Abstract

A theoretical study is presented for parametric compensation of power losses in surface plasmon polaritons (SPPs) along single metal–dielectric interfaces. An optical or near-infrared signal SPP with subwavelength transverse confinement and an idler SPP with 2–3 times longer wavelength are amplified parametrically by a broadside laser pump. Despite the fact that Drude losses are much higher than parametric gain, there is more than tenfold enhancement of the signal SPP propagation length, albeit at a reduced but detectable signal power level. Numerical results are presented for a silver surface interfaced with a polymer/dye or porous silicon layer that allow phase matching of the noncollinear parametric process.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators

Sergey I. Bozhevolnyi and Thomas Søndergaard
Opt. Express 15(17) 10869-10877 (2007)

Long-range surface plasmon polaritons

Pierre Berini
Adv. Opt. Photon. 1(3) 484-588 (2009)

Optimal design of composite nanowires for extended reach of surface plasmon-polaritons

Dayan Handapangoda, Malin Premaratne, Ivan D. Rukhlenko, and Chennupati Jagadish
Opt. Express 19(17) 16058-16074 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription