Abstract

We report self-Q-switched operation of a Cr:LiCAF laser for the first time to our knowledge. Self-Q-switching (SQS) refers to the generation of a periodic train of Q-switched pulses from a laser cavity containing only the gain medium. Since SQS does not require any additional elements such as saturable absorbers or active modulators, it is far simpler and lower cost in comparison with other Q-switching methods. In the experiments, SQS operation was observed by using an x-shaped, astigmatically compensated laser cavity which contained only the Cr:LiCAF gain medium. A 140 mW, single-mode continuous wave (cw) diode at 660 nm was used as the pump source. In typical cw operation, the Cr:LiCAF laser produced output powers as high as 50 mW with about 50% slope efficiency. The laser had a diffraction-limited output and had a spectral width of about 0.5 nm near 795 nm. SQS operation could be initiated by fine tuning of the separation between the curved mirrors of the cavity and occurred at several discrete separations of the curved mirrors within the stability range of the resonator. Pulsed pumping of the pump diode, active cooling of the gain medium, and/or misalignment of the cavity end mirrors was not necessary to initiate SQS operation. In the SQS regime, the Cr:LiCAF laser produced about 5 μs wide pulses at repetition rates between 10 and 30 kHz. The corresponding pulse energies and peak powers were as high as 3.75 μJ and 590 mW, respectively. SQS operation was further accompanied with (i) a decrease in the output power to the 30–45 mW range, (ii) an increase of the spectral bandwidth up to 10 nm (full width at half-maximum), and (iii) a switching of the laser output from pure TEM00 to a structured beam containing higher-order spatial modes. We present detailed experimental data describing the temporal, spectral, and spatial characteristics of the SQS Cr:LiCAF laser, as well as the effect of curved mirror separation on SQS. The power-dependent repetition rate data were further analyzed to estimate the effective small-signal loss coefficient of the saturable absorber action.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley-VCH, 2008).
  2. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
    [CrossRef]
  3. K. Du, D. Li, H. Zhang, P. Shi, X. Wei, and R. Diart, “Electro-optically Q-switched NdYVO 4 slab laser with a high repetition rate and a short pulse width,” Opt. Lett. 28, 87–89 (2003).
    [CrossRef]
  4. A. Sennaroglu, “Broadly tunable Cr4+ doped solid-state lasers in the near infrared and visible,” Prog. Quantum Electron. 26, 287–352 (2002).
    [CrossRef]
  5. A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. P. Mikhailov, V. I. Levchenko, and V. N. Yakimovich, “Cr2+:ZnSe and Co2+:ZnSe saturable-absorber Q switches for 1.54 μm Er:glass lasers,” Opt. Lett. 24, 960–962 (1999).
    [CrossRef]
  6. H. Cankaya, U. Demirbas, A. K. Erdamar, and A. Sennaroglu, “Absorption saturation analysis of Cr2+:ZnSe and Fe2+:ZnSe,” J. Opt. Soc. Am. B 25, 794–800 (2008).
    [CrossRef]
  7. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
    [CrossRef]
  8. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996).
    [CrossRef]
  9. I. Freund, “Self-Q-switching in ruby lasers,” Appl. Phys. Lett. 12, 388–390 (1968).
    [CrossRef]
  10. R. J. Collins, L. O. Braun, and D. R. Dean, “A new method of giant pulsing ruby lasers,” Appl. Phys. Lett. 12, 392 (1968).
    [CrossRef]
  11. M. Birnbaum and C. L. Fincher, “The ruby laser: pumped by a pulsed argon ion laser,” Appl. Phys. Lett. 12, 225–227 (1968).
    [CrossRef]
  12. A. Szabo and L. E. Erickson, “Self-Q-switching of ruby lasers at 77 degrees K,” IEEE J. Quantum Electron. 4, 692–698 (1968).
    [CrossRef]
  13. H. Samelson, A. Lempicki, and V. Brophy, “Self-Q-switching of ND3+ SEOCL2 liquid laser,” J. Appl. Phys. 39, 4029–4030 (1968).
    [CrossRef]
  14. M. Birnbaum and C. L. Fincher, “Self-q-switched ND3+—YAG and ruby lasers,” Proc. IEEE 57, 804–805 (1969).
    [CrossRef]
  15. A. L. Mikaelyan, V. F. Kuprishov, Y. G. Turkov, Y. V. Andreev, and A. A. Shcherbakova, “New method for generating a giant pulse in optical generators,” J. Exp. Theor. Phys. Lett. 11, 244–246 (1970).
  16. Z. Zalevsky, Y. Kapellner, I. Eyal, and N. Cohen, “Self Q-switching effect in a Nd:YVO4/KTP lasing unit,” Opt. Eng. 45, 070506 (2006).
    [CrossRef]
  17. A. Szabo, “Repetitive self-Q-switching in a continuously pumped ruby-laser,” J. Appl. Phys. 49, 533–538 (1978).
    [CrossRef]
  18. B. C. Weber and A. Hirth, “Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser,” Opt. Commun. 128, 158–165 (1996).
    [CrossRef]
  19. B. C. Weber and A. Hirth, “Presentation of a new and simple technique of Q-switching with a LiSrAlF6: Cr3+ oscillator,” Opt. Commun. 149, 301–306 (1998).
    [CrossRef]
  20. R. S. Conroy, T. Lake, G. J. Friel, A. J. Kemp, and B. D. Sinclair, “Self-Q-switched Nd:YVO4 microchip lasers,” Opt. Lett. 23, 457–459 (1998).
    [CrossRef]
  21. A. V. Kir’yanov, N. N. Il’ichev, and Y. O. Barmenkov, “Excited-state absorption as a source of nonlinear thermo-induced lensing and self-Q-switching in an all-fiber Erbium laser,” Laser Phys. Lett. 1, 194–198 (2004).
    [CrossRef]
  22. S. Wolff, A. Rodionov, V. E. Sherstobitov, C. Doering, and H. Fouckhardt, “Self-pulsation in broad area lasers with transverse-mode selective feedback,” Opt. Commun. 265, 642–648 (2006).
    [CrossRef]
  23. B. N. Upadhyaya, A. Kuruvilla, U. Chakravarty, M. R. Shenoy, K. Thyagarajan, and S. M. Oak, “Effect of laser linewidth and fiber length on self-pulsing dynamics and output stabilization of single-mode Yb-doped double-clad fiber laser,” Appl. Opt. 49, 2316–2325 (2010).
    [CrossRef]
  24. Y. Tang and J. Xu, “Effects of excited-state absorption on self-pulsing in Tm3+-doped fiber lasers,” J. Opt. Soc. Am. B 27, 179–186 (2010).
    [CrossRef]
  25. N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. Aït-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun. 260, 703–707 (2006).
    [CrossRef]
  26. N. Passilly, M. Fromager, and K. Ait-Ameur, “Improvement of the self-Q-switching behavior of a Cr:LiSrAlF6 laser by use of binary diffractive optics,” Appl. Opt. 43, 5047–5059 (2004).
    [CrossRef]
  27. N. Passilly, M. Fromager, K. Ait-Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Experimental and theoretical investigation of a rapidly varying nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. B 21, 531–538 (2004).
    [CrossRef]
  28. M. Fromager and K. A. Ameur, “Modeling of the self-Q-switching behavior of lasers based on chromium doped active material,” Opt. Commun. 191, 305–314 (2001).
    [CrossRef]
  29. T. Godin, R. Moncorgé, J.-L. Doualan, M. Fromager, K. Ait-Ameur, R. A. Cruz, and T. Catunda, “Optically pump-induced athermal and nonresonant refractive index changes in the reference Cr-doped laser materials: Cr:GSGG and ruby,” J. Opt. Soc. Am. B 29, 1055–1064 (2012).
    [CrossRef]
  30. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
    [CrossRef]
  31. J. J. Deyoreo, L. J. Atherton, and D. H. Roberts, “Elimination of Scattering Centers from Cr-LiCaAlF6,” J. Cryst. Growth 113, 691–697 (1991).
    [CrossRef]
  32. D. Klimm and P. Reiche, “Nonstoichiometry of the new laser host LiCaAlF6,” Cryst. Res. Technol. 33, 409–416 (1998).
    [CrossRef]
  33. D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40, 352–358 (2005).
    [CrossRef]
  34. U. Demirbas, R. Uecker, D. Klimm, and J. Wang, “A low-cost, broadly-tunable (375–433 nm & 746–887 nm) Cr:LiCAF laser pumped by one single-spatial-mode diode,” Appl. Opt. 51, 8440–8448 (2012).
    [CrossRef]
  35. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
    [CrossRef]
  36. U. Demirbas, M. Schmalz, B. Sumpf, G. Erbert, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, F. X. Kärtner, and A. Leitenstorfer, “Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers,” Opt. Express 19, 20444–20461 (2011).
    [CrossRef]
  37. U. Demirbas, A. Sennaroglu, F. X. Kärtner, and J. G. Fujimoto, “Comparative investigation of diode pumping for continuous-wave and mode-locked Cr3+:LiCAF lasers,” J. Opt. Soc. Am. B 26, 64–79 (2009).
    [CrossRef]
  38. J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19, 1427–1429 (1994).
    [CrossRef]
  39. B. Braun, F. X. Kärtner, U. Keller, J.-P. Meyn, and G. Huber, “Passively Q -switched 180 ps Nd:LaSc3(BO3)4 microchip laser,” Opt. Lett. 21, 405–407 (1996).
    [CrossRef]
  40. B. Braun, F. X. Kärtner, M. Moser, G. Zhang, and U. Keller, “56 ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–383 (1997).
    [CrossRef]
  41. A. Sennaroglu, Photonics and Laser Engineering: Principles, Devices, and Applications (McGraw-Hill, 2010).
  42. K. J. Weingarten, B. Braun, and U. Keller, “In-situ Small-signal gain of solid-state lasers determined from relaxation oscillation frequency measurements,” Opt. Lett. 19, 1140–1142 (1994).
    [CrossRef]
  43. A. W. Tucker, M. Birnbaum, C. L. Fincher, and L. G. DeShazer, “Continuous-wave operation of Nd:YVO4 at 1.06 and 1.34 m,” J. Appl. Phys. 47, 232–234 (1976).
    [CrossRef]
  44. M. Traiche, T. Godin, M. Fromager, R. Moncorgé, T. Catunda, E. Cagniot, and K. Ait-Ameur, “Pseudo-nonlinear and athermal lensing effects on transverse properties of Cr3+ based solid-state lasers,” Opt. Commun. 284, 1975–1981 (2011).
    [CrossRef]
  45. T. Godin, M. Fromager, E. Cagniot, F. Porée, T. Catunda, R. Moncorgé, and K. Aït-Ameur, “Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique,” Appl. Phys. B 107, 733–740 (2012).
    [CrossRef]
  46. N. Passilly, M. Fromager, K. A. Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Measurement of the index-inversion coupling contributing to the time-dependent nonlinear lens effect in a Cr3+:LiSAF laser,” J. Phys. IV 119, 257–258 (2004).
    [CrossRef]
  47. S. M. Lima and T. Catunda, “Discrimination of resonant and nonresonant contributions to the nonlinear refraction spectroscopy of ion-doped solids,” Phys. Rev. Lett. 99, 243902(2007).
    [CrossRef]
  48. H. Eilers, E. Strauss, and W. M. Yen, “Photoelastic effect in Ti3+-doped sapphire,” Phys. Rev. B 45, 9604–9610(1992).
    [CrossRef]
  49. E. Strauss, “Bulk and local elastic relaxation around optically-excited centers,” Phys. Rev. B 42, 1917–1921 (1990).
    [CrossRef]
  50. U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and J. G. Fujimoto, “Low-cost, single-mode diode-pumped Cr:Colquiriite lasers,” Opt. Express 17, 14374–14388 (2009).
    [CrossRef]

2012 (3)

2011 (2)

M. Traiche, T. Godin, M. Fromager, R. Moncorgé, T. Catunda, E. Cagniot, and K. Ait-Ameur, “Pseudo-nonlinear and athermal lensing effects on transverse properties of Cr3+ based solid-state lasers,” Opt. Commun. 284, 1975–1981 (2011).
[CrossRef]

U. Demirbas, M. Schmalz, B. Sumpf, G. Erbert, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, F. X. Kärtner, and A. Leitenstorfer, “Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers,” Opt. Express 19, 20444–20461 (2011).
[CrossRef]

2010 (2)

2009 (2)

2008 (1)

2007 (1)

S. M. Lima and T. Catunda, “Discrimination of resonant and nonresonant contributions to the nonlinear refraction spectroscopy of ion-doped solids,” Phys. Rev. Lett. 99, 243902(2007).
[CrossRef]

2006 (3)

Z. Zalevsky, Y. Kapellner, I. Eyal, and N. Cohen, “Self Q-switching effect in a Nd:YVO4/KTP lasing unit,” Opt. Eng. 45, 070506 (2006).
[CrossRef]

N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. Aït-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun. 260, 703–707 (2006).
[CrossRef]

S. Wolff, A. Rodionov, V. E. Sherstobitov, C. Doering, and H. Fouckhardt, “Self-pulsation in broad area lasers with transverse-mode selective feedback,” Opt. Commun. 265, 642–648 (2006).
[CrossRef]

2005 (1)

D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40, 352–358 (2005).
[CrossRef]

2004 (4)

N. Passilly, M. Fromager, K. A. Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Measurement of the index-inversion coupling contributing to the time-dependent nonlinear lens effect in a Cr3+:LiSAF laser,” J. Phys. IV 119, 257–258 (2004).
[CrossRef]

A. V. Kir’yanov, N. N. Il’ichev, and Y. O. Barmenkov, “Excited-state absorption as a source of nonlinear thermo-induced lensing and self-Q-switching in an all-fiber Erbium laser,” Laser Phys. Lett. 1, 194–198 (2004).
[CrossRef]

N. Passilly, M. Fromager, and K. Ait-Ameur, “Improvement of the self-Q-switching behavior of a Cr:LiSrAlF6 laser by use of binary diffractive optics,” Appl. Opt. 43, 5047–5059 (2004).
[CrossRef]

N. Passilly, M. Fromager, K. Ait-Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Experimental and theoretical investigation of a rapidly varying nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. B 21, 531–538 (2004).
[CrossRef]

2003 (1)

2002 (1)

A. Sennaroglu, “Broadly tunable Cr4+ doped solid-state lasers in the near infrared and visible,” Prog. Quantum Electron. 26, 287–352 (2002).
[CrossRef]

2001 (1)

M. Fromager and K. A. Ameur, “Modeling of the self-Q-switching behavior of lasers based on chromium doped active material,” Opt. Commun. 191, 305–314 (2001).
[CrossRef]

2000 (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef]

1999 (1)

1998 (3)

D. Klimm and P. Reiche, “Nonstoichiometry of the new laser host LiCaAlF6,” Cryst. Res. Technol. 33, 409–416 (1998).
[CrossRef]

B. C. Weber and A. Hirth, “Presentation of a new and simple technique of Q-switching with a LiSrAlF6: Cr3+ oscillator,” Opt. Commun. 149, 301–306 (1998).
[CrossRef]

R. S. Conroy, T. Lake, G. J. Friel, A. J. Kemp, and B. D. Sinclair, “Self-Q-switched Nd:YVO4 microchip lasers,” Opt. Lett. 23, 457–459 (1998).
[CrossRef]

1997 (1)

1996 (4)

B. Braun, F. X. Kärtner, U. Keller, J.-P. Meyn, and G. Huber, “Passively Q -switched 180 ps Nd:LaSc3(BO3)4 microchip laser,” Opt. Lett. 21, 405–407 (1996).
[CrossRef]

B. C. Weber and A. Hirth, “Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser,” Opt. Commun. 128, 158–165 (1996).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996).
[CrossRef]

1995 (1)

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[CrossRef]

1994 (2)

1992 (1)

H. Eilers, E. Strauss, and W. M. Yen, “Photoelastic effect in Ti3+-doped sapphire,” Phys. Rev. B 45, 9604–9610(1992).
[CrossRef]

1991 (1)

J. J. Deyoreo, L. J. Atherton, and D. H. Roberts, “Elimination of Scattering Centers from Cr-LiCaAlF6,” J. Cryst. Growth 113, 691–697 (1991).
[CrossRef]

1990 (1)

E. Strauss, “Bulk and local elastic relaxation around optically-excited centers,” Phys. Rev. B 42, 1917–1921 (1990).
[CrossRef]

1988 (1)

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

1978 (1)

A. Szabo, “Repetitive self-Q-switching in a continuously pumped ruby-laser,” J. Appl. Phys. 49, 533–538 (1978).
[CrossRef]

1976 (1)

A. W. Tucker, M. Birnbaum, C. L. Fincher, and L. G. DeShazer, “Continuous-wave operation of Nd:YVO4 at 1.06 and 1.34 m,” J. Appl. Phys. 47, 232–234 (1976).
[CrossRef]

1970 (1)

A. L. Mikaelyan, V. F. Kuprishov, Y. G. Turkov, Y. V. Andreev, and A. A. Shcherbakova, “New method for generating a giant pulse in optical generators,” J. Exp. Theor. Phys. Lett. 11, 244–246 (1970).

1969 (1)

M. Birnbaum and C. L. Fincher, “Self-q-switched ND3+—YAG and ruby lasers,” Proc. IEEE 57, 804–805 (1969).
[CrossRef]

1968 (5)

I. Freund, “Self-Q-switching in ruby lasers,” Appl. Phys. Lett. 12, 388–390 (1968).
[CrossRef]

R. J. Collins, L. O. Braun, and D. R. Dean, “A new method of giant pulsing ruby lasers,” Appl. Phys. Lett. 12, 392 (1968).
[CrossRef]

M. Birnbaum and C. L. Fincher, “The ruby laser: pumped by a pulsed argon ion laser,” Appl. Phys. Lett. 12, 225–227 (1968).
[CrossRef]

A. Szabo and L. E. Erickson, “Self-Q-switching of ruby lasers at 77 degrees K,” IEEE J. Quantum Electron. 4, 692–698 (1968).
[CrossRef]

H. Samelson, A. Lempicki, and V. Brophy, “Self-Q-switching of ND3+ SEOCL2 liquid laser,” J. Appl. Phys. 39, 4029–4030 (1968).
[CrossRef]

Ait-Ameur, K.

Aït-Ameur, K.

T. Godin, M. Fromager, E. Cagniot, F. Porée, T. Catunda, R. Moncorgé, and K. Aït-Ameur, “Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique,” Appl. Phys. B 107, 733–740 (2012).
[CrossRef]

N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. Aït-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun. 260, 703–707 (2006).
[CrossRef]

Ameur, K. A.

N. Passilly, M. Fromager, K. A. Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Measurement of the index-inversion coupling contributing to the time-dependent nonlinear lens effect in a Cr3+:LiSAF laser,” J. Phys. IV 119, 257–258 (2004).
[CrossRef]

M. Fromager and K. A. Ameur, “Modeling of the self-Q-switching behavior of lasers based on chromium doped active material,” Opt. Commun. 191, 305–314 (2001).
[CrossRef]

Andreev, Y. V.

A. L. Mikaelyan, V. F. Kuprishov, Y. G. Turkov, Y. V. Andreev, and A. A. Shcherbakova, “New method for generating a giant pulse in optical generators,” J. Exp. Theor. Phys. Lett. 11, 244–246 (1970).

Atherton, L. J.

J. J. Deyoreo, L. J. Atherton, and D. H. Roberts, “Elimination of Scattering Centers from Cr-LiCaAlF6,” J. Cryst. Growth 113, 691–697 (1991).
[CrossRef]

Barmenkov, Y. O.

A. V. Kir’yanov, N. N. Il’ichev, and Y. O. Barmenkov, “Excited-state absorption as a source of nonlinear thermo-induced lensing and self-Q-switching in an all-fiber Erbium laser,” Laser Phys. Lett. 1, 194–198 (2004).
[CrossRef]

Birge, J. R.

Birnbaum, M.

A. W. Tucker, M. Birnbaum, C. L. Fincher, and L. G. DeShazer, “Continuous-wave operation of Nd:YVO4 at 1.06 and 1.34 m,” J. Appl. Phys. 47, 232–234 (1976).
[CrossRef]

M. Birnbaum and C. L. Fincher, “Self-q-switched ND3+—YAG and ruby lasers,” Proc. IEEE 57, 804–805 (1969).
[CrossRef]

M. Birnbaum and C. L. Fincher, “The ruby laser: pumped by a pulsed argon ion laser,” Appl. Phys. Lett. 12, 225–227 (1968).
[CrossRef]

Boppart, S. A.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef]

Braun, B.

Braun, L. O.

R. J. Collins, L. O. Braun, and D. R. Dean, “A new method of giant pulsing ruby lasers,” Appl. Phys. Lett. 12, 392 (1968).
[CrossRef]

Brezinski, M. E.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef]

Brophy, V.

H. Samelson, A. Lempicki, and V. Brophy, “Self-Q-switching of ND3+ SEOCL2 liquid laser,” J. Appl. Phys. 39, 4029–4030 (1968).
[CrossRef]

Cagniot, E.

T. Godin, M. Fromager, E. Cagniot, F. Porée, T. Catunda, R. Moncorgé, and K. Aït-Ameur, “Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique,” Appl. Phys. B 107, 733–740 (2012).
[CrossRef]

M. Traiche, T. Godin, M. Fromager, R. Moncorgé, T. Catunda, E. Cagniot, and K. Ait-Ameur, “Pseudo-nonlinear and athermal lensing effects on transverse properties of Cr3+ based solid-state lasers,” Opt. Commun. 284, 1975–1981 (2011).
[CrossRef]

Cankaya, H.

Catunda, T.

T. Godin, R. Moncorgé, J.-L. Doualan, M. Fromager, K. Ait-Ameur, R. A. Cruz, and T. Catunda, “Optically pump-induced athermal and nonresonant refractive index changes in the reference Cr-doped laser materials: Cr:GSGG and ruby,” J. Opt. Soc. Am. B 29, 1055–1064 (2012).
[CrossRef]

T. Godin, M. Fromager, E. Cagniot, F. Porée, T. Catunda, R. Moncorgé, and K. Aït-Ameur, “Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique,” Appl. Phys. B 107, 733–740 (2012).
[CrossRef]

M. Traiche, T. Godin, M. Fromager, R. Moncorgé, T. Catunda, E. Cagniot, and K. Ait-Ameur, “Pseudo-nonlinear and athermal lensing effects on transverse properties of Cr3+ based solid-state lasers,” Opt. Commun. 284, 1975–1981 (2011).
[CrossRef]

S. M. Lima and T. Catunda, “Discrimination of resonant and nonresonant contributions to the nonlinear refraction spectroscopy of ion-doped solids,” Phys. Rev. Lett. 99, 243902(2007).
[CrossRef]

Chakravarty, U.

Chase, L. L.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Cohen, N.

Z. Zalevsky, Y. Kapellner, I. Eyal, and N. Cohen, “Self Q-switching effect in a Nd:YVO4/KTP lasing unit,” Opt. Eng. 45, 070506 (2006).
[CrossRef]

Collins, R. J.

R. J. Collins, L. O. Braun, and D. R. Dean, “A new method of giant pulsing ruby lasers,” Appl. Phys. Lett. 12, 392 (1968).
[CrossRef]

Conroy, R. S.

Cruz, R. A.

Cundiff, S. T.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996).
[CrossRef]

Cunningham, J. E.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996).
[CrossRef]

Dean, D. R.

R. J. Collins, L. O. Braun, and D. R. Dean, “A new method of giant pulsing ruby lasers,” Appl. Phys. Lett. 12, 392 (1968).
[CrossRef]

Degnan, J. J.

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[CrossRef]

Demirbas, U.

derAu, J. A.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

DeShazer, L. G.

A. W. Tucker, M. Birnbaum, C. L. Fincher, and L. G. DeShazer, “Continuous-wave operation of Nd:YVO4 at 1.06 and 1.34 m,” J. Appl. Phys. 47, 232–234 (1976).
[CrossRef]

Deyoreo, J. J.

J. J. Deyoreo, L. J. Atherton, and D. H. Roberts, “Elimination of Scattering Centers from Cr-LiCaAlF6,” J. Cryst. Growth 113, 691–697 (1991).
[CrossRef]

Diart, R.

Dill, C.

Doering, C.

S. Wolff, A. Rodionov, V. E. Sherstobitov, C. Doering, and H. Fouckhardt, “Self-pulsation in broad area lasers with transverse-mode selective feedback,” Opt. Commun. 265, 642–648 (2006).
[CrossRef]

Doualan, J. L.

N. Passilly, M. Fromager, K. A. Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Measurement of the index-inversion coupling contributing to the time-dependent nonlinear lens effect in a Cr3+:LiSAF laser,” J. Phys. IV 119, 257–258 (2004).
[CrossRef]

N. Passilly, M. Fromager, K. Ait-Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Experimental and theoretical investigation of a rapidly varying nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. B 21, 531–538 (2004).
[CrossRef]

Doualan, J.-L.

Du, K.

Eilers, H.

H. Eilers, E. Strauss, and W. M. Yen, “Photoelastic effect in Ti3+-doped sapphire,” Phys. Rev. B 45, 9604–9610(1992).
[CrossRef]

Erbert, G.

Erdamar, A. K.

Erickson, L. E.

A. Szabo and L. E. Erickson, “Self-Q-switching of ruby lasers at 77 degrees K,” IEEE J. Quantum Electron. 4, 692–698 (1968).
[CrossRef]

Eyal, I.

Z. Zalevsky, Y. Kapellner, I. Eyal, and N. Cohen, “Self Q-switching effect in a Nd:YVO4/KTP lasing unit,” Opt. Eng. 45, 070506 (2006).
[CrossRef]

Fincher, C. L.

A. W. Tucker, M. Birnbaum, C. L. Fincher, and L. G. DeShazer, “Continuous-wave operation of Nd:YVO4 at 1.06 and 1.34 m,” J. Appl. Phys. 47, 232–234 (1976).
[CrossRef]

M. Birnbaum and C. L. Fincher, “Self-q-switched ND3+—YAG and ruby lasers,” Proc. IEEE 57, 804–805 (1969).
[CrossRef]

M. Birnbaum and C. L. Fincher, “The ruby laser: pumped by a pulsed argon ion laser,” Appl. Phys. Lett. 12, 225–227 (1968).
[CrossRef]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Fouckhardt, H.

S. Wolff, A. Rodionov, V. E. Sherstobitov, C. Doering, and H. Fouckhardt, “Self-pulsation in broad area lasers with transverse-mode selective feedback,” Opt. Commun. 265, 642–648 (2006).
[CrossRef]

Freund, I.

I. Freund, “Self-Q-switching in ruby lasers,” Appl. Phys. Lett. 12, 388–390 (1968).
[CrossRef]

Friel, G. J.

Fromager, M.

T. Godin, M. Fromager, E. Cagniot, F. Porée, T. Catunda, R. Moncorgé, and K. Aït-Ameur, “Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique,” Appl. Phys. B 107, 733–740 (2012).
[CrossRef]

T. Godin, R. Moncorgé, J.-L. Doualan, M. Fromager, K. Ait-Ameur, R. A. Cruz, and T. Catunda, “Optically pump-induced athermal and nonresonant refractive index changes in the reference Cr-doped laser materials: Cr:GSGG and ruby,” J. Opt. Soc. Am. B 29, 1055–1064 (2012).
[CrossRef]

M. Traiche, T. Godin, M. Fromager, R. Moncorgé, T. Catunda, E. Cagniot, and K. Ait-Ameur, “Pseudo-nonlinear and athermal lensing effects on transverse properties of Cr3+ based solid-state lasers,” Opt. Commun. 284, 1975–1981 (2011).
[CrossRef]

N. Passilly, M. Fromager, K. A. Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Measurement of the index-inversion coupling contributing to the time-dependent nonlinear lens effect in a Cr3+:LiSAF laser,” J. Phys. IV 119, 257–258 (2004).
[CrossRef]

N. Passilly, M. Fromager, K. Ait-Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Experimental and theoretical investigation of a rapidly varying nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. B 21, 531–538 (2004).
[CrossRef]

N. Passilly, M. Fromager, and K. Ait-Ameur, “Improvement of the self-Q-switching behavior of a Cr:LiSrAlF6 laser by use of binary diffractive optics,” Appl. Opt. 43, 5047–5059 (2004).
[CrossRef]

M. Fromager and K. A. Ameur, “Modeling of the self-Q-switching behavior of lasers based on chromium doped active material,” Opt. Commun. 191, 305–314 (2001).
[CrossRef]

Fujimoto, J. G.

Godin, T.

T. Godin, M. Fromager, E. Cagniot, F. Porée, T. Catunda, R. Moncorgé, and K. Aït-Ameur, “Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique,” Appl. Phys. B 107, 733–740 (2012).
[CrossRef]

T. Godin, R. Moncorgé, J.-L. Doualan, M. Fromager, K. Ait-Ameur, R. A. Cruz, and T. Catunda, “Optically pump-induced athermal and nonresonant refractive index changes in the reference Cr-doped laser materials: Cr:GSGG and ruby,” J. Opt. Soc. Am. B 29, 1055–1064 (2012).
[CrossRef]

M. Traiche, T. Godin, M. Fromager, R. Moncorgé, T. Catunda, E. Cagniot, and K. Ait-Ameur, “Pseudo-nonlinear and athermal lensing effects on transverse properties of Cr3+ based solid-state lasers,” Opt. Commun. 284, 1975–1981 (2011).
[CrossRef]

Haouas, E.

N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. Aït-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun. 260, 703–707 (2006).
[CrossRef]

Hirth, A.

N. Passilly, M. Fromager, K. A. Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Measurement of the index-inversion coupling contributing to the time-dependent nonlinear lens effect in a Cr3+:LiSAF laser,” J. Phys. IV 119, 257–258 (2004).
[CrossRef]

N. Passilly, M. Fromager, K. Ait-Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Experimental and theoretical investigation of a rapidly varying nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. B 21, 531–538 (2004).
[CrossRef]

B. C. Weber and A. Hirth, “Presentation of a new and simple technique of Q-switching with a LiSrAlF6: Cr3+ oscillator,” Opt. Commun. 149, 301–306 (1998).
[CrossRef]

B. C. Weber and A. Hirth, “Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser,” Opt. Commun. 128, 158–165 (1996).
[CrossRef]

Honninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Huber, G.

Il’ichev, N. N.

A. V. Kir’yanov, N. N. Il’ichev, and Y. O. Barmenkov, “Excited-state absorption as a source of nonlinear thermo-induced lensing and self-Q-switching in an all-fiber Erbium laser,” Laser Phys. Lett. 1, 194–198 (2004).
[CrossRef]

Jan, W. Y.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996).
[CrossRef]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Kapellner, Y.

Z. Zalevsky, Y. Kapellner, I. Eyal, and N. Cohen, “Self Q-switching effect in a Nd:YVO4/KTP lasing unit,” Opt. Eng. 45, 070506 (2006).
[CrossRef]

Kärtner, F. X.

Keller, U.

Kemp, A. J.

Kir’yanov, A. V.

A. V. Kir’yanov, N. N. Il’ichev, and Y. O. Barmenkov, “Excited-state absorption as a source of nonlinear thermo-induced lensing and self-Q-switching in an all-fiber Erbium laser,” Laser Phys. Lett. 1, 194–198 (2004).
[CrossRef]

Klimm, D.

U. Demirbas, R. Uecker, D. Klimm, and J. Wang, “A low-cost, broadly-tunable (375–433 nm & 746–887 nm) Cr:LiCAF laser pumped by one single-spatial-mode diode,” Appl. Opt. 51, 8440–8448 (2012).
[CrossRef]

D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40, 352–358 (2005).
[CrossRef]

D. Klimm and P. Reiche, “Nonstoichiometry of the new laser host LiCaAlF6,” Cryst. Res. Technol. 33, 409–416 (1998).
[CrossRef]

Knox, W. H.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996).
[CrossRef]

Kolodziejski, L. A.

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Krupke, W. F.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Kuleshov, N. V.

Kuprishov, V. F.

A. L. Mikaelyan, V. F. Kuprishov, Y. G. Turkov, Y. V. Andreev, and A. A. Shcherbakova, “New method for generating a giant pulse in optical generators,” J. Exp. Theor. Phys. Lett. 11, 244–246 (1970).

Kuruvilla, A.

Lake, T.

Leitenstorfer, A.

Lempicki, A.

H. Samelson, A. Lempicki, and V. Brophy, “Self-Q-switching of ND3+ SEOCL2 liquid laser,” J. Appl. Phys. 39, 4029–4030 (1968).
[CrossRef]

Levchenko, V. I.

Li, D.

Lima, S. M.

S. M. Lima and T. Catunda, “Discrimination of resonant and nonresonant contributions to the nonlinear refraction spectroscopy of ion-doped solids,” Phys. Rev. Lett. 99, 243902(2007).
[CrossRef]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Ménard, V.

N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. Aït-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun. 260, 703–707 (2006).
[CrossRef]

Meyn, J.-P.

Mikaelyan, A. L.

A. L. Mikaelyan, V. F. Kuprishov, Y. G. Turkov, Y. V. Andreev, and A. A. Shcherbakova, “New method for generating a giant pulse in optical generators,” J. Exp. Theor. Phys. Lett. 11, 244–246 (1970).

Mikhailov, V. P.

Moncorge, R.

N. Passilly, M. Fromager, K. A. Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Measurement of the index-inversion coupling contributing to the time-dependent nonlinear lens effect in a Cr3+:LiSAF laser,” J. Phys. IV 119, 257–258 (2004).
[CrossRef]

N. Passilly, M. Fromager, K. Ait-Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Experimental and theoretical investigation of a rapidly varying nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. B 21, 531–538 (2004).
[CrossRef]

Moncorgé, R.

T. Godin, R. Moncorgé, J.-L. Doualan, M. Fromager, K. Ait-Ameur, R. A. Cruz, and T. Catunda, “Optically pump-induced athermal and nonresonant refractive index changes in the reference Cr-doped laser materials: Cr:GSGG and ruby,” J. Opt. Soc. Am. B 29, 1055–1064 (2012).
[CrossRef]

T. Godin, M. Fromager, E. Cagniot, F. Porée, T. Catunda, R. Moncorgé, and K. Aït-Ameur, “Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique,” Appl. Phys. B 107, 733–740 (2012).
[CrossRef]

M. Traiche, T. Godin, M. Fromager, R. Moncorgé, T. Catunda, E. Cagniot, and K. Ait-Ameur, “Pseudo-nonlinear and athermal lensing effects on transverse properties of Cr3+ based solid-state lasers,” Opt. Commun. 284, 1975–1981 (2011).
[CrossRef]

N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. Aït-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun. 260, 703–707 (2006).
[CrossRef]

Moser, M.

Newkirk, H. W.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Oak, S. M.

Paschotta, R.

R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley-VCH, 2008).

Passilly, N.

N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. Aït-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun. 260, 703–707 (2006).
[CrossRef]

N. Passilly, M. Fromager, K. Ait-Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Experimental and theoretical investigation of a rapidly varying nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. B 21, 531–538 (2004).
[CrossRef]

N. Passilly, M. Fromager, K. A. Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Measurement of the index-inversion coupling contributing to the time-dependent nonlinear lens effect in a Cr3+:LiSAF laser,” J. Phys. IV 119, 257–258 (2004).
[CrossRef]

N. Passilly, M. Fromager, and K. Ait-Ameur, “Improvement of the self-Q-switching behavior of a Cr:LiSrAlF6 laser by use of binary diffractive optics,” Appl. Opt. 43, 5047–5059 (2004).
[CrossRef]

Payne, S. A.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Petrich, G. S.

Pitris, C.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef]

Podlipensky, A. V.

Porée, F.

T. Godin, M. Fromager, E. Cagniot, F. Porée, T. Catunda, R. Moncorgé, and K. Aït-Ameur, “Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique,” Appl. Phys. B 107, 733–740 (2012).
[CrossRef]

Quarles, G.

N. Passilly, M. Fromager, K. A. Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Measurement of the index-inversion coupling contributing to the time-dependent nonlinear lens effect in a Cr3+:LiSAF laser,” J. Phys. IV 119, 257–258 (2004).
[CrossRef]

N. Passilly, M. Fromager, K. Ait-Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Experimental and theoretical investigation of a rapidly varying nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. B 21, 531–538 (2004).
[CrossRef]

Reiche, P.

D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40, 352–358 (2005).
[CrossRef]

D. Klimm and P. Reiche, “Nonstoichiometry of the new laser host LiCaAlF6,” Cryst. Res. Technol. 33, 409–416 (1998).
[CrossRef]

Roberts, D. H.

J. J. Deyoreo, L. J. Atherton, and D. H. Roberts, “Elimination of Scattering Centers from Cr-LiCaAlF6,” J. Cryst. Growth 113, 691–697 (1991).
[CrossRef]

Rodionov, A.

S. Wolff, A. Rodionov, V. E. Sherstobitov, C. Doering, and H. Fouckhardt, “Self-pulsation in broad area lasers with transverse-mode selective feedback,” Opt. Commun. 265, 642–648 (2006).
[CrossRef]

Samelson, H.

H. Samelson, A. Lempicki, and V. Brophy, “Self-Q-switching of ND3+ SEOCL2 liquid laser,” J. Appl. Phys. 39, 4029–4030 (1968).
[CrossRef]

Schmalz, M.

Sennaroglu, A.

Shcherbakova, A. A.

A. L. Mikaelyan, V. F. Kuprishov, Y. G. Turkov, Y. V. Andreev, and A. A. Shcherbakova, “New method for generating a giant pulse in optical generators,” J. Exp. Theor. Phys. Lett. 11, 244–246 (1970).

Shcherbitsky, V. G.

Shenoy, M. R.

Sherstobitov, V. E.

S. Wolff, A. Rodionov, V. E. Sherstobitov, C. Doering, and H. Fouckhardt, “Self-pulsation in broad area lasers with transverse-mode selective feedback,” Opt. Commun. 265, 642–648 (2006).
[CrossRef]

Shi, P.

Sinclair, B. D.

Smith, L. K.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Strauss, E.

H. Eilers, E. Strauss, and W. M. Yen, “Photoelastic effect in Ti3+-doped sapphire,” Phys. Rev. B 45, 9604–9610(1992).
[CrossRef]

E. Strauss, “Bulk and local elastic relaxation around optically-excited centers,” Phys. Rev. B 42, 1917–1921 (1990).
[CrossRef]

Sumpf, B.

Szabo, A.

A. Szabo, “Repetitive self-Q-switching in a continuously pumped ruby-laser,” J. Appl. Phys. 49, 533–538 (1978).
[CrossRef]

A. Szabo and L. E. Erickson, “Self-Q-switching of ruby lasers at 77 degrees K,” IEEE J. Quantum Electron. 4, 692–698 (1968).
[CrossRef]

Tang, Y.

Thyagarajan, K.

Traiche, M.

M. Traiche, T. Godin, M. Fromager, R. Moncorgé, T. Catunda, E. Cagniot, and K. Ait-Ameur, “Pseudo-nonlinear and athermal lensing effects on transverse properties of Cr3+ based solid-state lasers,” Opt. Commun. 284, 1975–1981 (2011).
[CrossRef]

Tsuda, S.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996).
[CrossRef]

Tucker, A. W.

A. W. Tucker, M. Birnbaum, C. L. Fincher, and L. G. DeShazer, “Continuous-wave operation of Nd:YVO4 at 1.06 and 1.34 m,” J. Appl. Phys. 47, 232–234 (1976).
[CrossRef]

Turkov, Y. G.

A. L. Mikaelyan, V. F. Kuprishov, Y. G. Turkov, Y. V. Andreev, and A. A. Shcherbakova, “New method for generating a giant pulse in optical generators,” J. Exp. Theor. Phys. Lett. 11, 244–246 (1970).

Uecker, R.

Upadhyaya, B. N.

Wang, J.

Weber, B. C.

B. C. Weber and A. Hirth, “Presentation of a new and simple technique of Q-switching with a LiSrAlF6: Cr3+ oscillator,” Opt. Commun. 149, 301–306 (1998).
[CrossRef]

B. C. Weber and A. Hirth, “Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser,” Opt. Commun. 128, 158–165 (1996).
[CrossRef]

Wei, X.

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

K. J. Weingarten, B. Braun, and U. Keller, “In-situ Small-signal gain of solid-state lasers determined from relaxation oscillation frequency measurements,” Opt. Lett. 19, 1140–1142 (1994).
[CrossRef]

Wolff, S.

S. Wolff, A. Rodionov, V. E. Sherstobitov, C. Doering, and H. Fouckhardt, “Self-pulsation in broad area lasers with transverse-mode selective feedback,” Opt. Commun. 265, 642–648 (2006).
[CrossRef]

Xu, J.

Yakimovich, V. N.

Yen, W. M.

H. Eilers, E. Strauss, and W. M. Yen, “Photoelastic effect in Ti3+-doped sapphire,” Phys. Rev. B 45, 9604–9610(1992).
[CrossRef]

Zalevsky, Z.

Z. Zalevsky, Y. Kapellner, I. Eyal, and N. Cohen, “Self Q-switching effect in a Nd:YVO4/KTP lasing unit,” Opt. Eng. 45, 070506 (2006).
[CrossRef]

Zayhowski, J. J.

Zhang, G.

Zhang, H.

Appl. Opt. (3)

Appl. Phys. B (1)

T. Godin, M. Fromager, E. Cagniot, F. Porée, T. Catunda, R. Moncorgé, and K. Aït-Ameur, “Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique,” Appl. Phys. B 107, 733–740 (2012).
[CrossRef]

Appl. Phys. Lett. (3)

I. Freund, “Self-Q-switching in ruby lasers,” Appl. Phys. Lett. 12, 388–390 (1968).
[CrossRef]

R. J. Collins, L. O. Braun, and D. R. Dean, “A new method of giant pulsing ruby lasers,” Appl. Phys. Lett. 12, 392 (1968).
[CrossRef]

M. Birnbaum and C. L. Fincher, “The ruby laser: pumped by a pulsed argon ion laser,” Appl. Phys. Lett. 12, 225–227 (1968).
[CrossRef]

Cryst. Res. Technol. (2)

D. Klimm and P. Reiche, “Nonstoichiometry of the new laser host LiCaAlF6,” Cryst. Res. Technol. 33, 409–416 (1998).
[CrossRef]

D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40, 352–358 (2005).
[CrossRef]

IEEE J. Quantum Electron. (3)

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

A. Szabo and L. E. Erickson, “Self-Q-switching of ruby lasers at 77 degrees K,” IEEE J. Quantum Electron. 4, 692–698 (1968).
[CrossRef]

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996).
[CrossRef]

J. Appl. Phys. (3)

A. Szabo, “Repetitive self-Q-switching in a continuously pumped ruby-laser,” J. Appl. Phys. 49, 533–538 (1978).
[CrossRef]

H. Samelson, A. Lempicki, and V. Brophy, “Self-Q-switching of ND3+ SEOCL2 liquid laser,” J. Appl. Phys. 39, 4029–4030 (1968).
[CrossRef]

A. W. Tucker, M. Birnbaum, C. L. Fincher, and L. G. DeShazer, “Continuous-wave operation of Nd:YVO4 at 1.06 and 1.34 m,” J. Appl. Phys. 47, 232–234 (1976).
[CrossRef]

J. Cryst. Growth (1)

J. J. Deyoreo, L. J. Atherton, and D. H. Roberts, “Elimination of Scattering Centers from Cr-LiCaAlF6,” J. Cryst. Growth 113, 691–697 (1991).
[CrossRef]

J. Exp. Theor. Phys. Lett. (1)

A. L. Mikaelyan, V. F. Kuprishov, Y. G. Turkov, Y. V. Andreev, and A. A. Shcherbakova, “New method for generating a giant pulse in optical generators,” J. Exp. Theor. Phys. Lett. 11, 244–246 (1970).

J. Opt. Soc. Am. B (5)

J. Phys. IV (1)

N. Passilly, M. Fromager, K. A. Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Measurement of the index-inversion coupling contributing to the time-dependent nonlinear lens effect in a Cr3+:LiSAF laser,” J. Phys. IV 119, 257–258 (2004).
[CrossRef]

Laser Phys. Lett. (1)

A. V. Kir’yanov, N. N. Il’ichev, and Y. O. Barmenkov, “Excited-state absorption as a source of nonlinear thermo-induced lensing and self-Q-switching in an all-fiber Erbium laser,” Laser Phys. Lett. 1, 194–198 (2004).
[CrossRef]

Neoplasia (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef]

Opt. Commun. (6)

M. Traiche, T. Godin, M. Fromager, R. Moncorgé, T. Catunda, E. Cagniot, and K. Ait-Ameur, “Pseudo-nonlinear and athermal lensing effects on transverse properties of Cr3+ based solid-state lasers,” Opt. Commun. 284, 1975–1981 (2011).
[CrossRef]

S. Wolff, A. Rodionov, V. E. Sherstobitov, C. Doering, and H. Fouckhardt, “Self-pulsation in broad area lasers with transverse-mode selective feedback,” Opt. Commun. 265, 642–648 (2006).
[CrossRef]

N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. Aït-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun. 260, 703–707 (2006).
[CrossRef]

M. Fromager and K. A. Ameur, “Modeling of the self-Q-switching behavior of lasers based on chromium doped active material,” Opt. Commun. 191, 305–314 (2001).
[CrossRef]

B. C. Weber and A. Hirth, “Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser,” Opt. Commun. 128, 158–165 (1996).
[CrossRef]

B. C. Weber and A. Hirth, “Presentation of a new and simple technique of Q-switching with a LiSrAlF6: Cr3+ oscillator,” Opt. Commun. 149, 301–306 (1998).
[CrossRef]

Opt. Eng. (1)

Z. Zalevsky, Y. Kapellner, I. Eyal, and N. Cohen, “Self Q-switching effect in a Nd:YVO4/KTP lasing unit,” Opt. Eng. 45, 070506 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (7)

Phys. Rev. B (2)

H. Eilers, E. Strauss, and W. M. Yen, “Photoelastic effect in Ti3+-doped sapphire,” Phys. Rev. B 45, 9604–9610(1992).
[CrossRef]

E. Strauss, “Bulk and local elastic relaxation around optically-excited centers,” Phys. Rev. B 42, 1917–1921 (1990).
[CrossRef]

Phys. Rev. Lett. (1)

S. M. Lima and T. Catunda, “Discrimination of resonant and nonresonant contributions to the nonlinear refraction spectroscopy of ion-doped solids,” Phys. Rev. Lett. 99, 243902(2007).
[CrossRef]

Proc. IEEE (1)

M. Birnbaum and C. L. Fincher, “Self-q-switched ND3+—YAG and ruby lasers,” Proc. IEEE 57, 804–805 (1969).
[CrossRef]

Prog. Quantum Electron. (1)

A. Sennaroglu, “Broadly tunable Cr4+ doped solid-state lasers in the near infrared and visible,” Prog. Quantum Electron. 26, 287–352 (2002).
[CrossRef]

Other (2)

R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley-VCH, 2008).

A. Sennaroglu, Photonics and Laser Engineering: Principles, Devices, and Applications (McGraw-Hill, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the Cr:LiCAF laser pumped with one single-spatial-mode diode (SMD) laser. The laser operates in SQS mode at some discrete values of the curved mirror (M1–M2) separation.

Fig. 2.
Fig. 2.

Experimentally measured variation of the laser output power as a function of the curved mirror separation within the outer stability range. Squares, pure cw operation; Circles, SQS operation.

Fig. 3.
Fig. 3.

(a) Measured temporal output profile, (b) fast Fourier transform of the output, and (c) the measured optical spectrum for the SQS Cr:LiCAF laser at the curved mirror separation of 8.45 cm. Inset figure shows the output transverse mode. The laser produced 6.5 μs long pulses at a repetition rate around 17 kHz. The average output power was 42 mW, corresponding to a pulse energy of about 2.5 μJ and a peak power of 380 mW. The optical spectrum of the pulse was centered around 799 nm with a FWHM of 1.2 nm. The incident pump power was 140 mW.

Fig. 4.
Fig. 4.

(a) Measured temporal output profile, (b) fast Fourier transform of the output, and (c) the measured optical spectrum for the SQS Cr:LiCAF laser at the curved mirror separation of 8.46 cm. Inset figure shows the output transverse mode. The laser produced 4 μs long pulses at a repetition rate around 24 kHz. The average output power was 40 mW, corresponding to a pulse energy of about 1.6 μJ and a peak power of 400 mW. The optical spectrum of the pulse was centered around 790 nm with a width (FWHM) of 10 nm. The incident pump power was 140 mW.

Fig. 5.
Fig. 5.

Power efficiency data of the cw and SQS Cr:LiCAF laser operated with a 0.75% output coupler. Inset figures show the typical beam profiles for each case.

Fig. 6.
Fig. 6.

Measured variation of the frequency of the repetitive pulse train as a function of the input pump power.

Fig. 7.
Fig. 7.

Measured temporal output profile for the SQS Cr:LiCAF laser taken with a 0.1% output coupler. The laser produced 4.8 μs long pulses at a repetition rate around 15 kHz. One can also notice oscillations in the pulse intensity at higher frequencies (around 250 kHz), which might be caused by relaxation oscillations.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

frep=1τfGo2Qo,
Pout=TPsat2(GoGth1).
Psat=hvLσeτfA,
wRr(Lc+T)(τf)(TR),
Δnpop(r,t)=2πn0fL2NTΔαpNex(r,t)NT=KNex(r)NT=CKNex(r,t),

Metrics