevich, “Adiabatic-rapid-passage multiphoton Bragg atom optics,” Phys. Rev. A 86, 011606 (2012).
[CrossRef]

S.-W. Chiow, T. Kovachy, H.-C. Chien, and M. A. Kasevich, “102ℏk large area atom interferometers,” Phys. Rev. Lett. 107, 130403 (2011).
[CrossRef]

Landragin, A.

T. Lévèque, A. Gauguet, F. Michaud, F. Pereira Dos Santos, and A. Landragin, “Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique,” Phys. Rev. Lett. 103, 080405 (2009).
[CrossRef]

T. Gustavson, A. Landragin, and M. Kasevich, “Rotation sensing with a dual atom-interferometer Sagnac gyroscope,” Class. Quantum Grav. 17, 2385–2398 (2000).
[CrossRef]

Lévèque, T.

T. Lévèque, A. Gauguet, F. Michaud, F. Pereira Dos Santos, and A. Landragin, “Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique,” Phys. Rev. Lett. 103, 080405 (2009).
[CrossRef]

Levitt, M. H.

M. H. Levitt, “Composite pulses,” Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986).
[CrossRef]

M. H. Levitt and R. Freeman, “NMR population inversion using a composite pulse,” J. Magn. Reson. 33, 473–476 (1979).
[CrossRef]

Long, Q.

H. Müller, S.-W. Chiow, Q. Long, S. Herrmann, and S. Chu, “Atom interferometry with up to 24-photon-momentum-transfer beam splitters,” Phys. Rev. Lett. 100, 180405 (2008).
[CrossRef]

McGuinness, H. J.

H. J. McGuinness, A. V. Rakholia, and G. W. Biedermann, “High data-rate atom interferometer for measuring acceleration,” Appl. Phys. Lett. 100, 011106 (2012).
[CrossRef]

McGuirk, J.

J. Fixler, G. Foster, J. McGuirk, and M. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315, 74–77 (2007).
[CrossRef]

McGuirk, J. M.

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002).
[CrossRef]

J. M. McGuirk, M. J. Snadden, and M. A. Kasevich, “Large area light-pulse atom interferometry,” Phys. Rev. Lett. 85, 4498–4501 (2000).
[CrossRef]

Michaud, F.

T. Lévèque, A. Gauguet, F. Michaud, F. Pereira Dos Santos, and A. Landragin, “Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique,” Phys. Rev. Lett. 103, 080405 (2009).
[CrossRef]

Müller, H.

H. Müller, S.-W. Chiow, Q. Long, S. Herrmann, and S. Chu, “Atom interferometry with up to 24-photon-momentum-transfer beam splitters,” Phys. Rev. Lett. 100, 180405 (2008).
[CrossRef]

Nez, F.

P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “Large momentum beam splitter using Bloch oscillations,” Phys. Rev. Lett. 102, 240402 (2009).
[CrossRef]

Peters, A.

A. Peters, K. Chung, and S. Chu, “Measurement of gravitational acceleration by dropping atoms,” Nature 400, 849–852(1999).
[CrossRef]

Rakholia, A. V.

H. J. McGuinness, A. V. Rakholia, and G. W. Biedermann, “High data-rate atom interferometer for measuring acceleration,” Appl. Phys. Lett. 100, 011106 (2012).
[CrossRef]

Salim, E. A.

D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip-based system for high repetition rate production of Bose–Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).
[CrossRef]

Santos, F. Pereira Dos

T. Lévèque, A. Gauguet, F. Michaud, F. Pereira Dos Santos, and A. Landragin, “Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique,” Phys. Rev. Lett. 103, 080405 (2009).
[CrossRef]

Segal, S. R.

D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip-based system for high repetition rate production of Bose–Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).
[CrossRef]

Shaka, A. J.

A. J. Shaka, J. Keeler, and R. Freeman, “Evaluation of a new broadband decoupling sequence: WALTZ-16,” J. Magn. Reson. 53, 313–340 (1983).
[CrossRef]

A. J. Shaka, J. Keeler, T. Frenkiel, and R. Freeman, “An improved sequence for broadband decoupling: WALTZ-16,” J. Magn. Reson. 52, 335–338 (1983).

Snadden, M. J.

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002).
[CrossRef]

J. M. McGuirk, M. J. Snadden, and M. A. Kasevich, “Large area light-pulse atom interferometry,” Phys. Rev. Lett. 85, 4498–4501 (2000).
[CrossRef]

Squires, M. B.

D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip-based system for high repetition rate production of Bose–Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).
[CrossRef]

Stoner, R.

Stoner, R. E.

Takase, K.

K. Takase, “Precision rotation rate measurements with a mobile atom interferometer,” Ph.D. thesis (Stanford University, 2008), pp. 70–73.

Timmons, B.

Timmons, B. P.

Vandersypen, L. M. K.

L. M. K. Vandersypen and I. L. Chuang, “NMR techniques for quantum control and computation,” Rev. Mod. Phys. 76, 1037–1069 (2005).
[CrossRef]

Young, B.

B. Young, M. Kasevich, and S. Chu, Precision Atom Interferometry with Light Pulses (Academic, 1997), pp. 363–406.

Appl. Phys. Lett.

H. J. McGuinness, A. V. Rakholia, and G. W. Biedermann, “High data-rate atom interferometer for measuring acceleration,” Appl. Phys. Lett. 100, 011106 (2012).
[CrossRef]

D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip-based system for high repetition rate production of Bose–Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).
[CrossRef]

Class. Quantum Grav.

T. Gustavson, A. Landragin, and M. Kasevich, “Rotation sensing with a dual atom-interferometer Sagnac gyroscope,” Class. Quantum Grav. 17, 2385–2398 (2000).
[CrossRef]

J. Magn. Reson.

A. J. Shaka, J. Keeler, T. Frenkiel, and R. Freeman, “An improved sequence for broadband decoupling: WALTZ-16,” J. Magn. Reson. 52, 335–338 (1983).

M. H. Levitt and R. Freeman, “NMR population inversion using a composite pulse,” J. Magn. Reson. 33, 473–476 (1979).
[CrossRef]

A. J. Shaka, J. Keeler, and R. Freeman, “Evaluation of a new broadband decoupling sequence: WALTZ-16,” J. Magn. Reson. 53, 313–340 (1983).
[CrossRef]

J. Opt. Soc. Am. B

Nature

A. Peters, K. Chung, and S. Chu, “Measurement of gravitational acceleration by dropping atoms,” Nature 400, 849–852(1999).
[CrossRef]

Phys. Rev. A

T. Kovachy, S.-W. Chiow, and M. A. Kasevich, “Adiabatic-rapid-passage multiphoton Bragg atom optics,” Phys. Rev. A 86, 011606 (2012).
[CrossRef]

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002).
[CrossRef]

Phys. Rev. Lett.

J. M. McGuirk, M. J. Snadden, and M. A. Kasevich, “Large area light-pulse atom interferometry,” Phys. Rev. Lett. 85, 4498–4501 (2000).
[CrossRef]

S.-W. Chiow, T. Kovachy, H.-C. Chien, and M. A. Kasevich, “102ℏk large area atom interferometers,” Phys. Rev. Lett. 107, 130403 (2011).
[CrossRef]

P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “Large momentum beam splitter using Bloch oscillations,” Phys. Rev. Lett. 102, 240402 (2009).
[CrossRef]

T. Lévèque, A. Gauguet, F. Michaud, F. Pereira Dos Santos, and A. Landragin, “Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique,” Phys. Rev. Lett. 103, 080405 (2009).
[CrossRef]

H. Müller, S.-W. Chiow, Q. Long, S. Herrmann, and S. Chu, “Atom interferometry with up to 24-photon-momentum-transfer beam splitters,” Phys. Rev. Lett. 100, 180405 (2008).
[CrossRef]

Prog. Nucl. Magn. Reson. Spectrosc.

M. H. Levitt, “Composite pulses,” Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986).
[CrossRef]

Rev. Mod. Phys.

L. M. K. Vandersypen and I. L. Chuang, “NMR techniques for quantum control and computation,” Rev. Mod. Phys. 76, 1037–1069 (2005).
[CrossRef]

Science

J. Fixler, G. Foster, J. McGuirk, and M. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315, 74–77 (2007).
[CrossRef]

Other

B. Young, M. Kasevich, and S. Chu, Precision Atom Interferometry with Light Pulses (Academic, 1997), pp. 363–406.

K. Takase, “Precision rotation rate measurements with a mobile atom interferometer,” Ph.D. thesis (Stanford University, 2008), pp. 70–73.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Space-time diagram of two large-area interferometers (N=1,2) and a conventional π/2ππ/2 (N=0) interferometer. Additional momentum is transferred by inserting Raman pulses with alternating propagation directions keff (augmentation pulses denoted A in the figure, which is either π or composite pulse). The mirror sequence comprises N augmentation pulses before and after the mirror π pulse in order to achieve loop closure.

Fig. 2.
Fig. 2.

Theoretical detuning profiles of a π pulse and two composite pulses: π/20°π90°π/20° and π/20°π180°3π/20°. Detuning is in units of Ωeff.

Fig. 3.
Fig. 3.

Bloch sphere representation of population inversion by (a) a π/20°π180°3π/20° and (b) a π/20°π90°π/20° composite pulse compared to the population transfer of a π pulse. In each case, the Raman detuning is δ=0.6Ωeff. While the π pulse achieves 60% transfer, the sequential rotations of the π/20°π180°3π/20° composite pulse transfer 99% of the population. The π/20°π90°π/20° sequence achieves >90% population transfer.

Fig. 4.
Fig. 4.

Detuning profiles of velocity-sensitive composite pulses (the theoretical curves include thermal averaging and use only a common temperature, frequency offset, and overall amplitude as free parameters). Top: comparison of a π pulse (open circles) with a π/20°π180°3π/20° composite pulse (filled circles). Bottom: profile of the π/20°π90°π/20° composite pulse. Each point represents an average of three shots. Detuning is in units of Ωeff.

Fig. 5.
Fig. 5.

Detuning profiles of velocity-insensitive composite pulses compared to a π pulse. Filled circles: π/20°π180°3π/20°; diamonds: π/20°π90°π/20°; open circles: π. Lines connecting data points are included for clarity. Detuning is in units of Ωeff.

Fig. 6.
Fig. 6.

Interferometer contrast versus N with π pulses or π/20°π180°3π/20° composite pulses as the augmentation pulses (2T=2ms).

Fig. 7.
Fig. 7.

Measured phase shifts in large-area interferometers as a function of laser difference frequency chirp rate (αL) for 2k,6k, 10k, 14k, and 18k (N=04), using π/20°π180°3π/20° composite pulses as augmentation pulses (2T=2.4ms and τ=40μs for N=03 and 2T=2ms for N=4). Theoretical scale factor lines use only an overall phase offset as a free parameter. The overall sign of the 18k (N=4) interferometer phase shifts is reversed for clarity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δ=(ω1ω2)(ωHFSkeff·v+keff22m)+δac,
Cmax=Ωeff4(Ωeff2+16ωr2)2sin(πΩeff2+16ωr22Ωeff)4.

Metrics