Abstract

We report the design and fabrication of single-material distributed Bragg reflectors (DBRs) composed of amorphous germanium (a-Ge) thin films by a glancing angle deposition and their optical reflectance characteristics in the long wavelength region of 1.7–3.1 μm, together with the aid of theoretical analysis using a rigorous coupled-wave analysis method. The refractive index of the a-Ge films is estimated from the measured transmittance spectra. The high and low refractive indices a-Ge films (i.e., Δn2.18), which compose the alternative layers of DBRs, were fabricated at two incident vapor flux angles (θα) of 0° and 80°, respectively, by determining the quarter wavelength thicknesses of 135 nm at θα=0° and 291 nm at θα=80° for a center wavelength (λc) of 2.2μm. For the fabricated a-Ge/a-Ge DBR with only 5 pairs, the normalized stop bandwidth (Δλ/λc) of 22.3% was measured while maintaining high reflectance values of >99% over a wide wavelength range of 2.06–2.55 μm, which indicates a reasonable consistency with the calculated reflectance results.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Zhao, Y. H. Zuo, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84, 110–115 (2010).
    [CrossRef]
  2. P. Abolghasem and A. S. Helmy, “Single-sided Bragg reflection waveguides with multilayer core for monolithic semiconductor parametric devices,” J. Opt. Soc. Am. B 29, 1367–1375(2012).
    [CrossRef]
  3. Y. C. Peng, C. C. Kao, H. W. Huang, J. T. Chu, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Fabrication and characteristics of GaN-based microcavity light-emitting diodes with high reflectivity AlN/GaN distributed Bragg reflectors,” Jpn. J. Appl. Phys. 45, 3446–3448 (2006).
    [CrossRef]
  4. U. Demirbas, G. S. Petrich, D. Li, A. Sennaroglu, L. A. Kolodziejski, F. X. Kärtner, and J. G. Fujimoto, “Femtosecond tuning of Cr:colquiriite lasers with AlGaAs-based saturable Bragg reflectors,” J. Opt. Soc. Am. B 28, 986–993 (2011).
    [CrossRef]
  5. O. Blum, I. J. Fritz, L. R. Dawson, A. J. Howard, T. J. Headley, J. F. Klem, and T. J. Drummond, “Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates,” Appl. Phys. Lett. 66, 329–331 (1995).
    [CrossRef]
  6. K. J. Kasunic, “Design equations for the reflectivity of deep-etch distributed Bragg reflector gratings,” J. Lightwave Technol. 18, 425–429 (2000).
    [CrossRef]
  7. D. Hofstetter, H. P. Zappe, J. E. Epler, and J. Söchtig, “Single-growth-step GaAs/AIGaAs distributed Bragg reflector lasers with holographically-defined recessed gratings,” Electron. Lett. 30, 1858–1859 (1994).
    [CrossRef]
  8. K. Avary, S. Rennon, F. Klopf, J. P. Reithmaier, and A. Forchel, “Reactive ion etching of deeply etched DBR-structures with reduced air-gaps for highly reflective monolithically integrated laser mirrors,” Microelectron. Eng. 57–58, 593–598 (2001).
    [CrossRef]
  9. L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier, A. Garnache, E. Tournié, and F. Genty, “GaSb-based VCSELs emitting in the mid-infrared wavelength range (2–3 μm) grown by MBE,” J. Cryst. Growth 311, 1912–1916 (2009).
    [CrossRef]
  10. W. Heiss, T. Schwarzl, J. Roither, G. Springholz, M. Aigle, H. Pascher, K. Biermann, and K. Reimann, “Epitaxial Bragg mirrors for the mid-infrared and their applications,” Prog. Quantum Electron. 25, 193–228 (2001).
    [CrossRef]
  11. J. Bengtsson, J. Gustavsson, Å. Haglund, and A. Larsson, “Diffraction loss in long-wavelength buried tunnel junction VCSELs analyzed with a hybrid coupled-cavity transfer-matrix model,” Opt. Express 16, 20789–20802 (2008).
    [CrossRef]
  12. M. Arnold, D. Zimin, and H. Zogg, “Resonant-cavity-enhanced photodetectors for the mid-infrared,” Appl. Phys. Lett. 87, 141103 (2005).
    [CrossRef]
  13. J. S. Jang, Y. M. Song, C. I. Yeo, C. Y. Park, and Y. T. Lee, “Highly tolerant a-Si distributed Bragg reflector fabricated by oblique angle deposition,” Opt. Mater. Express 1, 451–457 (2011).
    [CrossRef]
  14. J. W. Leem and J. S. Yu, “Broadband and wide-angle distributed Bragg reflectors based on amorphous germanium films by glancing angle deposition,” Opt. Express 20, 20577–20581(2012).
    [CrossRef]
  15. M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
    [CrossRef]
  16. M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25, 1317–1335 (2007).
    [CrossRef]
  17. J. W. Leem and J. S. Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells,” Opt. Express 19, A258–A268 (2011).
    [CrossRef]
  18. D. K. Pandya and K. L. Chopra, “Obliquely deposited amorphous Ge films. I. Optical properties,” Phys. Status Solidi A 35, 725–734 (1976).
    [CrossRef]
  19. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [CrossRef]
  20. SOPRA, http://www.sopra-sa.com , accessed 1 November, 2012.
  21. J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88, 013501(2006).
    [CrossRef]

2012 (2)

P. Abolghasem and A. S. Helmy, “Single-sided Bragg reflection waveguides with multilayer core for monolithic semiconductor parametric devices,” J. Opt. Soc. Am. B 29, 1367–1375(2012).
[CrossRef]

J. W. Leem and J. S. Yu, “Broadband and wide-angle distributed Bragg reflectors based on amorphous germanium films by glancing angle deposition,” Opt. Express 20, 20577–20581(2012).
[CrossRef]

2011 (3)

2010 (1)

L. Zhao, Y. H. Zuo, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84, 110–115 (2010).
[CrossRef]

2009 (1)

L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier, A. Garnache, E. Tournié, and F. Genty, “GaSb-based VCSELs emitting in the mid-infrared wavelength range (2–3 μm) grown by MBE,” J. Cryst. Growth 311, 1912–1916 (2009).
[CrossRef]

2008 (1)

2007 (2)

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25, 1317–1335 (2007).
[CrossRef]

2006 (2)

Y. C. Peng, C. C. Kao, H. W. Huang, J. T. Chu, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Fabrication and characteristics of GaN-based microcavity light-emitting diodes with high reflectivity AlN/GaN distributed Bragg reflectors,” Jpn. J. Appl. Phys. 45, 3446–3448 (2006).
[CrossRef]

J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88, 013501(2006).
[CrossRef]

2005 (1)

M. Arnold, D. Zimin, and H. Zogg, “Resonant-cavity-enhanced photodetectors for the mid-infrared,” Appl. Phys. Lett. 87, 141103 (2005).
[CrossRef]

2001 (2)

W. Heiss, T. Schwarzl, J. Roither, G. Springholz, M. Aigle, H. Pascher, K. Biermann, and K. Reimann, “Epitaxial Bragg mirrors for the mid-infrared and their applications,” Prog. Quantum Electron. 25, 193–228 (2001).
[CrossRef]

K. Avary, S. Rennon, F. Klopf, J. P. Reithmaier, and A. Forchel, “Reactive ion etching of deeply etched DBR-structures with reduced air-gaps for highly reflective monolithically integrated laser mirrors,” Microelectron. Eng. 57–58, 593–598 (2001).
[CrossRef]

2000 (1)

1995 (1)

O. Blum, I. J. Fritz, L. R. Dawson, A. J. Howard, T. J. Headley, J. F. Klem, and T. J. Drummond, “Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates,” Appl. Phys. Lett. 66, 329–331 (1995).
[CrossRef]

1994 (1)

D. Hofstetter, H. P. Zappe, J. E. Epler, and J. Söchtig, “Single-growth-step GaAs/AIGaAs distributed Bragg reflector lasers with holographically-defined recessed gratings,” Electron. Lett. 30, 1858–1859 (1994).
[CrossRef]

1981 (1)

1976 (1)

D. K. Pandya and K. L. Chopra, “Obliquely deposited amorphous Ge films. I. Optical properties,” Phys. Status Solidi A 35, 725–734 (1976).
[CrossRef]

Abolghasem, P.

Aigle, M.

W. Heiss, T. Schwarzl, J. Roither, G. Springholz, M. Aigle, H. Pascher, K. Biermann, and K. Reimann, “Epitaxial Bragg mirrors for the mid-infrared and their applications,” Prog. Quantum Electron. 25, 193–228 (2001).
[CrossRef]

Arnold, M.

M. Arnold, D. Zimin, and H. Zogg, “Resonant-cavity-enhanced photodetectors for the mid-infrared,” Appl. Phys. Lett. 87, 141103 (2005).
[CrossRef]

Avary, K.

K. Avary, S. Rennon, F. Klopf, J. P. Reithmaier, and A. Forchel, “Reactive ion etching of deeply etched DBR-structures with reduced air-gaps for highly reflective monolithically integrated laser mirrors,” Microelectron. Eng. 57–58, 593–598 (2001).
[CrossRef]

Bengtsson, J.

Biermann, K.

W. Heiss, T. Schwarzl, J. Roither, G. Springholz, M. Aigle, H. Pascher, K. Biermann, and K. Reimann, “Epitaxial Bragg mirrors for the mid-infrared and their applications,” Prog. Quantum Electron. 25, 193–228 (2001).
[CrossRef]

Blum, O.

O. Blum, I. J. Fritz, L. R. Dawson, A. J. Howard, T. J. Headley, J. F. Klem, and T. J. Drummond, “Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates,” Appl. Phys. Lett. 66, 329–331 (1995).
[CrossRef]

Boissier, G.

L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier, A. Garnache, E. Tournié, and F. Genty, “GaSb-based VCSELs emitting in the mid-infrared wavelength range (2–3 μm) grown by MBE,” J. Cryst. Growth 311, 1912–1916 (2009).
[CrossRef]

Brett, M. J.

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25, 1317–1335 (2007).
[CrossRef]

Cerutti, L.

L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier, A. Garnache, E. Tournié, and F. Genty, “GaSb-based VCSELs emitting in the mid-infrared wavelength range (2–3 μm) grown by MBE,” J. Cryst. Growth 311, 1912–1916 (2009).
[CrossRef]

Cho, J.

J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88, 013501(2006).
[CrossRef]

Chopra, K. L.

D. K. Pandya and K. L. Chopra, “Obliquely deposited amorphous Ge films. I. Optical properties,” Phys. Status Solidi A 35, 725–734 (1976).
[CrossRef]

Chu, J. T.

Y. C. Peng, C. C. Kao, H. W. Huang, J. T. Chu, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Fabrication and characteristics of GaN-based microcavity light-emitting diodes with high reflectivity AlN/GaN distributed Bragg reflectors,” Jpn. J. Appl. Phys. 45, 3446–3448 (2006).
[CrossRef]

Dawson, L. R.

O. Blum, I. J. Fritz, L. R. Dawson, A. J. Howard, T. J. Headley, J. F. Klem, and T. J. Drummond, “Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates,” Appl. Phys. Lett. 66, 329–331 (1995).
[CrossRef]

Demirbas, U.

Diao, H. W.

L. Zhao, Y. H. Zuo, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84, 110–115 (2010).
[CrossRef]

Drummond, T. J.

O. Blum, I. J. Fritz, L. R. Dawson, A. J. Howard, T. J. Headley, J. F. Klem, and T. J. Drummond, “Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates,” Appl. Phys. Lett. 66, 329–331 (1995).
[CrossRef]

Ducanchez, A.

L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier, A. Garnache, E. Tournié, and F. Genty, “GaSb-based VCSELs emitting in the mid-infrared wavelength range (2–3 μm) grown by MBE,” J. Cryst. Growth 311, 1912–1916 (2009).
[CrossRef]

Epler, J. E.

D. Hofstetter, H. P. Zappe, J. E. Epler, and J. Söchtig, “Single-growth-step GaAs/AIGaAs distributed Bragg reflector lasers with holographically-defined recessed gratings,” Electron. Lett. 30, 1858–1859 (1994).
[CrossRef]

Forchel, A.

K. Avary, S. Rennon, F. Klopf, J. P. Reithmaier, and A. Forchel, “Reactive ion etching of deeply etched DBR-structures with reduced air-gaps for highly reflective monolithically integrated laser mirrors,” Microelectron. Eng. 57–58, 593–598 (2001).
[CrossRef]

Fritz, I. J.

O. Blum, I. J. Fritz, L. R. Dawson, A. J. Howard, T. J. Headley, J. F. Klem, and T. J. Drummond, “Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates,” Appl. Phys. Lett. 66, 329–331 (1995).
[CrossRef]

Fujimoto, J. G.

Garnache, A.

L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier, A. Garnache, E. Tournié, and F. Genty, “GaSb-based VCSELs emitting in the mid-infrared wavelength range (2–3 μm) grown by MBE,” J. Cryst. Growth 311, 1912–1916 (2009).
[CrossRef]

Gaylord, T. K.

Genty, F.

L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier, A. Garnache, E. Tournié, and F. Genty, “GaSb-based VCSELs emitting in the mid-infrared wavelength range (2–3 μm) grown by MBE,” J. Cryst. Growth 311, 1912–1916 (2009).
[CrossRef]

Gessmann, T.

J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88, 013501(2006).
[CrossRef]

Grech, P.

L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier, A. Garnache, E. Tournié, and F. Genty, “GaSb-based VCSELs emitting in the mid-infrared wavelength range (2–3 μm) grown by MBE,” J. Cryst. Growth 311, 1912–1916 (2009).
[CrossRef]

Gustavsson, J.

Haglund, Å.

Hawkeye, M. M.

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25, 1317–1335 (2007).
[CrossRef]

Headley, T. J.

O. Blum, I. J. Fritz, L. R. Dawson, A. J. Howard, T. J. Headley, J. F. Klem, and T. J. Drummond, “Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates,” Appl. Phys. Lett. 66, 329–331 (1995).
[CrossRef]

Heiss, W.

W. Heiss, T. Schwarzl, J. Roither, G. Springholz, M. Aigle, H. Pascher, K. Biermann, and K. Reimann, “Epitaxial Bragg mirrors for the mid-infrared and their applications,” Prog. Quantum Electron. 25, 193–228 (2001).
[CrossRef]

Helmy, A. S.

Hofstetter, D.

D. Hofstetter, H. P. Zappe, J. E. Epler, and J. Söchtig, “Single-growth-step GaAs/AIGaAs distributed Bragg reflector lasers with holographically-defined recessed gratings,” Electron. Lett. 30, 1858–1859 (1994).
[CrossRef]

Howard, A. J.

O. Blum, I. J. Fritz, L. R. Dawson, A. J. Howard, T. J. Headley, J. F. Klem, and T. J. Drummond, “Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates,” Appl. Phys. Lett. 66, 329–331 (1995).
[CrossRef]

Huang, H. W.

Y. C. Peng, C. C. Kao, H. W. Huang, J. T. Chu, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Fabrication and characteristics of GaN-based microcavity light-emitting diodes with high reflectivity AlN/GaN distributed Bragg reflectors,” Jpn. J. Appl. Phys. 45, 3446–3448 (2006).
[CrossRef]

Jang, J. S.

Kao, C. C.

Y. C. Peng, C. C. Kao, H. W. Huang, J. T. Chu, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Fabrication and characteristics of GaN-based microcavity light-emitting diodes with high reflectivity AlN/GaN distributed Bragg reflectors,” Jpn. J. Appl. Phys. 45, 3446–3448 (2006).
[CrossRef]

Kärtner, F. X.

Kasunic, K. J.

Kim, J. K.

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88, 013501(2006).
[CrossRef]

Klem, J. F.

O. Blum, I. J. Fritz, L. R. Dawson, A. J. Howard, T. J. Headley, J. F. Klem, and T. J. Drummond, “Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates,” Appl. Phys. Lett. 66, 329–331 (1995).
[CrossRef]

Klopf, F.

K. Avary, S. Rennon, F. Klopf, J. P. Reithmaier, and A. Forchel, “Reactive ion etching of deeply etched DBR-structures with reduced air-gaps for highly reflective monolithically integrated laser mirrors,” Microelectron. Eng. 57–58, 593–598 (2001).
[CrossRef]

Kolodziejski, L. A.

Kuo, H. C.

Y. C. Peng, C. C. Kao, H. W. Huang, J. T. Chu, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Fabrication and characteristics of GaN-based microcavity light-emitting diodes with high reflectivity AlN/GaN distributed Bragg reflectors,” Jpn. J. Appl. Phys. 45, 3446–3448 (2006).
[CrossRef]

Larsson, A.

Lee, Y. T.

Leem, J. W.

J. W. Leem and J. S. Yu, “Broadband and wide-angle distributed Bragg reflectors based on amorphous germanium films by glancing angle deposition,” Opt. Express 20, 20577–20581(2012).
[CrossRef]

J. W. Leem and J. S. Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells,” Opt. Express 19, A258–A268 (2011).
[CrossRef]

Li, D.

Li, H. L.

L. Zhao, Y. H. Zuo, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84, 110–115 (2010).
[CrossRef]

Lu, T. C.

Y. C. Peng, C. C. Kao, H. W. Huang, J. T. Chu, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Fabrication and characteristics of GaN-based microcavity light-emitting diodes with high reflectivity AlN/GaN distributed Bragg reflectors,” Jpn. J. Appl. Phys. 45, 3446–3448 (2006).
[CrossRef]

Luo, H.

J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88, 013501(2006).
[CrossRef]

Moharam, M. G.

Narcy, G.

L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier, A. Garnache, E. Tournié, and F. Genty, “GaSb-based VCSELs emitting in the mid-infrared wavelength range (2–3 μm) grown by MBE,” J. Cryst. Growth 311, 1912–1916 (2009).
[CrossRef]

Pandya, D. K.

D. K. Pandya and K. L. Chopra, “Obliquely deposited amorphous Ge films. I. Optical properties,” Phys. Status Solidi A 35, 725–734 (1976).
[CrossRef]

Park, C. Y.

Park, Y.

J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88, 013501(2006).
[CrossRef]

Pascher, H.

W. Heiss, T. Schwarzl, J. Roither, G. Springholz, M. Aigle, H. Pascher, K. Biermann, and K. Reimann, “Epitaxial Bragg mirrors for the mid-infrared and their applications,” Prog. Quantum Electron. 25, 193–228 (2001).
[CrossRef]

Peng, Y. C.

Y. C. Peng, C. C. Kao, H. W. Huang, J. T. Chu, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Fabrication and characteristics of GaN-based microcavity light-emitting diodes with high reflectivity AlN/GaN distributed Bragg reflectors,” Jpn. J. Appl. Phys. 45, 3446–3448 (2006).
[CrossRef]

Petrich, G. S.

Reimann, K.

W. Heiss, T. Schwarzl, J. Roither, G. Springholz, M. Aigle, H. Pascher, K. Biermann, and K. Reimann, “Epitaxial Bragg mirrors for the mid-infrared and their applications,” Prog. Quantum Electron. 25, 193–228 (2001).
[CrossRef]

Reithmaier, J. P.

K. Avary, S. Rennon, F. Klopf, J. P. Reithmaier, and A. Forchel, “Reactive ion etching of deeply etched DBR-structures with reduced air-gaps for highly reflective monolithically integrated laser mirrors,” Microelectron. Eng. 57–58, 593–598 (2001).
[CrossRef]

Rennon, S.

K. Avary, S. Rennon, F. Klopf, J. P. Reithmaier, and A. Forchel, “Reactive ion etching of deeply etched DBR-structures with reduced air-gaps for highly reflective monolithically integrated laser mirrors,” Microelectron. Eng. 57–58, 593–598 (2001).
[CrossRef]

Roither, J.

W. Heiss, T. Schwarzl, J. Roither, G. Springholz, M. Aigle, H. Pascher, K. Biermann, and K. Reimann, “Epitaxial Bragg mirrors for the mid-infrared and their applications,” Prog. Quantum Electron. 25, 193–228 (2001).
[CrossRef]

Schubert, E. F.

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88, 013501(2006).
[CrossRef]

Schubert, M. F.

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

Schwarzl, T.

W. Heiss, T. Schwarzl, J. Roither, G. Springholz, M. Aigle, H. Pascher, K. Biermann, and K. Reimann, “Epitaxial Bragg mirrors for the mid-infrared and their applications,” Prog. Quantum Electron. 25, 193–228 (2001).
[CrossRef]

Sennaroglu, A.

Söchtig, J.

D. Hofstetter, H. P. Zappe, J. E. Epler, and J. Söchtig, “Single-growth-step GaAs/AIGaAs distributed Bragg reflector lasers with holographically-defined recessed gratings,” Electron. Lett. 30, 1858–1859 (1994).
[CrossRef]

Sone, C.

J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88, 013501(2006).
[CrossRef]

Song, Y. M.

Springholz, G.

W. Heiss, T. Schwarzl, J. Roither, G. Springholz, M. Aigle, H. Pascher, K. Biermann, and K. Reimann, “Epitaxial Bragg mirrors for the mid-infrared and their applications,” Prog. Quantum Electron. 25, 193–228 (2001).
[CrossRef]

Tournié, E.

L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier, A. Garnache, E. Tournié, and F. Genty, “GaSb-based VCSELs emitting in the mid-infrared wavelength range (2–3 μm) grown by MBE,” J. Cryst. Growth 311, 1912–1916 (2009).
[CrossRef]

Wang, S. C.

Y. C. Peng, C. C. Kao, H. W. Huang, J. T. Chu, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Fabrication and characteristics of GaN-based microcavity light-emitting diodes with high reflectivity AlN/GaN distributed Bragg reflectors,” Jpn. J. Appl. Phys. 45, 3446–3448 (2006).
[CrossRef]

Wang, W. J.

L. Zhao, Y. H. Zuo, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84, 110–115 (2010).
[CrossRef]

Xi, J. Q.

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88, 013501(2006).
[CrossRef]

Yeo, C. I.

Yu, C. C.

Y. C. Peng, C. C. Kao, H. W. Huang, J. T. Chu, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Fabrication and characteristics of GaN-based microcavity light-emitting diodes with high reflectivity AlN/GaN distributed Bragg reflectors,” Jpn. J. Appl. Phys. 45, 3446–3448 (2006).
[CrossRef]

Yu, J. S.

J. W. Leem and J. S. Yu, “Broadband and wide-angle distributed Bragg reflectors based on amorphous germanium films by glancing angle deposition,” Opt. Express 20, 20577–20581(2012).
[CrossRef]

J. W. Leem and J. S. Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells,” Opt. Express 19, A258–A268 (2011).
[CrossRef]

Zappe, H. P.

D. Hofstetter, H. P. Zappe, J. E. Epler, and J. Söchtig, “Single-growth-step GaAs/AIGaAs distributed Bragg reflector lasers with holographically-defined recessed gratings,” Electron. Lett. 30, 1858–1859 (1994).
[CrossRef]

Zhao, L.

L. Zhao, Y. H. Zuo, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84, 110–115 (2010).
[CrossRef]

Zhou, C. L.

L. Zhao, Y. H. Zuo, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84, 110–115 (2010).
[CrossRef]

Zimin, D.

M. Arnold, D. Zimin, and H. Zogg, “Resonant-cavity-enhanced photodetectors for the mid-infrared,” Appl. Phys. Lett. 87, 141103 (2005).
[CrossRef]

Zogg, H.

M. Arnold, D. Zimin, and H. Zogg, “Resonant-cavity-enhanced photodetectors for the mid-infrared,” Appl. Phys. Lett. 87, 141103 (2005).
[CrossRef]

Zuo, Y. H.

L. Zhao, Y. H. Zuo, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84, 110–115 (2010).
[CrossRef]

Appl. Phys. Lett. (4)

O. Blum, I. J. Fritz, L. R. Dawson, A. J. Howard, T. J. Headley, J. F. Klem, and T. J. Drummond, “Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates,” Appl. Phys. Lett. 66, 329–331 (1995).
[CrossRef]

M. Arnold, D. Zimin, and H. Zogg, “Resonant-cavity-enhanced photodetectors for the mid-infrared,” Appl. Phys. Lett. 87, 141103 (2005).
[CrossRef]

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88, 013501(2006).
[CrossRef]

Electron. Lett. (1)

D. Hofstetter, H. P. Zappe, J. E. Epler, and J. Söchtig, “Single-growth-step GaAs/AIGaAs distributed Bragg reflector lasers with holographically-defined recessed gratings,” Electron. Lett. 30, 1858–1859 (1994).
[CrossRef]

J. Cryst. Growth (1)

L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier, A. Garnache, E. Tournié, and F. Genty, “GaSb-based VCSELs emitting in the mid-infrared wavelength range (2–3 μm) grown by MBE,” J. Cryst. Growth 311, 1912–1916 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

J. Vac. Sci. Technol. A (1)

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25, 1317–1335 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. C. Peng, C. C. Kao, H. W. Huang, J. T. Chu, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Fabrication and characteristics of GaN-based microcavity light-emitting diodes with high reflectivity AlN/GaN distributed Bragg reflectors,” Jpn. J. Appl. Phys. 45, 3446–3448 (2006).
[CrossRef]

Microelectron. Eng. (1)

K. Avary, S. Rennon, F. Klopf, J. P. Reithmaier, and A. Forchel, “Reactive ion etching of deeply etched DBR-structures with reduced air-gaps for highly reflective monolithically integrated laser mirrors,” Microelectron. Eng. 57–58, 593–598 (2001).
[CrossRef]

Opt. Express (3)

Opt. Mater. Express (1)

Phys. Status Solidi A (1)

D. K. Pandya and K. L. Chopra, “Obliquely deposited amorphous Ge films. I. Optical properties,” Phys. Status Solidi A 35, 725–734 (1976).
[CrossRef]

Prog. Quantum Electron. (1)

W. Heiss, T. Schwarzl, J. Roither, G. Springholz, M. Aigle, H. Pascher, K. Biermann, and K. Reimann, “Epitaxial Bragg mirrors for the mid-infrared and their applications,” Prog. Quantum Electron. 25, 193–228 (2001).
[CrossRef]

Sol. Energy (1)

L. Zhao, Y. H. Zuo, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84, 110–115 (2010).
[CrossRef]

Other (1)

SOPRA, http://www.sopra-sa.com , accessed 1 November, 2012.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the process procedure for the fabrication of the a-Ge/a-Ge DBRs consisting of high-high-n/low-n film pair structures on Ge substrates by the GLAD method at two incident vapor flux angles (θα) of 0° and 80° and cross-sectional SEM image of the fabricated one-pair a-Ge/a-Ge DBR on the Ge substrate.

Fig. 2.
Fig. 2.

(a) Calculated (dashed lines) and measured (solid lines) transmittance spectra and (b) estimated refractive index of the a-Ge films on the glass substrates at θα=0° and 80°. The simulation model used in these calculations is shown in the inset of (a). The cross-sectional SEM images of the a-Ge films on glass substrates at θα=0° and 80° are shown in the inset of (b).

Fig. 3.
Fig. 3.

Cross-sectional SEM images of the fabricated a-Ge/a-Ge DBRs with 2–5 pairs.

Fig. 4.
Fig. 4.

(a) Measured reflectance spectra of the a-Ge/a-Ge DBRs with 1–5 pairs and (b) calculated electric field intensity distributions of the a-Ge/a-Ge DBRs for 1, 3, and 5 pairs on Ge substrates at λc2.2μm. The calculated reflectance spectra of the corresponding structures are shown in the inset of (a), together with the simulation model used in these calculations.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Vairnair2neff2nair2+2neff2+(1Vair)na-Ge2neff2na-Ge2+2neff2=0,

Metrics