Abstract

We propose theoretical schemes to deterministically generate both qubit and qutrit maximally entangled states of atoms by passing two Rb87 atoms through a high-Q bimode cavity successively. The atomic spontaneous decay is efficiently suppressed because of large atom-cavity detuning in our schemes. Strict numerical simulation shows that, although the cavity decay exists unavoidably, our proposal is good enough to generate atomic maximal entanglements with high fidelity and within the current experimental technologies.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [CrossRef]
  2. C. H. Bennett and S. J. Wiesner, “Communication via one-particle and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
    [CrossRef]
  3. A. K. Ekert, “Quantum cryptography based on Bell theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [CrossRef]
  4. E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein–Podolsky–Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
    [CrossRef]
  5. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
    [CrossRef]
  6. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
    [CrossRef]
  7. M. S. Zubairy, M. Kim, and M. O. Scully, “Cavity-QED-based quantum phase gate,” Phys. Rev. A 68, 033820 (2003).
    [CrossRef]
  8. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase-shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).
    [CrossRef]
  9. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [CrossRef]
  10. C. C. Gerry, “Generation of four-photon coherent states in dispersive cavity QED,” Phys. Rev. A 53, 3818–3821 (1996).
    [CrossRef]
  11. T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing—a cavity QED model,” Phys. Rev. Lett. 75, 3788–3791 (1995).
    [CrossRef]
  12. S. Hughes, “Coupled-cavity QED using planar photonic crystals,” Phys. Rev. Lett. 98, 083603 (2007).
    [CrossRef]
  13. S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
    [CrossRef]
  14. W. Tittel, J. Brendel, B. Gisin, T. Herzog, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum correlations over more than 10 km,” Phys. Rev. A 57, 3229–3232 (1998).
    [CrossRef]
  15. F. Francica, S. Maniscalco, J. Piilo, F. Plastina, and K.-A. Suominen, “Off-resonant entanglement generation in a lossy cavity,” Phys. Rev. A 79, 032310 (2009).
    [CrossRef]
  16. J. Cho, D. G. Angelakis, and S. Bose, “Heralded generation of entanglement with coupled cavities,” Phys. Rev. A 78, 022323 (2008).
    [CrossRef]
  17. F. Le Kien and K. Hakuta, “Deterministic generation of a pair of entangled guided photons from a single atom in a nanofiber cavity,” Phys. Rev. A 84, 053801 (2011).
    [CrossRef]
  18. M. Amniat-Talab, S. Guérin, N. Sangouard, and H. R. Jauslin, “Atom–photon, atom–atom, and photon–photon entanglement preparation by fractional adiabatic passage,” Phys. Rev. A 71, 023805 (2005).
    [CrossRef]
  19. X. B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled state of two three-level atoms in cavity QED,” Phys. Rev. A 67, 044301 (2003).
    [CrossRef]
  20. S. Y. Ye, Z. R. Zhong, and S. B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A 77, 014303 (2008).
    [CrossRef]
  21. G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, “Robust and fast geometric quantum computation with multiqubit gates in cavity QED,” Phys. Rev. A 79, 064303 (2009).
    [CrossRef]
  22. A. Delgado, C. Saavedra, and J. C. Retamal, “Quantum information and entanglement transfer for qutrits,” Phys. Lett. A 370, 22–27 (2007).
    [CrossRef]
  23. S. B. Zheng, “Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion,” Phys. Rev. A 68, 035801 (2003).
    [CrossRef]
  24. S. B. Zheng, “Production of entanglement of multiple three-level atoms with a two-mode cavity,” Commun. Theor. Phys. 45, 539–541 (2006).
    [CrossRef]
  25. X. M. Lin, Z. W. Zhou, Y. C. Wu, C. Z. Wang, and G. C. Guo, “Preparation of two-qutrit entangled state in cavity QED,” Chin. Phys. Lett. 22, 1318–1320 (2005).
    [CrossRef]
  26. S. B. Zheng, “Generation of three-dimensional entangled states for two atoms trapped in different cavities,” Chin. Phys. Lett. 22, 3064–3066 (2005).
    [CrossRef]
  27. S. B. Zheng, “Production of three-dimensional maximal entanglement for two cavity modes,” Chin. Phys. Lett. 23, 610–611 (2006).
    [CrossRef]
  28. S. B. Zheng, “Production of three-dimensional entanglement for two atoms with a single resonant interaction,” Phys. Lett. A 370, 110–112 (2007).
    [CrossRef]
  29. H. F. Wang, S. Zhang, and K. H. Yeon, “Quantum computation and entangled-state generation through photon emission and absorption processes in separated cavities,” Int. J. Theor. Phys. 49, 2723–2733 (2010).
    [CrossRef]
  30. Y. Q. Zhang, Z. Jin, S. Zhang, K. H. Yeon, and S. C. Yu, “Generation of a three-dimensional N-atom GHZ state based on optical-fiber-connected cavity quantum electrodynamics,” Phys. Scripta 84, 065009 (2011).
    [CrossRef]
  31. Z. H. Chen and X. M. Lin, “Generating entangled states of multilevel atoms through a selective atom–field interaction,” Chin. Phys. Lett. 28, 010304 (2011).
    [CrossRef]
  32. D. Kaszlikowski, P. Gnacinski, M. Zukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85, 4418–4421 (2000).
    [CrossRef]
  33. D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88, 040404 (2002).
    [CrossRef]
  34. T. Durt, D. Kaszlikowski, J.-L. Chen, and L. C. Kwek, “Security of quantum key distributions with entangled qudits,” Phys. Rev. A 69, 032313 (2004).
    [CrossRef]
  35. M. Fujiwara, M. Takeoka, J. Mizuno, and M. Sasaki, “Exceeding the classical capacity limit in a quantum optical channel,” Phys. Rev. Lett. 90, 167906 (2003).
    [CrossRef]
  36. L. B. Chen, P. Shi, C. H. Zheng, and Y. J. Gu, “Generation of three-dimensional entangled state between a single atom and a Bose–Einstein condensate via adiabatic passage,” Opt. Express 20, 14547–14555 (2012).
    [CrossRef]
  37. L. B. Chen, P. Shi, Y. J. Gu, L. Xie, and L. Z. Ma, “Generation of atomic entangled states in a bi-mode cavity via adiabatic passage,” Opt. Commun. 284, 5020–5023 (2011).
    [CrossRef]
  38. S. S. Ma, M. F. Chen, and X. P. Jiang, “One-step generation of qutrit entanglement via adiabatic passage in cavity quantum electrodynamics,” Chin. Phys. B 20, 120308 (2011).
    [CrossRef]
  39. W. A. Li, “Distributed qutrit–qutrit entanglement via quantum Zeno dynamics,” Opt. Commun. 284, 2245–2249 (2011).
    [CrossRef]
  40. A. S. Zheng, X. Y. Hao, and X. Y. Lü, “Generation of three-dimensional entanglement with spin qubits coupled to a bimodal microsphere cavity,” J. Phys. B 44, 165507 (2011).
    [CrossRef]
  41. H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372–1377 (2002).
    [CrossRef]
  42. T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488–490 (2007).
    [CrossRef]
  43. T. Wilk, “Quantum interface between an atom and a photon,” Ph.D. thesis, Max-Planck-Institut fur Quantenoptik (2008).
  44. B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon–photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
    [CrossRef]
  45. J. Shu, X. B. Zou, Y. F. Xiao, and G. C. Guo, “Generating four-mode multiphoton entangled states in cavity QED,” Phys. Rev. A 74, 044301 (2006).
    [CrossRef]
  46. M. B. Plenio and P. L. Knight, “The quantum-jump approach to dissipative dynamics in quantum optics,” Rev. Mod. Phys. 70, 101–144 (1998).
    [CrossRef]
  47. J. Cho and H. W. Lee, “Generation of atomic cluster states through the cavity input–output process,” Phys. Rev. Lett. 95, 160501 (2005).
    [CrossRef]
  48. K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007).
    [CrossRef]
  49. J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, and H. Weinfurter, “Observation of entanglement of a single photon with a trapped atom,” Phys. Rev. Lett. 96, 030404 (2006).
    [CrossRef]
  50. P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Cavity cooling of a single atom,” Nature 428, 50–52 (2004).
    [CrossRef]
  51. M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, K. Schöner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10, 073023 (2008).
    [CrossRef]
  52. M. Khudaverdyan, “A controlled one and two atom-cavity system,” Ph.D. thesis, Institute for Applied Physics, University of Bonn (2009).
  53. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
    [CrossRef]
  54. J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
    [CrossRef]

2012 (1)

2011 (7)

L. B. Chen, P. Shi, Y. J. Gu, L. Xie, and L. Z. Ma, “Generation of atomic entangled states in a bi-mode cavity via adiabatic passage,” Opt. Commun. 284, 5020–5023 (2011).
[CrossRef]

S. S. Ma, M. F. Chen, and X. P. Jiang, “One-step generation of qutrit entanglement via adiabatic passage in cavity quantum electrodynamics,” Chin. Phys. B 20, 120308 (2011).
[CrossRef]

W. A. Li, “Distributed qutrit–qutrit entanglement via quantum Zeno dynamics,” Opt. Commun. 284, 2245–2249 (2011).
[CrossRef]

A. S. Zheng, X. Y. Hao, and X. Y. Lü, “Generation of three-dimensional entanglement with spin qubits coupled to a bimodal microsphere cavity,” J. Phys. B 44, 165507 (2011).
[CrossRef]

Y. Q. Zhang, Z. Jin, S. Zhang, K. H. Yeon, and S. C. Yu, “Generation of a three-dimensional N-atom GHZ state based on optical-fiber-connected cavity quantum electrodynamics,” Phys. Scripta 84, 065009 (2011).
[CrossRef]

Z. H. Chen and X. M. Lin, “Generating entangled states of multilevel atoms through a selective atom–field interaction,” Chin. Phys. Lett. 28, 010304 (2011).
[CrossRef]

F. Le Kien and K. Hakuta, “Deterministic generation of a pair of entangled guided photons from a single atom in a nanofiber cavity,” Phys. Rev. A 84, 053801 (2011).
[CrossRef]

2010 (1)

H. F. Wang, S. Zhang, and K. H. Yeon, “Quantum computation and entangled-state generation through photon emission and absorption processes in separated cavities,” Int. J. Theor. Phys. 49, 2723–2733 (2010).
[CrossRef]

2009 (3)

G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, “Robust and fast geometric quantum computation with multiqubit gates in cavity QED,” Phys. Rev. A 79, 064303 (2009).
[CrossRef]

F. Francica, S. Maniscalco, J. Piilo, F. Plastina, and K.-A. Suominen, “Off-resonant entanglement generation in a lossy cavity,” Phys. Rev. A 79, 032310 (2009).
[CrossRef]

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon–photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

2008 (3)

M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, K. Schöner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10, 073023 (2008).
[CrossRef]

J. Cho, D. G. Angelakis, and S. Bose, “Heralded generation of entanglement with coupled cavities,” Phys. Rev. A 78, 022323 (2008).
[CrossRef]

S. Y. Ye, Z. R. Zhong, and S. B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A 77, 014303 (2008).
[CrossRef]

2007 (5)

S. Hughes, “Coupled-cavity QED using planar photonic crystals,” Phys. Rev. Lett. 98, 083603 (2007).
[CrossRef]

A. Delgado, C. Saavedra, and J. C. Retamal, “Quantum information and entanglement transfer for qutrits,” Phys. Lett. A 370, 22–27 (2007).
[CrossRef]

S. B. Zheng, “Production of three-dimensional entanglement for two atoms with a single resonant interaction,” Phys. Lett. A 370, 110–112 (2007).
[CrossRef]

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007).
[CrossRef]

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488–490 (2007).
[CrossRef]

2006 (4)

J. Shu, X. B. Zou, Y. F. Xiao, and G. C. Guo, “Generating four-mode multiphoton entangled states in cavity QED,” Phys. Rev. A 74, 044301 (2006).
[CrossRef]

J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, and H. Weinfurter, “Observation of entanglement of a single photon with a trapped atom,” Phys. Rev. Lett. 96, 030404 (2006).
[CrossRef]

S. B. Zheng, “Production of three-dimensional maximal entanglement for two cavity modes,” Chin. Phys. Lett. 23, 610–611 (2006).
[CrossRef]

S. B. Zheng, “Production of entanglement of multiple three-level atoms with a two-mode cavity,” Commun. Theor. Phys. 45, 539–541 (2006).
[CrossRef]

2005 (5)

X. M. Lin, Z. W. Zhou, Y. C. Wu, C. Z. Wang, and G. C. Guo, “Preparation of two-qutrit entangled state in cavity QED,” Chin. Phys. Lett. 22, 1318–1320 (2005).
[CrossRef]

S. B. Zheng, “Generation of three-dimensional entangled states for two atoms trapped in different cavities,” Chin. Phys. Lett. 22, 3064–3066 (2005).
[CrossRef]

M. Amniat-Talab, S. Guérin, N. Sangouard, and H. R. Jauslin, “Atom–photon, atom–atom, and photon–photon entanglement preparation by fractional adiabatic passage,” Phys. Rev. A 71, 023805 (2005).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

J. Cho and H. W. Lee, “Generation of atomic cluster states through the cavity input–output process,” Phys. Rev. Lett. 95, 160501 (2005).
[CrossRef]

2004 (2)

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Cavity cooling of a single atom,” Nature 428, 50–52 (2004).
[CrossRef]

T. Durt, D. Kaszlikowski, J.-L. Chen, and L. C. Kwek, “Security of quantum key distributions with entangled qudits,” Phys. Rev. A 69, 032313 (2004).
[CrossRef]

2003 (5)

M. Fujiwara, M. Takeoka, J. Mizuno, and M. Sasaki, “Exceeding the classical capacity limit in a quantum optical channel,” Phys. Rev. Lett. 90, 167906 (2003).
[CrossRef]

S. B. Zheng, “Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion,” Phys. Rev. A 68, 035801 (2003).
[CrossRef]

X. B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled state of two three-level atoms in cavity QED,” Phys. Rev. A 67, 044301 (2003).
[CrossRef]

M. S. Zubairy, M. Kim, and M. O. Scully, “Cavity-QED-based quantum phase gate,” Phys. Rev. A 68, 033820 (2003).
[CrossRef]

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
[CrossRef]

2002 (2)

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88, 040404 (2002).
[CrossRef]

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372–1377 (2002).
[CrossRef]

2001 (2)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[CrossRef]

2000 (3)

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef]

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
[CrossRef]

D. Kaszlikowski, P. Gnacinski, M. Zukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85, 4418–4421 (2000).
[CrossRef]

1998 (2)

W. Tittel, J. Brendel, B. Gisin, T. Herzog, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum correlations over more than 10 km,” Phys. Rev. A 57, 3229–3232 (1998).
[CrossRef]

M. B. Plenio and P. L. Knight, “The quantum-jump approach to dissipative dynamics in quantum optics,” Rev. Mod. Phys. 70, 101–144 (1998).
[CrossRef]

1997 (1)

E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein–Podolsky–Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

1996 (1)

C. C. Gerry, “Generation of four-photon coherent states in dispersive cavity QED,” Phys. Rev. A 53, 3818–3821 (1996).
[CrossRef]

1995 (2)

T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing—a cavity QED model,” Phys. Rev. Lett. 75, 3788–3791 (1995).
[CrossRef]

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase-shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).
[CrossRef]

1993 (1)

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

1992 (1)

C. H. Bennett and S. J. Wiesner, “Communication via one-particle and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef]

Ahmadi, P.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007).
[CrossRef]

Alt, W.

M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, K. Schöner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10, 073023 (2008).
[CrossRef]

Amniat-Talab, M.

M. Amniat-Talab, S. Guérin, N. Sangouard, and H. R. Jauslin, “Atom–photon, atom–atom, and photon–photon entanglement preparation by fractional adiabatic passage,” Phys. Rev. A 71, 023805 (2005).
[CrossRef]

Angelakis, D. G.

J. Cho, D. G. Angelakis, and S. Bose, “Heralded generation of entanglement with coupled cavities,” Phys. Rev. A 78, 022323 (2008).
[CrossRef]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

C. H. Bennett and S. J. Wiesner, “Communication via one-particle and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef]

Bertet, P.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef]

Bochmann, J.

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon–photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

Bose, S.

J. Cho, D. G. Angelakis, and S. Bose, “Heralded generation of entanglement with coupled cavities,” Phys. Rev. A 78, 022323 (2008).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Brendel, J.

W. Tittel, J. Brendel, B. Gisin, T. Herzog, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum correlations over more than 10 km,” Phys. Rev. A 57, 3229–3232 (1998).
[CrossRef]

Brune, M.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[CrossRef]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef]

E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein–Podolsky–Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Buck, J. R.

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
[CrossRef]

Chapman, M. S.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007).
[CrossRef]

Chen, J.-L.

T. Durt, D. Kaszlikowski, J.-L. Chen, and L. C. Kwek, “Security of quantum key distributions with entangled qudits,” Phys. Rev. A 69, 032313 (2004).
[CrossRef]

Chen, L. B.

L. B. Chen, P. Shi, C. H. Zheng, and Y. J. Gu, “Generation of three-dimensional entangled state between a single atom and a Bose–Einstein condensate via adiabatic passage,” Opt. Express 20, 14547–14555 (2012).
[CrossRef]

L. B. Chen, P. Shi, Y. J. Gu, L. Xie, and L. Z. Ma, “Generation of atomic entangled states in a bi-mode cavity via adiabatic passage,” Opt. Commun. 284, 5020–5023 (2011).
[CrossRef]

Chen, M. F.

S. S. Ma, M. F. Chen, and X. P. Jiang, “One-step generation of qutrit entanglement via adiabatic passage in cavity quantum electrodynamics,” Chin. Phys. B 20, 120308 (2011).
[CrossRef]

Chen, Z. H.

Z. H. Chen and X. M. Lin, “Generating entangled states of multilevel atoms through a selective atom–field interaction,” Chin. Phys. Lett. 28, 010304 (2011).
[CrossRef]

Cho, J.

J. Cho, D. G. Angelakis, and S. Bose, “Heralded generation of entanglement with coupled cavities,” Phys. Rev. A 78, 022323 (2008).
[CrossRef]

J. Cho and H. W. Lee, “Generation of atomic cluster states through the cavity input–output process,” Phys. Rev. Lett. 95, 160501 (2005).
[CrossRef]

Cirac, J. I.

T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing—a cavity QED model,” Phys. Rev. Lett. 75, 3788–3791 (1995).
[CrossRef]

Collins, D.

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88, 040404 (2002).
[CrossRef]

Crepeau, C.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Delgado, A.

A. Delgado, C. Saavedra, and J. C. Retamal, “Quantum information and entanglement transfer for qutrits,” Phys. Lett. A 370, 22–27 (2007).
[CrossRef]

Doherty, A. C.

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372–1377 (2002).
[CrossRef]

Dotsenko, I.

M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, K. Schöner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10, 073023 (2008).
[CrossRef]

Durt, T.

T. Durt, D. Kaszlikowski, J.-L. Chen, and L. C. Kwek, “Security of quantum key distributions with entangled qudits,” Phys. Rev. A 69, 032313 (2004).
[CrossRef]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef]

Fortier, K. M.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007).
[CrossRef]

Francica, F.

F. Francica, S. Maniscalco, J. Piilo, F. Plastina, and K.-A. Suominen, “Off-resonant entanglement generation in a lossy cavity,” Phys. Rev. A 79, 032310 (2009).
[CrossRef]

Fujiwara, M.

M. Fujiwara, M. Takeoka, J. Mizuno, and M. Sasaki, “Exceeding the classical capacity limit in a quantum optical channel,” Phys. Rev. Lett. 90, 167906 (2003).
[CrossRef]

Gardiner, S. A.

T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing—a cavity QED model,” Phys. Rev. Lett. 75, 3788–3791 (1995).
[CrossRef]

Gerry, C. C.

C. C. Gerry, “Generation of four-photon coherent states in dispersive cavity QED,” Phys. Rev. A 53, 3818–3821 (1996).
[CrossRef]

Gibbons, M. J.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007).
[CrossRef]

Gisin, B.

W. Tittel, J. Brendel, B. Gisin, T. Herzog, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum correlations over more than 10 km,” Phys. Rev. A 57, 3229–3232 (1998).
[CrossRef]

Gisin, N.

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88, 040404 (2002).
[CrossRef]

W. Tittel, J. Brendel, B. Gisin, T. Herzog, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum correlations over more than 10 km,” Phys. Rev. A 57, 3229–3232 (1998).
[CrossRef]

Gnacinski, P.

D. Kaszlikowski, P. Gnacinski, M. Zukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85, 4418–4421 (2000).
[CrossRef]

Goh, K. W.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Gu, Y. J.

L. B. Chen, P. Shi, C. H. Zheng, and Y. J. Gu, “Generation of three-dimensional entangled state between a single atom and a Bose–Einstein condensate via adiabatic passage,” Opt. Express 20, 14547–14555 (2012).
[CrossRef]

L. B. Chen, P. Shi, Y. J. Gu, L. Xie, and L. Z. Ma, “Generation of atomic entangled states in a bi-mode cavity via adiabatic passage,” Opt. Commun. 284, 5020–5023 (2011).
[CrossRef]

Guérin, S.

M. Amniat-Talab, S. Guérin, N. Sangouard, and H. R. Jauslin, “Atom–photon, atom–atom, and photon–photon entanglement preparation by fractional adiabatic passage,” Phys. Rev. A 71, 023805 (2005).
[CrossRef]

Guo, G. C.

G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, “Robust and fast geometric quantum computation with multiqubit gates in cavity QED,” Phys. Rev. A 79, 064303 (2009).
[CrossRef]

J. Shu, X. B. Zou, Y. F. Xiao, and G. C. Guo, “Generating four-mode multiphoton entangled states in cavity QED,” Phys. Rev. A 74, 044301 (2006).
[CrossRef]

X. M. Lin, Z. W. Zhou, Y. C. Wu, C. Z. Wang, and G. C. Guo, “Preparation of two-qutrit entangled state in cavity QED,” Chin. Phys. Lett. 22, 1318–1320 (2005).
[CrossRef]

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
[CrossRef]

Hagley, E.

E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein–Podolsky–Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Hakuta, K.

F. Le Kien and K. Hakuta, “Deterministic generation of a pair of entangled guided photons from a single atom in a nanofiber cavity,” Phys. Rev. A 84, 053801 (2011).
[CrossRef]

Hao, X. Y.

A. S. Zheng, X. Y. Hao, and X. Y. Lü, “Generation of three-dimensional entanglement with spin qubits coupled to a bimodal microsphere cavity,” J. Phys. B 44, 165507 (2011).
[CrossRef]

Haroche, S.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[CrossRef]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef]

E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein–Podolsky–Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Herzog, T.

W. Tittel, J. Brendel, B. Gisin, T. Herzog, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum correlations over more than 10 km,” Phys. Rev. A 57, 3229–3232 (1998).
[CrossRef]

Hood, C. J.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase-shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).
[CrossRef]

Hughes, S.

S. Hughes, “Coupled-cavity QED using planar photonic crystals,” Phys. Rev. Lett. 98, 083603 (2007).
[CrossRef]

Jauslin, H. R.

M. Amniat-Talab, S. Guérin, N. Sangouard, and H. R. Jauslin, “Atom–photon, atom–atom, and photon–photon entanglement preparation by fractional adiabatic passage,” Phys. Rev. A 71, 023805 (2005).
[CrossRef]

Jiang, X. P.

S. S. Ma, M. F. Chen, and X. P. Jiang, “One-step generation of qutrit entanglement via adiabatic passage in cavity quantum electrodynamics,” Chin. Phys. B 20, 120308 (2011).
[CrossRef]

Jin, Z.

Y. Q. Zhang, Z. Jin, S. Zhang, K. H. Yeon, and S. C. Yu, “Generation of a three-dimensional N-atom GHZ state based on optical-fiber-connected cavity quantum electrodynamics,” Phys. Scripta 84, 065009 (2011).
[CrossRef]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Kampschulte, T.

M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, K. Schöner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10, 073023 (2008).
[CrossRef]

Kaszlikowski, D.

T. Durt, D. Kaszlikowski, J.-L. Chen, and L. C. Kwek, “Security of quantum key distributions with entangled qudits,” Phys. Rev. A 69, 032313 (2004).
[CrossRef]

D. Kaszlikowski, P. Gnacinski, M. Zukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85, 4418–4421 (2000).
[CrossRef]

Khudaverdyan, M.

M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, K. Schöner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10, 073023 (2008).
[CrossRef]

M. Khudaverdyan, “A controlled one and two atom-cavity system,” Ph.D. thesis, Institute for Applied Physics, University of Bonn (2009).

Kim, M.

M. S. Zubairy, M. Kim, and M. O. Scully, “Cavity-QED-based quantum phase gate,” Phys. Rev. A 68, 033820 (2003).
[CrossRef]

Kim, S. Y.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007).
[CrossRef]

Kimble, H. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
[CrossRef]

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase-shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).
[CrossRef]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Knight, P. L.

M. B. Plenio and P. L. Knight, “The quantum-jump approach to dissipative dynamics in quantum optics,” Rev. Mod. Phys. 70, 101–144 (1998).
[CrossRef]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

Kuhn, A.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488–490 (2007).
[CrossRef]

Kurtsiefer, C.

J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, and H. Weinfurter, “Observation of entanglement of a single photon with a trapped atom,” Phys. Rev. Lett. 96, 030404 (2006).
[CrossRef]

Kwek, L. C.

T. Durt, D. Kaszlikowski, J.-L. Chen, and L. C. Kwek, “Security of quantum key distributions with entangled qudits,” Phys. Rev. A 69, 032313 (2004).
[CrossRef]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

Lange, W.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase-shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).
[CrossRef]

Le Kien, F.

F. Le Kien and K. Hakuta, “Deterministic generation of a pair of entangled guided photons from a single atom in a nanofiber cavity,” Phys. Rev. A 84, 053801 (2011).
[CrossRef]

Lee, H. W.

J. Cho and H. W. Lee, “Generation of atomic cluster states through the cavity input–output process,” Phys. Rev. Lett. 95, 160501 (2005).
[CrossRef]

Lenhard, K.

M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, K. Schöner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10, 073023 (2008).
[CrossRef]

Li, W. A.

W. A. Li, “Distributed qutrit–qutrit entanglement via quantum Zeno dynamics,” Opt. Commun. 284, 2245–2249 (2011).
[CrossRef]

Lin, G. W.

G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, “Robust and fast geometric quantum computation with multiqubit gates in cavity QED,” Phys. Rev. A 79, 064303 (2009).
[CrossRef]

Lin, X. M.

Z. H. Chen and X. M. Lin, “Generating entangled states of multilevel atoms through a selective atom–field interaction,” Chin. Phys. Lett. 28, 010304 (2011).
[CrossRef]

G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, “Robust and fast geometric quantum computation with multiqubit gates in cavity QED,” Phys. Rev. A 79, 064303 (2009).
[CrossRef]

X. M. Lin, Z. W. Zhou, Y. C. Wu, C. Z. Wang, and G. C. Guo, “Preparation of two-qutrit entangled state in cavity QED,” Chin. Phys. Lett. 22, 1318–1320 (2005).
[CrossRef]

Linden, N.

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88, 040404 (2002).
[CrossRef]

Lü, X. Y.

A. S. Zheng, X. Y. Hao, and X. Y. Lü, “Generation of three-dimensional entanglement with spin qubits coupled to a bimodal microsphere cavity,” J. Phys. B 44, 165507 (2011).
[CrossRef]

Ma, L. Z.

L. B. Chen, P. Shi, Y. J. Gu, L. Xie, and L. Z. Ma, “Generation of atomic entangled states in a bi-mode cavity via adiabatic passage,” Opt. Commun. 284, 5020–5023 (2011).
[CrossRef]

Ma, S. S.

S. S. Ma, M. F. Chen, and X. P. Jiang, “One-step generation of qutrit entanglement via adiabatic passage in cavity quantum electrodynamics,” Chin. Phys. B 20, 120308 (2011).
[CrossRef]

Mabuchi, H.

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372–1377 (2002).
[CrossRef]

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase-shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).
[CrossRef]

Maître, X.

E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein–Podolsky–Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Maniscalco, S.

F. Francica, S. Maniscalco, J. Piilo, F. Plastina, and K.-A. Suominen, “Off-resonant entanglement generation in a lossy cavity,” Phys. Rev. A 79, 032310 (2009).
[CrossRef]

Massar, S.

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88, 040404 (2002).
[CrossRef]

Mathis, W.

X. B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled state of two three-level atoms in cavity QED,” Phys. Rev. A 67, 044301 (2003).
[CrossRef]

Maunz, P.

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Cavity cooling of a single atom,” Nature 428, 50–52 (2004).
[CrossRef]

Meschede, D.

M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, K. Schöner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10, 073023 (2008).
[CrossRef]

Miklaszewski, W.

D. Kaszlikowski, P. Gnacinski, M. Zukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85, 4418–4421 (2000).
[CrossRef]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

Mizuno, J.

M. Fujiwara, M. Takeoka, J. Mizuno, and M. Sasaki, “Exceeding the classical capacity limit in a quantum optical channel,” Phys. Rev. Lett. 90, 167906 (2003).
[CrossRef]

Moehring, D. L.

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon–photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

Mucke, M.

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon–photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

Muller, T.

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon–photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

Nogues, G.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef]

E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein–Podolsky–Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Osnaghi, S.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef]

Pahlke, K.

X. B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled state of two three-level atoms in cavity QED,” Phys. Rev. A 67, 044301 (2003).
[CrossRef]

Pellizzari, T.

T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing—a cavity QED model,” Phys. Rev. Lett. 75, 3788–3791 (1995).
[CrossRef]

Peres, A.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Piilo, J.

F. Francica, S. Maniscalco, J. Piilo, F. Plastina, and K.-A. Suominen, “Off-resonant entanglement generation in a lossy cavity,” Phys. Rev. A 79, 032310 (2009).
[CrossRef]

Pinkse, P. W. H.

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Cavity cooling of a single atom,” Nature 428, 50–52 (2004).
[CrossRef]

Plastina, F.

F. Francica, S. Maniscalco, J. Piilo, F. Plastina, and K.-A. Suominen, “Off-resonant entanglement generation in a lossy cavity,” Phys. Rev. A 79, 032310 (2009).
[CrossRef]

Plenio, M. B.

M. B. Plenio and P. L. Knight, “The quantum-jump approach to dissipative dynamics in quantum optics,” Rev. Mod. Phys. 70, 101–144 (1998).
[CrossRef]

Popescu, S.

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88, 040404 (2002).
[CrossRef]

Puppe, T.

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Cavity cooling of a single atom,” Nature 428, 50–52 (2004).
[CrossRef]

Raimond, J. M.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[CrossRef]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef]

E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein–Podolsky–Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Rauschenbeutel, A.

M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, K. Schöner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10, 073023 (2008).
[CrossRef]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef]

Reick, S.

M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, K. Schöner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10, 073023 (2008).
[CrossRef]

Rempe, G.

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon–photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488–490 (2007).
[CrossRef]

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Cavity cooling of a single atom,” Nature 428, 50–52 (2004).
[CrossRef]

Retamal, J. C.

A. Delgado, C. Saavedra, and J. C. Retamal, “Quantum information and entanglement transfer for qutrits,” Phys. Lett. A 370, 22–27 (2007).
[CrossRef]

Rosenfeld, W.

J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, and H. Weinfurter, “Observation of entanglement of a single photon with a trapped atom,” Phys. Rev. Lett. 96, 030404 (2006).
[CrossRef]

Saavedra, C.

A. Delgado, C. Saavedra, and J. C. Retamal, “Quantum information and entanglement transfer for qutrits,” Phys. Lett. A 370, 22–27 (2007).
[CrossRef]

Sangouard, N.

M. Amniat-Talab, S. Guérin, N. Sangouard, and H. R. Jauslin, “Atom–photon, atom–atom, and photon–photon entanglement preparation by fractional adiabatic passage,” Phys. Rev. A 71, 023805 (2005).
[CrossRef]

Sasaki, M.

M. Fujiwara, M. Takeoka, J. Mizuno, and M. Sasaki, “Exceeding the classical capacity limit in a quantum optical channel,” Phys. Rev. Lett. 90, 167906 (2003).
[CrossRef]

Saucke, K.

J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, and H. Weinfurter, “Observation of entanglement of a single photon with a trapped atom,” Phys. Rev. Lett. 96, 030404 (2006).
[CrossRef]

Schlenk, D.

J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, and H. Weinfurter, “Observation of entanglement of a single photon with a trapped atom,” Phys. Rev. Lett. 96, 030404 (2006).
[CrossRef]

Schöner, K.

M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, K. Schöner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10, 073023 (2008).
[CrossRef]

Schuster, I.

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Cavity cooling of a single atom,” Nature 428, 50–52 (2004).
[CrossRef]

Scully, M. O.

M. S. Zubairy, M. Kim, and M. O. Scully, “Cavity-QED-based quantum phase gate,” Phys. Rev. A 68, 033820 (2003).
[CrossRef]

Shi, P.

L. B. Chen, P. Shi, C. H. Zheng, and Y. J. Gu, “Generation of three-dimensional entangled state between a single atom and a Bose–Einstein condensate via adiabatic passage,” Opt. Express 20, 14547–14555 (2012).
[CrossRef]

L. B. Chen, P. Shi, Y. J. Gu, L. Xie, and L. Z. Ma, “Generation of atomic entangled states in a bi-mode cavity via adiabatic passage,” Opt. Commun. 284, 5020–5023 (2011).
[CrossRef]

Shu, J.

J. Shu, X. B. Zou, Y. F. Xiao, and G. C. Guo, “Generating four-mode multiphoton entangled states in cavity QED,” Phys. Rev. A 74, 044301 (2006).
[CrossRef]

Specht, H. P.

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon–photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Suominen, K.-A.

F. Francica, S. Maniscalco, J. Piilo, F. Plastina, and K.-A. Suominen, “Off-resonant entanglement generation in a lossy cavity,” Phys. Rev. A 79, 032310 (2009).
[CrossRef]

Syassen, N.

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Cavity cooling of a single atom,” Nature 428, 50–52 (2004).
[CrossRef]

Takeoka, M.

M. Fujiwara, M. Takeoka, J. Mizuno, and M. Sasaki, “Exceeding the classical capacity limit in a quantum optical channel,” Phys. Rev. Lett. 90, 167906 (2003).
[CrossRef]

Tittel, W.

W. Tittel, J. Brendel, B. Gisin, T. Herzog, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum correlations over more than 10 km,” Phys. Rev. A 57, 3229–3232 (1998).
[CrossRef]

Turchette, Q. A.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase-shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).
[CrossRef]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Volz, J.

J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, and H. Weinfurter, “Observation of entanglement of a single photon with a trapped atom,” Phys. Rev. Lett. 96, 030404 (2006).
[CrossRef]

Vrana, J.

J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, and H. Weinfurter, “Observation of entanglement of a single photon with a trapped atom,” Phys. Rev. Lett. 96, 030404 (2006).
[CrossRef]

Wang, C. Z.

X. M. Lin, Z. W. Zhou, Y. C. Wu, C. Z. Wang, and G. C. Guo, “Preparation of two-qutrit entangled state in cavity QED,” Chin. Phys. Lett. 22, 1318–1320 (2005).
[CrossRef]

Wang, H. F.

H. F. Wang, S. Zhang, and K. H. Yeon, “Quantum computation and entangled-state generation through photon emission and absorption processes in separated cavities,” Int. J. Theor. Phys. 49, 2723–2733 (2010).
[CrossRef]

Weber, B.

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon–photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

Weber, M.

J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, and H. Weinfurter, “Observation of entanglement of a single photon with a trapped atom,” Phys. Rev. Lett. 96, 030404 (2006).
[CrossRef]

Webster, S. C.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488–490 (2007).
[CrossRef]

Weinfurter, H.

J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, and H. Weinfurter, “Observation of entanglement of a single photon with a trapped atom,” Phys. Rev. Lett. 96, 030404 (2006).
[CrossRef]

Widera, A.

M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, K. Schöner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10, 073023 (2008).
[CrossRef]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one-particle and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef]

Wilcut, E.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Wilk, T.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488–490 (2007).
[CrossRef]

T. Wilk, “Quantum interface between an atom and a photon,” Ph.D. thesis, Max-Planck-Institut fur Quantenoptik (2008).

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Wu, Y. C.

X. M. Lin, Z. W. Zhou, Y. C. Wu, C. Z. Wang, and G. C. Guo, “Preparation of two-qutrit entangled state in cavity QED,” Chin. Phys. Lett. 22, 1318–1320 (2005).
[CrossRef]

Wunderlich, C.

E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein–Podolsky–Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Xiao, Y. F.

J. Shu, X. B. Zou, Y. F. Xiao, and G. C. Guo, “Generating four-mode multiphoton entangled states in cavity QED,” Phys. Rev. A 74, 044301 (2006).
[CrossRef]

Xie, L.

L. B. Chen, P. Shi, Y. J. Gu, L. Xie, and L. Z. Ma, “Generation of atomic entangled states in a bi-mode cavity via adiabatic passage,” Opt. Commun. 284, 5020–5023 (2011).
[CrossRef]

Ye, S. Y.

S. Y. Ye, Z. R. Zhong, and S. B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A 77, 014303 (2008).
[CrossRef]

Yeon, K. H.

Y. Q. Zhang, Z. Jin, S. Zhang, K. H. Yeon, and S. C. Yu, “Generation of a three-dimensional N-atom GHZ state based on optical-fiber-connected cavity quantum electrodynamics,” Phys. Scripta 84, 065009 (2011).
[CrossRef]

H. F. Wang, S. Zhang, and K. H. Yeon, “Quantum computation and entangled-state generation through photon emission and absorption processes in separated cavities,” Int. J. Theor. Phys. 49, 2723–2733 (2010).
[CrossRef]

Yu, S. C.

Y. Q. Zhang, Z. Jin, S. Zhang, K. H. Yeon, and S. C. Yu, “Generation of a three-dimensional N-atom GHZ state based on optical-fiber-connected cavity quantum electrodynamics,” Phys. Scripta 84, 065009 (2011).
[CrossRef]

Zbinden, H.

W. Tittel, J. Brendel, B. Gisin, T. Herzog, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum correlations over more than 10 km,” Phys. Rev. A 57, 3229–3232 (1998).
[CrossRef]

Zeilinger, A.

D. Kaszlikowski, P. Gnacinski, M. Zukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85, 4418–4421 (2000).
[CrossRef]

Zhang, S.

Y. Q. Zhang, Z. Jin, S. Zhang, K. H. Yeon, and S. C. Yu, “Generation of a three-dimensional N-atom GHZ state based on optical-fiber-connected cavity quantum electrodynamics,” Phys. Scripta 84, 065009 (2011).
[CrossRef]

H. F. Wang, S. Zhang, and K. H. Yeon, “Quantum computation and entangled-state generation through photon emission and absorption processes in separated cavities,” Int. J. Theor. Phys. 49, 2723–2733 (2010).
[CrossRef]

Zhang, Y. Q.

Y. Q. Zhang, Z. Jin, S. Zhang, K. H. Yeon, and S. C. Yu, “Generation of a three-dimensional N-atom GHZ state based on optical-fiber-connected cavity quantum electrodynamics,” Phys. Scripta 84, 065009 (2011).
[CrossRef]

Zheng, A. S.

A. S. Zheng, X. Y. Hao, and X. Y. Lü, “Generation of three-dimensional entanglement with spin qubits coupled to a bimodal microsphere cavity,” J. Phys. B 44, 165507 (2011).
[CrossRef]

Zheng, C. H.

Zheng, S. B.

S. Y. Ye, Z. R. Zhong, and S. B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A 77, 014303 (2008).
[CrossRef]

S. B. Zheng, “Production of three-dimensional entanglement for two atoms with a single resonant interaction,” Phys. Lett. A 370, 110–112 (2007).
[CrossRef]

S. B. Zheng, “Production of three-dimensional maximal entanglement for two cavity modes,” Chin. Phys. Lett. 23, 610–611 (2006).
[CrossRef]

S. B. Zheng, “Production of entanglement of multiple three-level atoms with a two-mode cavity,” Commun. Theor. Phys. 45, 539–541 (2006).
[CrossRef]

S. B. Zheng, “Generation of three-dimensional entangled states for two atoms trapped in different cavities,” Chin. Phys. Lett. 22, 3064–3066 (2005).
[CrossRef]

S. B. Zheng, “Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion,” Phys. Rev. A 68, 035801 (2003).
[CrossRef]

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
[CrossRef]

Zhong, Z. R.

S. Y. Ye, Z. R. Zhong, and S. B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A 77, 014303 (2008).
[CrossRef]

Zhou, Z. W.

X. M. Lin, Z. W. Zhou, Y. C. Wu, C. Z. Wang, and G. C. Guo, “Preparation of two-qutrit entangled state in cavity QED,” Chin. Phys. Lett. 22, 1318–1320 (2005).
[CrossRef]

Zoller, P.

T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing—a cavity QED model,” Phys. Rev. Lett. 75, 3788–3791 (1995).
[CrossRef]

Zou, X. B.

G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, “Robust and fast geometric quantum computation with multiqubit gates in cavity QED,” Phys. Rev. A 79, 064303 (2009).
[CrossRef]

J. Shu, X. B. Zou, Y. F. Xiao, and G. C. Guo, “Generating four-mode multiphoton entangled states in cavity QED,” Phys. Rev. A 74, 044301 (2006).
[CrossRef]

X. B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled state of two three-level atoms in cavity QED,” Phys. Rev. A 67, 044301 (2003).
[CrossRef]

Zubairy, M. S.

M. S. Zubairy, M. Kim, and M. O. Scully, “Cavity-QED-based quantum phase gate,” Phys. Rev. A 68, 033820 (2003).
[CrossRef]

Zukowski, M.

D. Kaszlikowski, P. Gnacinski, M. Zukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85, 4418–4421 (2000).
[CrossRef]

Chin. Phys. B (1)

S. S. Ma, M. F. Chen, and X. P. Jiang, “One-step generation of qutrit entanglement via adiabatic passage in cavity quantum electrodynamics,” Chin. Phys. B 20, 120308 (2011).
[CrossRef]

Chin. Phys. Lett. (4)

X. M. Lin, Z. W. Zhou, Y. C. Wu, C. Z. Wang, and G. C. Guo, “Preparation of two-qutrit entangled state in cavity QED,” Chin. Phys. Lett. 22, 1318–1320 (2005).
[CrossRef]

S. B. Zheng, “Generation of three-dimensional entangled states for two atoms trapped in different cavities,” Chin. Phys. Lett. 22, 3064–3066 (2005).
[CrossRef]

S. B. Zheng, “Production of three-dimensional maximal entanglement for two cavity modes,” Chin. Phys. Lett. 23, 610–611 (2006).
[CrossRef]

Z. H. Chen and X. M. Lin, “Generating entangled states of multilevel atoms through a selective atom–field interaction,” Chin. Phys. Lett. 28, 010304 (2011).
[CrossRef]

Commun. Theor. Phys. (1)

S. B. Zheng, “Production of entanglement of multiple three-level atoms with a two-mode cavity,” Commun. Theor. Phys. 45, 539–541 (2006).
[CrossRef]

Int. J. Theor. Phys. (1)

H. F. Wang, S. Zhang, and K. H. Yeon, “Quantum computation and entangled-state generation through photon emission and absorption processes in separated cavities,” Int. J. Theor. Phys. 49, 2723–2733 (2010).
[CrossRef]

J. Phys. B (1)

A. S. Zheng, X. Y. Hao, and X. Y. Lü, “Generation of three-dimensional entanglement with spin qubits coupled to a bimodal microsphere cavity,” J. Phys. B 44, 165507 (2011).
[CrossRef]

Nature (2)

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Cavity cooling of a single atom,” Nature 428, 50–52 (2004).
[CrossRef]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

New J. Phys. (1)

M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, K. Schöner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10, 073023 (2008).
[CrossRef]

Opt. Commun. (2)

W. A. Li, “Distributed qutrit–qutrit entanglement via quantum Zeno dynamics,” Opt. Commun. 284, 2245–2249 (2011).
[CrossRef]

L. B. Chen, P. Shi, Y. J. Gu, L. Xie, and L. Z. Ma, “Generation of atomic entangled states in a bi-mode cavity via adiabatic passage,” Opt. Commun. 284, 5020–5023 (2011).
[CrossRef]

Opt. Express (1)

Phys. Lett. A (2)

S. B. Zheng, “Production of three-dimensional entanglement for two atoms with a single resonant interaction,” Phys. Lett. A 370, 110–112 (2007).
[CrossRef]

A. Delgado, C. Saavedra, and J. C. Retamal, “Quantum information and entanglement transfer for qutrits,” Phys. Lett. A 370, 22–27 (2007).
[CrossRef]

Phys. Rev. A (15)

S. B. Zheng, “Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion,” Phys. Rev. A 68, 035801 (2003).
[CrossRef]

M. S. Zubairy, M. Kim, and M. O. Scully, “Cavity-QED-based quantum phase gate,” Phys. Rev. A 68, 033820 (2003).
[CrossRef]

T. Durt, D. Kaszlikowski, J.-L. Chen, and L. C. Kwek, “Security of quantum key distributions with entangled qudits,” Phys. Rev. A 69, 032313 (2004).
[CrossRef]

C. C. Gerry, “Generation of four-photon coherent states in dispersive cavity QED,” Phys. Rev. A 53, 3818–3821 (1996).
[CrossRef]

W. Tittel, J. Brendel, B. Gisin, T. Herzog, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum correlations over more than 10 km,” Phys. Rev. A 57, 3229–3232 (1998).
[CrossRef]

F. Francica, S. Maniscalco, J. Piilo, F. Plastina, and K.-A. Suominen, “Off-resonant entanglement generation in a lossy cavity,” Phys. Rev. A 79, 032310 (2009).
[CrossRef]

J. Cho, D. G. Angelakis, and S. Bose, “Heralded generation of entanglement with coupled cavities,” Phys. Rev. A 78, 022323 (2008).
[CrossRef]

F. Le Kien and K. Hakuta, “Deterministic generation of a pair of entangled guided photons from a single atom in a nanofiber cavity,” Phys. Rev. A 84, 053801 (2011).
[CrossRef]

M. Amniat-Talab, S. Guérin, N. Sangouard, and H. R. Jauslin, “Atom–photon, atom–atom, and photon–photon entanglement preparation by fractional adiabatic passage,” Phys. Rev. A 71, 023805 (2005).
[CrossRef]

X. B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled state of two three-level atoms in cavity QED,” Phys. Rev. A 67, 044301 (2003).
[CrossRef]

S. Y. Ye, Z. R. Zhong, and S. B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A 77, 014303 (2008).
[CrossRef]

G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, “Robust and fast geometric quantum computation with multiqubit gates in cavity QED,” Phys. Rev. A 79, 064303 (2009).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
[CrossRef]

J. Shu, X. B. Zou, Y. F. Xiao, and G. C. Guo, “Generating four-mode multiphoton entangled states in cavity QED,” Phys. Rev. A 74, 044301 (2006).
[CrossRef]

Phys. Rev. Lett. (15)

J. Cho and H. W. Lee, “Generation of atomic cluster states through the cavity input–output process,” Phys. Rev. Lett. 95, 160501 (2005).
[CrossRef]

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007).
[CrossRef]

J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, and H. Weinfurter, “Observation of entanglement of a single photon with a trapped atom,” Phys. Rev. Lett. 96, 030404 (2006).
[CrossRef]

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon–photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing—a cavity QED model,” Phys. Rev. Lett. 75, 3788–3791 (1995).
[CrossRef]

S. Hughes, “Coupled-cavity QED using planar photonic crystals,” Phys. Rev. Lett. 98, 083603 (2007).
[CrossRef]

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
[CrossRef]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

C. H. Bennett and S. J. Wiesner, “Communication via one-particle and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef]

A. K. Ekert, “Quantum cryptography based on Bell theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef]

E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein–Podolsky–Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

M. Fujiwara, M. Takeoka, J. Mizuno, and M. Sasaki, “Exceeding the classical capacity limit in a quantum optical channel,” Phys. Rev. Lett. 90, 167906 (2003).
[CrossRef]

D. Kaszlikowski, P. Gnacinski, M. Zukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85, 4418–4421 (2000).
[CrossRef]

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88, 040404 (2002).
[CrossRef]

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase-shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).
[CrossRef]

Phys. Scripta (1)

Y. Q. Zhang, Z. Jin, S. Zhang, K. H. Yeon, and S. C. Yu, “Generation of a three-dimensional N-atom GHZ state based on optical-fiber-connected cavity quantum electrodynamics,” Phys. Scripta 84, 065009 (2011).
[CrossRef]

Rev. Mod. Phys. (2)

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[CrossRef]

M. B. Plenio and P. L. Knight, “The quantum-jump approach to dissipative dynamics in quantum optics,” Rev. Mod. Phys. 70, 101–144 (1998).
[CrossRef]

Science (3)

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372–1377 (2002).
[CrossRef]

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488–490 (2007).
[CrossRef]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef]

Other (2)

T. Wilk, “Quantum interface between an atom and a photon,” Ph.D. thesis, Max-Planck-Institut fur Quantenoptik (2008).

M. Khudaverdyan, “A controlled one and two atom-cavity system,” Ph.D. thesis, Institute for Applied Physics, University of Bonn (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic illustration of generating atomic multilevel entangled states with two Rb87 atoms in a bimode cavity. (a) Atom A enters cavity C and interacts with a π-polarized classical pump field. (b) After atom A passes through cavity C, atom B enters the cavity and interacts with the cavity mode. The atomic levels and transitions of the atoms involved are shown as well. Δ is the detuning between the cavity mode and the corresponding atomic transition.

Fig. 2.
Fig. 2.

Time-dependent atomic-photonic-state populations versus dimensionless time gAt1(gBt2) in (a) the first stage and (b) the second stage, where ΩA=2gA, ΩB=gB, and Δ=10gA=10gB. Pi(i=1,2,3) and Pj(j=1,2,3,4), respectively, denote the populations of the states |gaA|0C, |gLA|1LC, |gRA|1RC, |gLA|g0B|1LC, |gRA|g0B|1RC, |gLA|gRB|0C, and |gRA|gLB|0C. Pp and Pp are the probabilities with which one photon appears in cavity C related to the two stages.

Fig. 3.
Fig. 3.

Time-dependent atomic-photonic-state populations versus dimensionless time gAt1(gBt2) in (a) the first stage and (b) the second stage, where ΩA=(1+3)gA, ΩB=gB, and Δ=10gA=10gB. Pi(i=1,2,3) and Pj(j=1,2,3,4,5), respectively, denote the populations of states |gaA|0C, |gLA|1LC, |gRA|1RC, |gaA|g0B|0C, |gLA|g0B|1LC, |gRA|g0B|1RC, |gLA|gRB|0C, and |gRA|gLB|0C. Pp and Pp are the probabilities with which one photon appears in cavity C related to the two stages.

Fig. 4.
Fig. 4.

(a) Success probability and (b) fidelity of the two-qubit (qutrit) entanglements in our scheme as a function of the cavity decay rate κ, where PA, PB (PA, PB) denote the success probability of the two-qubit (qutrit) entanglements generated, respectively, in two stages and FA, FB (FA, FB) denote the fidelity of the entanglements.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

HIA=ΩA|e0Aga|eiΔt+gAaR|e0AgR|eiΔt+gAaL×|e0AgL|eiΔt+H.c.,
HeffA=ΩA2Δ|gaAga|+gA2Δ(aLaL|gLAgL|+aRaR|gRA×gR|A+aLaR|gLAgR|+aRaL|gRAgL|)+ΩAgAΔ(aR|gRAga|+aL|gLAga|+H.c.).
HIB=ΩB(|eLBgL|eiΔt+|eRBgR|eiΔt)+gBaL×|eRBg0|eiΔt+gBaR|eLBg0|eiΔt+H.c.
HeffB=ΩB2Δ(|gLBgL|+|gRBgR|)+gB2Δ(aRaR|g0B×g0|B+aLaL|g0Bg0|)+ΩBgBΔ(aR|gLBg0|+aL|gRBg0|+H.c.).
|ψ(t)=c1(t)|gaA|0C+c2(t)|gLA|1LC+c3(t)|gRA|1RC,
c1(t)=(2gA2+ΩA2eiηt/Δ)/η,c2(t)=c3(t)=(gAΩAeiηt/ΔgAΩA)/η,
|ψ(t1)=12(|gLA|1LC+|gRA|1RC),
|ψ(t)=d1(t)|gLA|g0B|1LC+d2(t)|gRA|g0B|1RC+d3(t)|gLA|gRB|0C+d4(t)|gRA|gLB|0C,
d1(t)=d2(t)=(ΩB2+gB2eiξt/Δ)/2ξ,d3(t)=d4(t)=(gBΩBeiξt/ΔgBΩB)/2ξ,
|ψ(t2)=12(|gLA|gRB+|gRA|gLB)|0C.
|ψ(t1)=13(|gaA|0C+|gLA|1LC+|gRA|1RC.
|ψ(t)=d1(t)|gaA|g0B|0C+d2(t)|gLA|g0B|1LC+d3(t)|gRA|g0B|1RC+d4(t)|gLA|gRB|0C+d5(t)|gRA|gLB|0C,
d1(t)=1/3,d2(t)=d3(t)=(ΩB2+gB2eiζt/Δ)/3ζ,d4(t)=d5(t)=(gBΩBeiζt/ΔgBΩB)/3ζ,
|ψ(t2)=13(|gaA|g0B+|gLA|gRB+|gRA|gLB)|0C,
Hcon=HeffA(B)iκ(aLaL+aRaR),

Metrics