Abstract

A metallic screen is completely opaque to electromagnetic waves at all frequencies below the corresponding metal’s plasma frequency. We present, to the best of our knowledge, a type of composite material screen, exhibiting resonant transmission properties constituting what we believe is a kind of extraordinary transmission. The screens are composed of ultrathin metallic planar arrays of scatterers having dual electromagnetic properties, in the sense of Babinet’s principle, arbitrarily close to each other, including the limit of being coplanar. Such transmission is extraordinary because the corresponding composite screen geometrically approximates a continuous (“shorted”) metal plate, expected to be opaque to electromagnetic waves. Instead, because of a resonant scattering cancellation between the dual metallic arrays, the screens are completely transparent at the corresponding frequency. We validate the theory with waveguide measurements of a fabricated dual screen exhibiting resonant transmission at millimeter-wave frequencies. We further present fully transmitting arbitrarily thin designs, with unit cells even smaller than one-tenth of the wavelength, opening up technological possibilities for integration of these screens on devices necessitating negligible thickness and minimal layout area.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (32)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription