Abstract

A metallic screen is completely opaque to electromagnetic waves at all frequencies below the corresponding metal’s plasma frequency. We present, to the best of our knowledge, a type of composite material screen, exhibiting resonant transmission properties constituting what we believe is a kind of extraordinary transmission. The screens are composed of ultrathin metallic planar arrays of scatterers having dual electromagnetic properties, in the sense of Babinet’s principle, arbitrarily close to each other, including the limit of being coplanar. Such transmission is extraordinary because the corresponding composite screen geometrically approximates a continuous (“shorted”) metal plate, expected to be opaque to electromagnetic waves. Instead, because of a resonant scattering cancellation between the dual metallic arrays, the screens are completely transparent at the corresponding frequency. We validate the theory with waveguide measurements of a fabricated dual screen exhibiting resonant transmission at millimeter-wave frequencies. We further present fully transmitting arbitrarily thin designs, with unit cells even smaller than one-tenth of the wavelength, opening up technological possibilities for integration of these screens on devices necessitating negligible thickness and minimal layout area.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
    [CrossRef]
  2. J. Meixner and W. Andrejewski, “Strenge theorie der beugung ebener elektromagnetischer wellen an der volkommen leitenden kreisscheibe und an der kreisformigen offnung in volkommen leitenden ebenen schirm,” Ann. Phys. 442, 157–168 (1950).
    [CrossRef]
  3. H. Levine and J. Schwinger, “On the theory of electromagnetic wave diffraction by an aperture in an infinite plane conducting screen,” Commun. Pure Appl. Math. 3, 355–391 (1950).
    [CrossRef]
  4. C. J. Bouwkamp, “On the diffraction of electromagnetic waves by small circular disks and holes,” Philips Res. Rep. 5, 401–422 (1950).
  5. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  6. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
    [CrossRef]
  7. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–1571 (2000).
    [CrossRef]
  8. M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced millimeter wave transmission through quasi-optical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1903 (2005).
    [CrossRef]
  9. L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
    [CrossRef]
  10. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002).
    [CrossRef]
  11. D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “The beaming of light at broadside through a subwavelength hole: leaky-wave model and open stopband effect,” Radio Sci. 40, 1–7 (2005).
    [CrossRef]
  12. H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004).
    [CrossRef]
  13. F. J. Garcia de Abajo and R. Gomez-Medina, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72, 016608 (2005).
    [CrossRef]
  14. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
    [CrossRef]
  15. F. J. Garcia de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
    [CrossRef]
  16. H. F. Contopanagos, C. A. Kyriazidou, W. M. Merrill, and N. G. Alexopoulos, “Effective response functions for photonic bandgap materials,” J. Opt. Soc. Am. A 16, 1682–1699(1999).
    [CrossRef]
  17. D. R. Smith, S. Schultz, P. Marcos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
    [CrossRef]
  18. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” Pure Appl. Opt. 7, S97–S101 (2005).
    [CrossRef]
  19. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous materials,” Phys. Rev. E 71, 036617 (2005).
    [CrossRef]
  20. N. G. Alexopoulos, C. A. Kyriazidou, and H. F. Contopanagos, “Effective parameters for metamorphic materials and metamaterials through a resonant inverse scattering approach,” IEEE Trans. Microwave Theor. Tech. 55, 254–267 (2007).
    [CrossRef]
  21. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55(1967).
    [CrossRef]
  22. B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley, 2000).
  23. F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002).
    [CrossRef]
  24. A. Moreau, G. Granet, F. Baida, and D. Van Labeke, “Light transmission by subwavelength square coaxial aperture arrays in metallic films,” Opt. Express 11, 1131–1136 (2003).
    [CrossRef]
  25. W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94, 033902 (2005).
    [CrossRef]
  26. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  27. H. G. Booker, “Slot aerials and their relation to complementary wire antennas,” J. IEE 93, 620–626 (1946).
  28. R. E. Collin, Field Theory of Guided Waves, 2nd ed. (IEEE and Oxford University, 1991).
  29. R. E. Collin and W. H. Eggimann, “Dynamic interaction fields in a two-dimensional lattice,” IRE Trans. Microwave Theor. Tech. 9, 110–115 (1961).
    [CrossRef]
  30. W. H. Eggimann, “Higher order evaluation of dipole moments of a small circular disk,” IRE Trans. Microwave Theor. Tech. 8, 573 (1960).
    [CrossRef]
  31. C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, “Monolithic waveguide filters using printed photonic-bandgap materials,” IEEE Trans. Microwave Theor. Tech. 49, 297–307 (2001).
    [CrossRef]

2007 (3)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef]

F. J. Garcia de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

N. G. Alexopoulos, C. A. Kyriazidou, and H. F. Contopanagos, “Effective parameters for metamorphic materials and metamaterials through a resonant inverse scattering approach,” IEEE Trans. Microwave Theor. Tech. 55, 254–267 (2007).
[CrossRef]

2005 (6)

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous materials,” Phys. Rev. E 71, 036617 (2005).
[CrossRef]

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “The beaming of light at broadside through a subwavelength hole: leaky-wave model and open stopband effect,” Radio Sci. 40, 1–7 (2005).
[CrossRef]

F. J. Garcia de Abajo and R. Gomez-Medina, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72, 016608 (2005).
[CrossRef]

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced millimeter wave transmission through quasi-optical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1903 (2005).
[CrossRef]

2004 (1)

2003 (1)

2002 (3)

D. R. Smith, S. Schultz, P. Marcos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002).
[CrossRef]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002).
[CrossRef]

2001 (2)

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, “Monolithic waveguide filters using printed photonic-bandgap materials,” IEEE Trans. Microwave Theor. Tech. 49, 297–307 (2001).
[CrossRef]

2000 (1)

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–1571 (2000).
[CrossRef]

1999 (1)

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

1967 (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55(1967).
[CrossRef]

1961 (1)

R. E. Collin and W. H. Eggimann, “Dynamic interaction fields in a two-dimensional lattice,” IRE Trans. Microwave Theor. Tech. 9, 110–115 (1961).
[CrossRef]

1960 (1)

W. H. Eggimann, “Higher order evaluation of dipole moments of a small circular disk,” IRE Trans. Microwave Theor. Tech. 8, 573 (1960).
[CrossRef]

1950 (3)

J. Meixner and W. Andrejewski, “Strenge theorie der beugung ebener elektromagnetischer wellen an der volkommen leitenden kreisscheibe und an der kreisformigen offnung in volkommen leitenden ebenen schirm,” Ann. Phys. 442, 157–168 (1950).
[CrossRef]

H. Levine and J. Schwinger, “On the theory of electromagnetic wave diffraction by an aperture in an infinite plane conducting screen,” Commun. Pure Appl. Math. 3, 355–391 (1950).
[CrossRef]

C. J. Bouwkamp, “On the diffraction of electromagnetic waves by small circular disks and holes,” Philips Res. Rep. 5, 401–422 (1950).

1946 (1)

H. G. Booker, “Slot aerials and their relation to complementary wire antennas,” J. IEE 93, 620–626 (1946).

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Alexopoulos, N. G.

N. G. Alexopoulos, C. A. Kyriazidou, and H. F. Contopanagos, “Effective parameters for metamorphic materials and metamaterials through a resonant inverse scattering approach,” IEEE Trans. Microwave Theor. Tech. 55, 254–267 (2007).
[CrossRef]

C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, “Monolithic waveguide filters using printed photonic-bandgap materials,” IEEE Trans. Microwave Theor. Tech. 49, 297–307 (2001).
[CrossRef]

H. F. Contopanagos, C. A. Kyriazidou, W. M. Merrill, and N. G. Alexopoulos, “Effective response functions for photonic bandgap materials,” J. Opt. Soc. Am. A 16, 1682–1699(1999).
[CrossRef]

Andrejewski, W.

J. Meixner and W. Andrejewski, “Strenge theorie der beugung ebener elektromagnetischer wellen an der volkommen leitenden kreisscheibe und an der kreisformigen offnung in volkommen leitenden ebenen schirm,” Ann. Phys. 442, 157–168 (1950).
[CrossRef]

Baida, F.

Baida, F. I.

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002).
[CrossRef]

Barnes, W. L.

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002).
[CrossRef]

Beruete, M.

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced millimeter wave transmission through quasi-optical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1903 (2005).
[CrossRef]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Booker, H. G.

H. G. Booker, “Slot aerials and their relation to complementary wire antennas,” J. IEE 93, 620–626 (1946).

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Bouwkamp, C. J.

C. J. Bouwkamp, “On the diffraction of electromagnetic waves by small circular disks and holes,” Philips Res. Rep. 5, 401–422 (1950).

Bravo-Abad, J.

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced millimeter wave transmission through quasi-optical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1903 (2005).
[CrossRef]

Brueck, S. R. J.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef]

Campillo, I.

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced millimeter wave transmission through quasi-optical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1903 (2005).
[CrossRef]

Collin, R. E.

R. E. Collin and W. H. Eggimann, “Dynamic interaction fields in a two-dimensional lattice,” IRE Trans. Microwave Theor. Tech. 9, 110–115 (1961).
[CrossRef]

R. E. Collin, Field Theory of Guided Waves, 2nd ed. (IEEE and Oxford University, 1991).

Contopanagos, H. F.

N. G. Alexopoulos, C. A. Kyriazidou, and H. F. Contopanagos, “Effective parameters for metamorphic materials and metamaterials through a resonant inverse scattering approach,” IEEE Trans. Microwave Theor. Tech. 55, 254–267 (2007).
[CrossRef]

C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, “Monolithic waveguide filters using printed photonic-bandgap materials,” IEEE Trans. Microwave Theor. Tech. 49, 297–307 (2001).
[CrossRef]

H. F. Contopanagos, C. A. Kyriazidou, W. M. Merrill, and N. G. Alexopoulos, “Effective response functions for photonic bandgap materials,” J. Opt. Soc. Am. A 16, 1682–1699(1999).
[CrossRef]

Degiron, A.

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002).
[CrossRef]

Dolado, J. S.

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced millimeter wave transmission through quasi-optical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1903 (2005).
[CrossRef]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002).
[CrossRef]

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–1571 (2000).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Eggimann, W. H.

R. E. Collin and W. H. Eggimann, “Dynamic interaction fields in a two-dimensional lattice,” IRE Trans. Microwave Theor. Tech. 9, 110–115 (1961).
[CrossRef]

W. H. Eggimann, “Higher order evaluation of dipole moments of a small circular disk,” IRE Trans. Microwave Theor. Tech. 8, 573 (1960).
[CrossRef]

Fan, W.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef]

Garcia de Abajo, F. J.

F. J. Garcia de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

F. J. Garcia de Abajo and R. Gomez-Medina, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72, 016608 (2005).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced millimeter wave transmission through quasi-optical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1903 (2005).
[CrossRef]

García-Vidal, F. J.

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Gomez-Medina, R.

F. J. Garcia de Abajo and R. Gomez-Medina, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72, 016608 (2005).
[CrossRef]

Granet, G.

Grupp, D. E.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–1571 (2000).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Jackson, D. R.

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “The beaming of light at broadside through a subwavelength hole: leaky-wave model and open stopband effect,” Radio Sci. 40, 1–7 (2005).
[CrossRef]

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous materials,” Phys. Rev. E 71, 036617 (2005).
[CrossRef]

Kyriazidou, C. A.

N. G. Alexopoulos, C. A. Kyriazidou, and H. F. Contopanagos, “Effective parameters for metamorphic materials and metamaterials through a resonant inverse scattering approach,” IEEE Trans. Microwave Theor. Tech. 55, 254–267 (2007).
[CrossRef]

C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, “Monolithic waveguide filters using printed photonic-bandgap materials,” IEEE Trans. Microwave Theor. Tech. 49, 297–307 (2001).
[CrossRef]

H. F. Contopanagos, C. A. Kyriazidou, W. M. Merrill, and N. G. Alexopoulos, “Effective response functions for photonic bandgap materials,” J. Opt. Soc. Am. A 16, 1682–1699(1999).
[CrossRef]

Levine, H.

H. Levine and J. Schwinger, “On the theory of electromagnetic wave diffraction by an aperture in an infinite plane conducting screen,” Commun. Pure Appl. Math. 3, 355–391 (1950).
[CrossRef]

Lezec, H.

Lezec, H. J.

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002).
[CrossRef]

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–1571 (2000).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Malloy, K. J.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef]

Marcos, P.

D. R. Smith, S. Schultz, P. Marcos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced millimeter wave transmission through quasi-optical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1903 (2005).
[CrossRef]

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

Meixner, J.

J. Meixner and W. Andrejewski, “Strenge theorie der beugung ebener elektromagnetischer wellen an der volkommen leitenden kreisscheibe und an der kreisformigen offnung in volkommen leitenden ebenen schirm,” Ann. Phys. 442, 157–168 (1950).
[CrossRef]

Merrill, W. M.

Minhas, B.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef]

Moreau, A.

Munk, B. A.

B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley, 2000).

Oliner, A. A.

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “The beaming of light at broadside through a subwavelength hole: leaky-wave model and open stopband effect,” Radio Sci. 40, 1–7 (2005).
[CrossRef]

Pellerin, K. M.

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–1571 (2000).
[CrossRef]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

Schultz, S.

D. R. Smith, S. Schultz, P. Marcos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Schwinger, J.

H. Levine and J. Schwinger, “On the theory of electromagnetic wave diffraction by an aperture in an infinite plane conducting screen,” Commun. Pure Appl. Math. 3, 355–391 (1950).
[CrossRef]

Smith, D. R.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous materials,” Phys. Rev. E 71, 036617 (2005).
[CrossRef]

D. R. Smith, S. Schultz, P. Marcos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Sorolla, M.

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced millimeter wave transmission through quasi-optical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1903 (2005).
[CrossRef]

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous materials,” Phys. Rev. E 71, 036617 (2005).
[CrossRef]

D. R. Smith, S. Schultz, P. Marcos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Thio, T.

H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004).
[CrossRef]

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–1571 (2000).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Ulrich, R.

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55(1967).
[CrossRef]

Van Labeke, D.

A. Moreau, G. Granet, F. Baida, and D. Van Labeke, “Light transmission by subwavelength square coaxial aperture arrays in metallic films,” Opt. Express 11, 1131–1136 (2003).
[CrossRef]

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002).
[CrossRef]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous materials,” Phys. Rev. E 71, 036617 (2005).
[CrossRef]

Williams, J. T.

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “The beaming of light at broadside through a subwavelength hole: leaky-wave model and open stopband effect,” Radio Sci. 40, 1–7 (2005).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Zhang, S.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef]

Zhao, T.

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “The beaming of light at broadside through a subwavelength hole: leaky-wave model and open stopband effect,” Radio Sci. 40, 1–7 (2005).
[CrossRef]

Ann. Phys. (1)

J. Meixner and W. Andrejewski, “Strenge theorie der beugung ebener elektromagnetischer wellen an der volkommen leitenden kreisscheibe und an der kreisformigen offnung in volkommen leitenden ebenen schirm,” Ann. Phys. 442, 157–168 (1950).
[CrossRef]

Appl. Phys. Lett. (2)

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–1571 (2000).
[CrossRef]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002).
[CrossRef]

Commun. Pure Appl. Math. (1)

H. Levine and J. Schwinger, “On the theory of electromagnetic wave diffraction by an aperture in an infinite plane conducting screen,” Commun. Pure Appl. Math. 3, 355–391 (1950).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced millimeter wave transmission through quasi-optical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1903 (2005).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (2)

N. G. Alexopoulos, C. A. Kyriazidou, and H. F. Contopanagos, “Effective parameters for metamorphic materials and metamaterials through a resonant inverse scattering approach,” IEEE Trans. Microwave Theor. Tech. 55, 254–267 (2007).
[CrossRef]

C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, “Monolithic waveguide filters using printed photonic-bandgap materials,” IEEE Trans. Microwave Theor. Tech. 49, 297–307 (2001).
[CrossRef]

Infrared Phys. (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55(1967).
[CrossRef]

IRE Trans. Microwave Theor. Tech. (2)

R. E. Collin and W. H. Eggimann, “Dynamic interaction fields in a two-dimensional lattice,” IRE Trans. Microwave Theor. Tech. 9, 110–115 (1961).
[CrossRef]

W. H. Eggimann, “Higher order evaluation of dipole moments of a small circular disk,” IRE Trans. Microwave Theor. Tech. 8, 573 (1960).
[CrossRef]

J. IEE (1)

H. G. Booker, “Slot aerials and their relation to complementary wire antennas,” J. IEE 93, 620–626 (1946).

J. Opt. Soc. Am. A (1)

Nature (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Opt. Commun. (1)

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002).
[CrossRef]

Opt. Express (2)

Philips Res. Rep. (1)

C. J. Bouwkamp, “On the diffraction of electromagnetic waves by small circular disks and holes,” Philips Res. Rep. 5, 401–422 (1950).

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Phys. Rev. B (2)

D. R. Smith, S. Schultz, P. Marcos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Phys. Rev. E (2)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous materials,” Phys. Rev. E 71, 036617 (2005).
[CrossRef]

F. J. Garcia de Abajo and R. Gomez-Medina, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72, 016608 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef]

Pure Appl. Opt. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

Radio Sci. (1)

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “The beaming of light at broadside through a subwavelength hole: leaky-wave model and open stopband effect,” Radio Sci. 40, 1–7 (2005).
[CrossRef]

Rev. Mod. Phys. (1)

F. J. Garcia de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

Other (3)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

R. E. Collin, Field Theory of Guided Waves, 2nd ed. (IEEE and Oxford University, 1991).

B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

(a) Super-thin dual screen containing an array of metal disks printed on the front surface of a dielectric layer and the complementary array of holes etched on the metal-cladded back surface of that layer and the corresponding U.C. screen thickness d/2r=0.025. (b) U.C. with screen thickness d/2r=0.005.

Fig. 2.
Fig. 2.

(a) Reflectivity and transmittance (in decibels) with the high-order analytical method (curves 1 and 2) and simulation (curves 3 and 4) for d=25μm. (b) Same as in (a), except the leading-order analytical method is used.

Fig. 3.
Fig. 3.

Reflectivity and transmittance (in decibels) with the high-order analytical method (curves 1 and 2) and simulation (curves 3 and 4) for d=5μm.

Fig. 4.
Fig. 4.

Complex reflection coefficient S11=[1]+j[2] (high-order analytical), S11=[3]+j[4] (simulation), and the analytical shunt susceptance function b(a,r,ω)=[5], for the dual screen of Fig. 2, d=25μm.

Fig. 5.
Fig. 5.

Network equivalent of dual screens.

Fig. 6.
Fig. 6.

Vector current distribution at resonance on disk and hole, for d=5μm.

Fig. 7.
Fig. 7.

(a) Total electric field vector distribution on the front (disk) surface of the U.C. at 95 GHz. (b) Side view of (a) at 95 and 94 GHz.

Fig. 8.
Fig. 8.

Fabricated dual screen scaled for a Ka-band rectangular waveguide.

Fig. 9.
Fig. 9.

Experimental setup. (a) The two parts of the dual screen inserted at the waveguide section ends before joining them. (b) Schematic of the measurement and simulation setup. (c) Reflection images of holes on the waveguide walls.

Fig. 10.
Fig. 10.

Measured reflectivity and transmittance (in decibels) (curves 1 and 2) and simulation (curves 3 and 4) for the system of Fig. 8.

Fig. 11.
Fig. 11.

Ultrasmall U.C. designs. (a) Square patch/hole complementary dual U.C., d=25μm. (b) Self-similar complementary dual U.C., d=25μm.

Fig. 12.
Fig. 12.

Reflectivity and transmittance (in decibels) for the designs of Fig. 11(a) (curves 1 and 2) and 11(b) (curves 3 and 4).

Fig. 13.
Fig. 13.

Self-similar complementary dual U.C. using a single metal layer.

Fig. 14.
Fig. 14.

Noncomplementary dual supercell, d=5μm.

Fig. 15.
Fig. 15.

Reflectivity and transmittance (in decibels) for the design of Fig. 14 (curves 1 and 2) and for a screen of a single hole array (curves 3 and 4).

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

(R0L0)=(1+y1y1y11y1)(ejϕ00ejϕ)(1+y2y2y21y2)(RoutLout)(T11T12T21T22)(RoutLout),
S11L0R0=T21T11=ejϕy1(1+y2)+ejϕy2(1y1)ejϕ(1+y1)(1+y2)ejϕy1y2,
S21RoutR0=1T11=1ejϕ(1+y1)(1+y2)ejϕy1y2.
det(T11T12T21T22)=det(1+y1y1y11y1)·det(ejϕ00ejϕ)·det(1+y2y2y21y2)=1,
T11T22T21T12=1,T21*=T12.
S11S11*+S21S21*=T21T21*+1T11T11*=T21T12+1T11T11*=1,
b1b2+b1b2cos2ϕ+b2sin2ϕ+j(b1+b2cos2ϕb1b2sin2ϕ)=0.
sin2ϕ=b1(1+r12)1+b12,cos2ϕ=1(1+r12)1+b12,r12b1b2,
sin22ϕ+cos22ϕ=11+r12211+b12=1r12=±1.
Case1:r12=1b2=b1.
sin2ϕ=2b11+b12.
sin2ϕ=12k0d=π2dλ=18.
Case2:r12=1b2=b1.
sin2ϕ=0,
b1=b(a1,r1;ω)>0.
Y2=4Y2Disks2jb2(a2,r2;ω)=42jb1b2(a2,r2;ω)=1b(a2,r2;ω).
1b(a2,r2;ω)=b(a1,r1;ω)b(a1,r1;ω)·b(a2,r2;ω)=1.
b(a,r;ω)=1.
B(a,r;ω)=2b(a,r;ω)2x(eP1ePC),
e=αea3=83(ra)3,
xk0a=ωac=2πaλ.
C=ζ(3)π+x2{12π[ln4π+12+γ]+S1}+x4{196π}+S2j(x2x36π),
S1=12n=1(2aΓn1nπ),S2=2πm,n=1(aΓn)2K0(maΓn).
aΓn=2nπ1(x2nπ)2.
S1x2ζ(3)2(2π)3+x43ζ(5)8(2π)5.
S22π(4π2x2){K0(2π)+x24π2K1(2π)}.
C=C0+C2x2+C4x4+C6x6j(C1xC3x3),
C0=1π[ζ(3)8π2K0(2π)],C1=12,C3=16π,
C2=12π(ln4π+12+γ)+2πK0(2π)2K1(2π),C4=196π+ζ(3)2(2π)3+K1(2π)2π2,C6=3ζ(5)8(2π)5.
K0(2π)0.49019×e2π,K1(2π)0.52775×e2π,ζ(3)1.202007,ζ(5)1.04992.
CC0=1π[ζ(3)8π2K0(2π)],
P=1+815(kr)2+j89π(kr)3+16105(kr)4+j176225π(kr)5,

Metrics