Abstract

We study the propagation of coherent light pulses in a medium of three-level atoms with degenerate ground- and excited-state sublevels in an electromagnetically induced transparency (EIT)-type configuration. Both the strong control field and the weak probe pulse have elliptical polarization, which gives rise to concurrent multipath couplings between the ground-state sublevels and the auxiliary stable state. We derive the probe field susceptibility and show that in general, the probe field propagates in two separate polarization modes, one of which is attenuated, the other of which displays EIT. This generic result is valid provided the atomic medium is prepared to be in a pure quantum state over the ground-state sublevels initially. We also investigate the case when the initial state of the medium is described by an incoherent mixture of ground-state sublevels and show how EIT-like pulse propagation degrades. The possibility of controlling the probe susceptibility matrix with control field polarization provides a convenient tool for probing the quantum state of the medium on the degenerate ground-state sublevels.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
    [CrossRef]
  2. K. Hakuta, L. Marmet, and B. P. Stoicheff, “Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen,” Phys. Rev. Lett. 66, 596–599 (1991).
    [CrossRef]
  3. K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
    [CrossRef]
  4. J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
    [CrossRef]
  5. S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
    [CrossRef]
  6. S. E. Harris, “Electromagnetically induced transparency with matched pulses,” Phys. Rev. Lett. 70, 552–555 (1993).
    [CrossRef]
  7. S. E. Harris, “Normal modes of electromagnetically induced transparency,” Phys. Rev. Lett. 72, 52–55 (1994).
    [CrossRef]
  8. J. H. Eberly, M. L. Pons, and H. R. Haq, “Dressed-field pulses in an absorbing medium,” Phys. Rev. Lett. 72, 56–59 (1994).
    [CrossRef]
  9. A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
    [CrossRef]
  10. M. Fleischhauer, and T. Richter, “Pulse matching and correlation of phase fluctuations in Λ systems,” Phys. Rev. A 51, 2430–2442 (1995).
    [CrossRef]
  11. M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
    [CrossRef]
  12. S. E. Harris and M. Jain, “Optical parametric oscillators pumped by population-trapped atoms,” Opt. Lett. 22, 636–638 (1997).
    [CrossRef]
  13. W. Harshawardhan and G. S. Agarwal, “Enhancement of nonlinear-optical signals under coherent-population-trapping conditions,” Phys. Rev. A 58, 598–604 (1998).
    [CrossRef]
  14. L. Deng, M. G. Payne, and R. W. Garrett, “Nonlinear frequency conversion with short laser pulses and maximum atomic coherence,” Phys. Rev. A 58, 707–712 (1998).
    [CrossRef]
  15. E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Propagation and nonlinear generation dynamics in a coherently prepared four-level system,” Phys. Rev. A 65, 053808 (2002).
    [CrossRef]
  16. E. Paspalakis and Z. Kis, “Pulse propagation in a coherently prepared multilevel medium,” Phys. Rev. A 66, 025802 (2002).
    [CrossRef]
  17. E. Paspalakis and Z. Kis, “Enhanced nonlinear generation in a three-level medium with spatially dependent coherence,” Opt. Lett. 27, 1836–1838 (2002).
    [CrossRef]
  18. Z. Kis and E. Paspalakis, “Enhancing nonlinear frequency conversion using spatially dependent coherence,” Phys. Rev. A 68, 043817 (2003).
    [CrossRef]
  19. A. Eilam, A. D. Wilson-Gordon, and H. Friedmann, “Enhanced frequency conversion of nonadiabatic resonant pulses in coherently prepared Λ systems,” Phys. Rev. A 73, 053805 (2006).
    [CrossRef]
  20. A. Eilam, A. D. Wilson-Gordon, and H. Friedmann, “Enhanced frequency conversion of nonadiabatic pulses in a double Λsystem driven by two pumps with and without carrier beams,” Opt. Commun. 277, 186–195 (2007).
    [CrossRef]
  21. J. R. Csesznegi and R. Grobe, “Recall and creation of spatial excitation distributions in dielectric media,” Phys. Rev. Lett. 79, 3162–3165 (1997).
    [CrossRef]
  22. J. R. Csesznegi, B. K. Clark, and R. Grobe, “Controlled excitation of selected regions inside dielectric media,” Phys. Rev. A 57, 4860–4868 (1998).
    [CrossRef]
  23. M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
    [CrossRef]
  24. M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: dark-state polaritons,” Phys. Rev. A 65, 022314 (2002).
    [CrossRef]
  25. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [CrossRef]
  26. O. Kocharovskaya and P. Mandel, “Amplification without inversion,” Phys. Rev. A 42, 523–535 (1990).
    [CrossRef]
  27. E. Cerboneschi and E. Arimondo, “Transparency and dressing for optical pulse pairs through a double-Λ absorbing medium,” Phys. Rev. A 52, R1823–R1826 (1995).
    [CrossRef]
  28. E. Cerboneschi and E. Arimondo, “Matched pulses and electromagnetically induced transparency for the interaction of laser pulse pairs with a double-vee system,” Opt. Commun. 127, 55–61 (1996).
    [CrossRef]
  29. M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
    [CrossRef]
  30. E. A. Korsunsky and D. V. Kosachiov, “Phase-dependent nonlinear optics with double-Λ atoms,” Phys. Rev. A 60, 4996–5009 (1999).
    [CrossRef]
  31. R. G. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155, 144–154 (1998).
    [CrossRef]
  32. E. Arimondo, in Progress in Optics, E. Wolf, ed. (Elsevier, 1996), Vol. 35, p. 257.
  33. S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbolán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
    [CrossRef]
  34. A. MacRae, G. Campbell, and A. I. Lvovsky, “Matched slow pulses using double electromagnetically induced transparency,” Opt. Lett. 33, 2659–2661 (2008).
    [CrossRef]
  35. I. E. Mazets, “Adiabatic pulse propagation in coherent atomic media with the tripod level configuration,” Phys. Rev. A 71, 023806 (2005).
    [CrossRef]
  36. I. E. Mazets, “Adiabatic propagation of quantized light pulses in an atomic medium with the tripod level configuration,” J. Exp. Theor. Phys. 103, 365–369 (2006).
    [CrossRef]
  37. L. Karpa, F. Vewinger, and M. Weitz, “Resonance beating of light stored using atomic spinor polaritons,” Phys. Rev. Lett. 101, 170406 (2008).
    [CrossRef]
  38. S. Li, X. Yang, X. Cao, C. Xie, and H. Wang, “Two electromagnetically induced transparency windows and an enhanced electromagnetically induced transparency signal in a four-level tripod atomic system,” J. Phys. B 40, 3211–3219 (2007).
    [CrossRef]
  39. P.-C. Guan and I. A. Yu, “Simplification of the electromagnetically induced transparency system with degenerate Zeeman states,” Phys. Rev. A 76, 033817 (2007).
    [CrossRef]
  40. P.-C. Guan and I. A. Yu, “Role of degenerate Zeeman states in the storage and retrieval of light pulses,” Phys. Rev. A 75, 013812 (2007).
    [CrossRef]
  41. A. V. Volkov, N. A. Druzhinina, and O. M. Parshkov, “Numerical simulation of nonstationary effects of radiation polarization for the Λ interaction scheme in the case of degenerate energy levels,” Quantum Electron. 39, 845–852 (2009).
    [CrossRef]
  42. A. V. Volkov, N. A. Druzhinina, and O. M. Parshkov, “Adiabatons in the nonstationary double resonance on degenerate quantum transitions,” Quantum Electron. 39, 917–922 (2009).
    [CrossRef]
  43. D. Yabin, Z. Junxiang, W. Haihong, and G. Jiangrui, “Quantum interference effects in a multi-driven transition Fg=3↔Fe=2,” Opt. Commun. 259, 765–771 (2006).
    [CrossRef]
  44. C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Switching from positive to negative dispersion in transparent degenerate and near-degenerate systems,” Phys. Rev. A 68, 043818 (2003).
    [CrossRef]
  45. N. V. Vitanov, Z. Kis, and B. W. Shore, “Coherent excitation of a degenerate two-level system by an elliptically polarized laser pulse,” Phys. Rev. A 68, 063414 (2003).
    [CrossRef]
  46. A. Karpati and Z. Kis, “Adiabatic creation of coherent superposition states via multiple intermediate states,” J. Phys. B 36, 905–919 (2003).
    [CrossRef]
  47. Z. Kis, A. Karpati, B. W. Shore, and N. V. Vitanov, “Stimulated Raman adiabatic passage among degenerate-level manifolds,” Phys. Rev. A 70, 053405 (2004).
    [CrossRef]
  48. Z. Kis, N. V. Vitanov, A. Karpati, C. Barthel, and K. Bergmann, “Creation of arbitrary coherent superposition states by stimulated Raman adiabatic passage,” Phys. Rev. A 72, 033403 (2005).
    [CrossRef]
  49. R. N. Zare, Angular Momentum (Wiley, 1988).
  50. B. W. Shore, The Theory of Coherent Atomic Exciation (Wiley, 1990), Vol. 2.
  51. A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1974).
  52. J. R. Morris and B. W. Shore, “Reduction of degenerate two-level excitation to independent two-state systems,” Phys. Rev. A 27, 906–912 (1983).
    [CrossRef]
  53. C. K. Law and J. H. Eberly, “Synthesis of arbitrary superposition of Zeeman states in an atom,” Opt. Express 2, 368–371 (1998).
    [CrossRef]
  54. R. G. Unanyan, B. W. Shore, and K. Bergmann, “Preparation of an N-component maximal coherent superposition state using the stimulated Raman adiabatic passage method,” Phys. Rev. A 63, 043401 (2001).
    [CrossRef]
  55. I. Thanopulos, P. Král, and M. Shapiro, “Complete control of population transfer between clusters of degenerate states,” Phys. Rev. Lett. 92, 113003 (2004).
    [CrossRef]
  56. M. Heinz, F. Vewinger, U. Schneider, L. P. Yatsenko, and K. Bergmann, “Phase control in a coherent superposition of degenerate quantum states through frequency control,” Opt. Commun. 264, 248–255 (2006).
    [CrossRef]
  57. F. Vewinger, M. Heinz, B. W. Shore, and K. Bergmann, “Amplitude and phase control of a coherent superposition of degenerate states. I. Theory,” Phys. Rev. A 75, 043406 (2007).
    [CrossRef]
  58. F. Vewinger, M. Heinz, B. W. Shore, and K. Bergmann, “Amplitude and phase control of a coherent superposition of degenerate states. II. Experiment,” Phys. Rev. A 75, 043407 (2007).
    [CrossRef]

2009 (2)

A. V. Volkov, N. A. Druzhinina, and O. M. Parshkov, “Numerical simulation of nonstationary effects of radiation polarization for the Λ interaction scheme in the case of degenerate energy levels,” Quantum Electron. 39, 845–852 (2009).
[CrossRef]

A. V. Volkov, N. A. Druzhinina, and O. M. Parshkov, “Adiabatons in the nonstationary double resonance on degenerate quantum transitions,” Quantum Electron. 39, 917–922 (2009).
[CrossRef]

2008 (2)

L. Karpa, F. Vewinger, and M. Weitz, “Resonance beating of light stored using atomic spinor polaritons,” Phys. Rev. Lett. 101, 170406 (2008).
[CrossRef]

A. MacRae, G. Campbell, and A. I. Lvovsky, “Matched slow pulses using double electromagnetically induced transparency,” Opt. Lett. 33, 2659–2661 (2008).
[CrossRef]

2007 (6)

A. Eilam, A. D. Wilson-Gordon, and H. Friedmann, “Enhanced frequency conversion of nonadiabatic pulses in a double Λsystem driven by two pumps with and without carrier beams,” Opt. Commun. 277, 186–195 (2007).
[CrossRef]

S. Li, X. Yang, X. Cao, C. Xie, and H. Wang, “Two electromagnetically induced transparency windows and an enhanced electromagnetically induced transparency signal in a four-level tripod atomic system,” J. Phys. B 40, 3211–3219 (2007).
[CrossRef]

P.-C. Guan and I. A. Yu, “Simplification of the electromagnetically induced transparency system with degenerate Zeeman states,” Phys. Rev. A 76, 033817 (2007).
[CrossRef]

P.-C. Guan and I. A. Yu, “Role of degenerate Zeeman states in the storage and retrieval of light pulses,” Phys. Rev. A 75, 013812 (2007).
[CrossRef]

F. Vewinger, M. Heinz, B. W. Shore, and K. Bergmann, “Amplitude and phase control of a coherent superposition of degenerate states. I. Theory,” Phys. Rev. A 75, 043406 (2007).
[CrossRef]

F. Vewinger, M. Heinz, B. W. Shore, and K. Bergmann, “Amplitude and phase control of a coherent superposition of degenerate states. II. Experiment,” Phys. Rev. A 75, 043407 (2007).
[CrossRef]

2006 (4)

D. Yabin, Z. Junxiang, W. Haihong, and G. Jiangrui, “Quantum interference effects in a multi-driven transition Fg=3↔Fe=2,” Opt. Commun. 259, 765–771 (2006).
[CrossRef]

I. E. Mazets, “Adiabatic propagation of quantized light pulses in an atomic medium with the tripod level configuration,” J. Exp. Theor. Phys. 103, 365–369 (2006).
[CrossRef]

M. Heinz, F. Vewinger, U. Schneider, L. P. Yatsenko, and K. Bergmann, “Phase control in a coherent superposition of degenerate quantum states through frequency control,” Opt. Commun. 264, 248–255 (2006).
[CrossRef]

A. Eilam, A. D. Wilson-Gordon, and H. Friedmann, “Enhanced frequency conversion of nonadiabatic resonant pulses in coherently prepared Λ systems,” Phys. Rev. A 73, 053805 (2006).
[CrossRef]

2005 (3)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

I. E. Mazets, “Adiabatic pulse propagation in coherent atomic media with the tripod level configuration,” Phys. Rev. A 71, 023806 (2005).
[CrossRef]

Z. Kis, N. V. Vitanov, A. Karpati, C. Barthel, and K. Bergmann, “Creation of arbitrary coherent superposition states by stimulated Raman adiabatic passage,” Phys. Rev. A 72, 033403 (2005).
[CrossRef]

2004 (3)

Z. Kis, A. Karpati, B. W. Shore, and N. V. Vitanov, “Stimulated Raman adiabatic passage among degenerate-level manifolds,” Phys. Rev. A 70, 053405 (2004).
[CrossRef]

I. Thanopulos, P. Král, and M. Shapiro, “Complete control of population transfer between clusters of degenerate states,” Phys. Rev. Lett. 92, 113003 (2004).
[CrossRef]

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbolán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

2003 (4)

Z. Kis and E. Paspalakis, “Enhancing nonlinear frequency conversion using spatially dependent coherence,” Phys. Rev. A 68, 043817 (2003).
[CrossRef]

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Switching from positive to negative dispersion in transparent degenerate and near-degenerate systems,” Phys. Rev. A 68, 043818 (2003).
[CrossRef]

N. V. Vitanov, Z. Kis, and B. W. Shore, “Coherent excitation of a degenerate two-level system by an elliptically polarized laser pulse,” Phys. Rev. A 68, 063414 (2003).
[CrossRef]

A. Karpati and Z. Kis, “Adiabatic creation of coherent superposition states via multiple intermediate states,” J. Phys. B 36, 905–919 (2003).
[CrossRef]

2002 (4)

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Propagation and nonlinear generation dynamics in a coherently prepared four-level system,” Phys. Rev. A 65, 053808 (2002).
[CrossRef]

E. Paspalakis and Z. Kis, “Pulse propagation in a coherently prepared multilevel medium,” Phys. Rev. A 66, 025802 (2002).
[CrossRef]

E. Paspalakis and Z. Kis, “Enhanced nonlinear generation in a three-level medium with spatially dependent coherence,” Opt. Lett. 27, 1836–1838 (2002).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: dark-state polaritons,” Phys. Rev. A 65, 022314 (2002).
[CrossRef]

2001 (1)

R. G. Unanyan, B. W. Shore, and K. Bergmann, “Preparation of an N-component maximal coherent superposition state using the stimulated Raman adiabatic passage method,” Phys. Rev. A 63, 043401 (2001).
[CrossRef]

2000 (1)

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef]

1999 (1)

E. A. Korsunsky and D. V. Kosachiov, “Phase-dependent nonlinear optics with double-Λ atoms,” Phys. Rev. A 60, 4996–5009 (1999).
[CrossRef]

1998 (6)

R. G. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155, 144–154 (1998).
[CrossRef]

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[CrossRef]

J. R. Csesznegi, B. K. Clark, and R. Grobe, “Controlled excitation of selected regions inside dielectric media,” Phys. Rev. A 57, 4860–4868 (1998).
[CrossRef]

W. Harshawardhan and G. S. Agarwal, “Enhancement of nonlinear-optical signals under coherent-population-trapping conditions,” Phys. Rev. A 58, 598–604 (1998).
[CrossRef]

L. Deng, M. G. Payne, and R. W. Garrett, “Nonlinear frequency conversion with short laser pulses and maximum atomic coherence,” Phys. Rev. A 58, 707–712 (1998).
[CrossRef]

C. K. Law and J. H. Eberly, “Synthesis of arbitrary superposition of Zeeman states in an atom,” Opt. Express 2, 368–371 (1998).
[CrossRef]

1997 (2)

S. E. Harris and M. Jain, “Optical parametric oscillators pumped by population-trapped atoms,” Opt. Lett. 22, 636–638 (1997).
[CrossRef]

J. R. Csesznegi and R. Grobe, “Recall and creation of spatial excitation distributions in dielectric media,” Phys. Rev. Lett. 79, 3162–3165 (1997).
[CrossRef]

1996 (2)

E. Cerboneschi and E. Arimondo, “Matched pulses and electromagnetically induced transparency for the interaction of laser pulse pairs with a double-vee system,” Opt. Commun. 127, 55–61 (1996).
[CrossRef]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef]

1995 (3)

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[CrossRef]

M. Fleischhauer, and T. Richter, “Pulse matching and correlation of phase fluctuations in Λ systems,” Phys. Rev. A 51, 2430–2442 (1995).
[CrossRef]

E. Cerboneschi and E. Arimondo, “Transparency and dressing for optical pulse pairs through a double-Λ absorbing medium,” Phys. Rev. A 52, R1823–R1826 (1995).
[CrossRef]

1994 (2)

S. E. Harris, “Normal modes of electromagnetically induced transparency,” Phys. Rev. Lett. 72, 52–55 (1994).
[CrossRef]

J. H. Eberly, M. L. Pons, and H. R. Haq, “Dressed-field pulses in an absorbing medium,” Phys. Rev. Lett. 72, 56–59 (1994).
[CrossRef]

1993 (1)

S. E. Harris, “Electromagnetically induced transparency with matched pulses,” Phys. Rev. Lett. 70, 552–555 (1993).
[CrossRef]

1992 (1)

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[CrossRef]

1991 (3)

K. Hakuta, L. Marmet, and B. P. Stoicheff, “Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen,” Phys. Rev. Lett. 66, 596–599 (1991).
[CrossRef]

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef]

1990 (2)

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef]

O. Kocharovskaya and P. Mandel, “Amplification without inversion,” Phys. Rev. A 42, 523–535 (1990).
[CrossRef]

1983 (1)

J. R. Morris and B. W. Shore, “Reduction of degenerate two-level excitation to independent two-state systems,” Phys. Rev. A 27, 906–912 (1983).
[CrossRef]

Agarwal, G. S.

W. Harshawardhan and G. S. Agarwal, “Enhancement of nonlinear-optical signals under coherent-population-trapping conditions,” Phys. Rev. A 58, 598–604 (1998).
[CrossRef]

Arimondo, E.

E. Cerboneschi and E. Arimondo, “Matched pulses and electromagnetically induced transparency for the interaction of laser pulse pairs with a double-vee system,” Opt. Commun. 127, 55–61 (1996).
[CrossRef]

E. Cerboneschi and E. Arimondo, “Transparency and dressing for optical pulse pairs through a double-Λ absorbing medium,” Phys. Rev. A 52, R1823–R1826 (1995).
[CrossRef]

E. Arimondo, in Progress in Optics, E. Wolf, ed. (Elsevier, 1996), Vol. 35, p. 257.

Artoni, M.

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbolán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

Barthel, C.

Z. Kis, N. V. Vitanov, A. Karpati, C. Barthel, and K. Bergmann, “Creation of arbitrary coherent superposition states by stimulated Raman adiabatic passage,” Phys. Rev. A 72, 033403 (2005).
[CrossRef]

Bergmann, K.

F. Vewinger, M. Heinz, B. W. Shore, and K. Bergmann, “Amplitude and phase control of a coherent superposition of degenerate states. I. Theory,” Phys. Rev. A 75, 043406 (2007).
[CrossRef]

F. Vewinger, M. Heinz, B. W. Shore, and K. Bergmann, “Amplitude and phase control of a coherent superposition of degenerate states. II. Experiment,” Phys. Rev. A 75, 043407 (2007).
[CrossRef]

M. Heinz, F. Vewinger, U. Schneider, L. P. Yatsenko, and K. Bergmann, “Phase control in a coherent superposition of degenerate quantum states through frequency control,” Opt. Commun. 264, 248–255 (2006).
[CrossRef]

Z. Kis, N. V. Vitanov, A. Karpati, C. Barthel, and K. Bergmann, “Creation of arbitrary coherent superposition states by stimulated Raman adiabatic passage,” Phys. Rev. A 72, 033403 (2005).
[CrossRef]

R. G. Unanyan, B. W. Shore, and K. Bergmann, “Preparation of an N-component maximal coherent superposition state using the stimulated Raman adiabatic passage method,” Phys. Rev. A 63, 043401 (2001).
[CrossRef]

R. G. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155, 144–154 (1998).
[CrossRef]

Boller, K.-J.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

Campbell, G.

Cao, X.

S. Li, X. Yang, X. Cao, C. Xie, and H. Wang, “Two electromagnetically induced transparency windows and an enhanced electromagnetically induced transparency signal in a four-level tripod atomic system,” J. Phys. B 40, 3211–3219 (2007).
[CrossRef]

Cataliotti, F.

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbolán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

Cerboneschi, E.

E. Cerboneschi and E. Arimondo, “Matched pulses and electromagnetically induced transparency for the interaction of laser pulse pairs with a double-vee system,” Opt. Commun. 127, 55–61 (1996).
[CrossRef]

E. Cerboneschi and E. Arimondo, “Transparency and dressing for optical pulse pairs through a double-Λ absorbing medium,” Phys. Rev. A 52, R1823–R1826 (1995).
[CrossRef]

Clark, B. K.

J. R. Csesznegi, B. K. Clark, and R. Grobe, “Controlled excitation of selected regions inside dielectric media,” Phys. Rev. A 57, 4860–4868 (1998).
[CrossRef]

Corbolán, R.

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbolán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

Csesznegi, J. R.

J. R. Csesznegi, B. K. Clark, and R. Grobe, “Controlled excitation of selected regions inside dielectric media,” Phys. Rev. A 57, 4860–4868 (1998).
[CrossRef]

J. R. Csesznegi and R. Grobe, “Recall and creation of spatial excitation distributions in dielectric media,” Phys. Rev. Lett. 79, 3162–3165 (1997).
[CrossRef]

Deng, L.

L. Deng, M. G. Payne, and R. W. Garrett, “Nonlinear frequency conversion with short laser pulses and maximum atomic coherence,” Phys. Rev. A 58, 707–712 (1998).
[CrossRef]

Druzhinina, N. A.

A. V. Volkov, N. A. Druzhinina, and O. M. Parshkov, “Numerical simulation of nonstationary effects of radiation polarization for the Λ interaction scheme in the case of degenerate energy levels,” Quantum Electron. 39, 845–852 (2009).
[CrossRef]

A. V. Volkov, N. A. Druzhinina, and O. M. Parshkov, “Adiabatons in the nonstationary double resonance on degenerate quantum transitions,” Quantum Electron. 39, 917–922 (2009).
[CrossRef]

Eberly, J. H.

C. K. Law and J. H. Eberly, “Synthesis of arbitrary superposition of Zeeman states in an atom,” Opt. Express 2, 368–371 (1998).
[CrossRef]

J. H. Eberly, M. L. Pons, and H. R. Haq, “Dressed-field pulses in an absorbing medium,” Phys. Rev. Lett. 72, 56–59 (1994).
[CrossRef]

Edmonds, A. R.

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1974).

Eilam, A.

A. Eilam, A. D. Wilson-Gordon, and H. Friedmann, “Enhanced frequency conversion of nonadiabatic pulses in a double Λsystem driven by two pumps with and without carrier beams,” Opt. Commun. 277, 186–195 (2007).
[CrossRef]

A. Eilam, A. D. Wilson-Gordon, and H. Friedmann, “Enhanced frequency conversion of nonadiabatic resonant pulses in coherently prepared Λ systems,” Phys. Rev. A 73, 053805 (2006).
[CrossRef]

Field, J. E.

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[CrossRef]

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef]

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: dark-state polaritons,” Phys. Rev. A 65, 022314 (2002).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef]

R. G. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155, 144–154 (1998).
[CrossRef]

M. Fleischhauer, and T. Richter, “Pulse matching and correlation of phase fluctuations in Λ systems,” Phys. Rev. A 51, 2430–2442 (1995).
[CrossRef]

Friedmann, H.

A. Eilam, A. D. Wilson-Gordon, and H. Friedmann, “Enhanced frequency conversion of nonadiabatic pulses in a double Λsystem driven by two pumps with and without carrier beams,” Opt. Commun. 277, 186–195 (2007).
[CrossRef]

A. Eilam, A. D. Wilson-Gordon, and H. Friedmann, “Enhanced frequency conversion of nonadiabatic resonant pulses in coherently prepared Λ systems,” Phys. Rev. A 73, 053805 (2006).
[CrossRef]

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Switching from positive to negative dispersion in transparent degenerate and near-degenerate systems,” Phys. Rev. A 68, 043818 (2003).
[CrossRef]

Garrett, R. W.

L. Deng, M. G. Payne, and R. W. Garrett, “Nonlinear frequency conversion with short laser pulses and maximum atomic coherence,” Phys. Rev. A 58, 707–712 (1998).
[CrossRef]

Goren, C.

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Switching from positive to negative dispersion in transparent degenerate and near-degenerate systems,” Phys. Rev. A 68, 043818 (2003).
[CrossRef]

Grobe, R.

J. R. Csesznegi, B. K. Clark, and R. Grobe, “Controlled excitation of selected regions inside dielectric media,” Phys. Rev. A 57, 4860–4868 (1998).
[CrossRef]

J. R. Csesznegi and R. Grobe, “Recall and creation of spatial excitation distributions in dielectric media,” Phys. Rev. Lett. 79, 3162–3165 (1997).
[CrossRef]

Guan, P.-C.

P.-C. Guan and I. A. Yu, “Simplification of the electromagnetically induced transparency system with degenerate Zeeman states,” Phys. Rev. A 76, 033817 (2007).
[CrossRef]

P.-C. Guan and I. A. Yu, “Role of degenerate Zeeman states in the storage and retrieval of light pulses,” Phys. Rev. A 75, 013812 (2007).
[CrossRef]

Hahn, K. H.

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef]

Haihong, W.

D. Yabin, Z. Junxiang, W. Haihong, and G. Jiangrui, “Quantum interference effects in a multi-driven transition Fg=3↔Fe=2,” Opt. Commun. 259, 765–771 (2006).
[CrossRef]

Hakuta, K.

K. Hakuta, L. Marmet, and B. P. Stoicheff, “Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen,” Phys. Rev. Lett. 66, 596–599 (1991).
[CrossRef]

Haq, H. R.

J. H. Eberly, M. L. Pons, and H. R. Haq, “Dressed-field pulses in an absorbing medium,” Phys. Rev. Lett. 72, 56–59 (1994).
[CrossRef]

Harris, S. E.

S. E. Harris and M. Jain, “Optical parametric oscillators pumped by population-trapped atoms,” Opt. Lett. 22, 636–638 (1997).
[CrossRef]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[CrossRef]

S. E. Harris, “Normal modes of electromagnetically induced transparency,” Phys. Rev. Lett. 72, 52–55 (1994).
[CrossRef]

S. E. Harris, “Electromagnetically induced transparency with matched pulses,” Phys. Rev. Lett. 70, 552–555 (1993).
[CrossRef]

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[CrossRef]

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef]

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef]

Harshawardhan, W.

W. Harshawardhan and G. S. Agarwal, “Enhancement of nonlinear-optical signals under coherent-population-trapping conditions,” Phys. Rev. A 58, 598–604 (1998).
[CrossRef]

Heinz, M.

F. Vewinger, M. Heinz, B. W. Shore, and K. Bergmann, “Amplitude and phase control of a coherent superposition of degenerate states. I. Theory,” Phys. Rev. A 75, 043406 (2007).
[CrossRef]

F. Vewinger, M. Heinz, B. W. Shore, and K. Bergmann, “Amplitude and phase control of a coherent superposition of degenerate states. II. Experiment,” Phys. Rev. A 75, 043407 (2007).
[CrossRef]

M. Heinz, F. Vewinger, U. Schneider, L. P. Yatsenko, and K. Bergmann, “Phase control in a coherent superposition of degenerate quantum states through frequency control,” Opt. Commun. 264, 248–255 (2006).
[CrossRef]

Hemmer, P. R.

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[CrossRef]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef]

Jain, M.

S. E. Harris and M. Jain, “Optical parametric oscillators pumped by population-trapped atoms,” Opt. Lett. 22, 636–638 (1997).
[CrossRef]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[CrossRef]

Jiangrui, G.

D. Yabin, Z. Junxiang, W. Haihong, and G. Jiangrui, “Quantum interference effects in a multi-driven transition Fg=3↔Fe=2,” Opt. Commun. 259, 765–771 (2006).
[CrossRef]

Junxiang, Z.

D. Yabin, Z. Junxiang, W. Haihong, and G. Jiangrui, “Quantum interference effects in a multi-driven transition Fg=3↔Fe=2,” Opt. Commun. 259, 765–771 (2006).
[CrossRef]

Karpa, L.

L. Karpa, F. Vewinger, and M. Weitz, “Resonance beating of light stored using atomic spinor polaritons,” Phys. Rev. Lett. 101, 170406 (2008).
[CrossRef]

Karpati, A.

Z. Kis, N. V. Vitanov, A. Karpati, C. Barthel, and K. Bergmann, “Creation of arbitrary coherent superposition states by stimulated Raman adiabatic passage,” Phys. Rev. A 72, 033403 (2005).
[CrossRef]

Z. Kis, A. Karpati, B. W. Shore, and N. V. Vitanov, “Stimulated Raman adiabatic passage among degenerate-level manifolds,” Phys. Rev. A 70, 053405 (2004).
[CrossRef]

A. Karpati and Z. Kis, “Adiabatic creation of coherent superposition states via multiple intermediate states,” J. Phys. B 36, 905–919 (2003).
[CrossRef]

Kasapi, A.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[CrossRef]

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[CrossRef]

Kis, Z.

Z. Kis, N. V. Vitanov, A. Karpati, C. Barthel, and K. Bergmann, “Creation of arbitrary coherent superposition states by stimulated Raman adiabatic passage,” Phys. Rev. A 72, 033403 (2005).
[CrossRef]

Z. Kis, A. Karpati, B. W. Shore, and N. V. Vitanov, “Stimulated Raman adiabatic passage among degenerate-level manifolds,” Phys. Rev. A 70, 053405 (2004).
[CrossRef]

A. Karpati and Z. Kis, “Adiabatic creation of coherent superposition states via multiple intermediate states,” J. Phys. B 36, 905–919 (2003).
[CrossRef]

N. V. Vitanov, Z. Kis, and B. W. Shore, “Coherent excitation of a degenerate two-level system by an elliptically polarized laser pulse,” Phys. Rev. A 68, 063414 (2003).
[CrossRef]

Z. Kis and E. Paspalakis, “Enhancing nonlinear frequency conversion using spatially dependent coherence,” Phys. Rev. A 68, 043817 (2003).
[CrossRef]

E. Paspalakis and Z. Kis, “Enhanced nonlinear generation in a three-level medium with spatially dependent coherence,” Opt. Lett. 27, 1836–1838 (2002).
[CrossRef]

E. Paspalakis and Z. Kis, “Pulse propagation in a coherently prepared multilevel medium,” Phys. Rev. A 66, 025802 (2002).
[CrossRef]

Knight, P. L.

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Propagation and nonlinear generation dynamics in a coherently prepared four-level system,” Phys. Rev. A 65, 053808 (2002).
[CrossRef]

Kocharovskaya, O.

O. Kocharovskaya and P. Mandel, “Amplification without inversion,” Phys. Rev. A 42, 523–535 (1990).
[CrossRef]

Korsunsky, E. A.

E. A. Korsunsky and D. V. Kosachiov, “Phase-dependent nonlinear optics with double-Λ atoms,” Phys. Rev. A 60, 4996–5009 (1999).
[CrossRef]

Kosachiov, D. V.

E. A. Korsunsky and D. V. Kosachiov, “Phase-dependent nonlinear optics with double-Λ atoms,” Phys. Rev. A 60, 4996–5009 (1999).
[CrossRef]

Král, P.

I. Thanopulos, P. Král, and M. Shapiro, “Complete control of population transfer between clusters of degenerate states,” Phys. Rev. Lett. 92, 113003 (2004).
[CrossRef]

Kylstra, N. J.

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Propagation and nonlinear generation dynamics in a coherently prepared four-level system,” Phys. Rev. A 65, 053808 (2002).
[CrossRef]

Law, C. K.

Li, S.

S. Li, X. Yang, X. Cao, C. Xie, and H. Wang, “Two electromagnetically induced transparency windows and an enhanced electromagnetically induced transparency signal in a four-level tripod atomic system,” J. Phys. B 40, 3211–3219 (2007).
[CrossRef]

Löffler, M.

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[CrossRef]

Lukin, M. D.

M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: dark-state polaritons,” Phys. Rev. A 65, 022314 (2002).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef]

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[CrossRef]

Lvovsky, A. I.

MacRae, A.

Mandel, P.

O. Kocharovskaya and P. Mandel, “Amplification without inversion,” Phys. Rev. A 42, 523–535 (1990).
[CrossRef]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Marmet, L.

K. Hakuta, L. Marmet, and B. P. Stoicheff, “Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen,” Phys. Rev. Lett. 66, 596–599 (1991).
[CrossRef]

Mazets, I. E.

I. E. Mazets, “Adiabatic propagation of quantized light pulses in an atomic medium with the tripod level configuration,” J. Exp. Theor. Phys. 103, 365–369 (2006).
[CrossRef]

I. E. Mazets, “Adiabatic pulse propagation in coherent atomic media with the tripod level configuration,” Phys. Rev. A 71, 023806 (2005).
[CrossRef]

Merriam, A. J.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef]

Morris, J. R.

J. R. Morris and B. W. Shore, “Reduction of degenerate two-level excitation to independent two-state systems,” Phys. Rev. A 27, 906–912 (1983).
[CrossRef]

Ottaviani, C.

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbolán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

Parshkov, O. M.

A. V. Volkov, N. A. Druzhinina, and O. M. Parshkov, “Adiabatons in the nonstationary double resonance on degenerate quantum transitions,” Quantum Electron. 39, 917–922 (2009).
[CrossRef]

A. V. Volkov, N. A. Druzhinina, and O. M. Parshkov, “Numerical simulation of nonstationary effects of radiation polarization for the Λ interaction scheme in the case of degenerate energy levels,” Quantum Electron. 39, 845–852 (2009).
[CrossRef]

Paspalakis, E.

Z. Kis and E. Paspalakis, “Enhancing nonlinear frequency conversion using spatially dependent coherence,” Phys. Rev. A 68, 043817 (2003).
[CrossRef]

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Propagation and nonlinear generation dynamics in a coherently prepared four-level system,” Phys. Rev. A 65, 053808 (2002).
[CrossRef]

E. Paspalakis and Z. Kis, “Pulse propagation in a coherently prepared multilevel medium,” Phys. Rev. A 66, 025802 (2002).
[CrossRef]

E. Paspalakis and Z. Kis, “Enhanced nonlinear generation in a three-level medium with spatially dependent coherence,” Opt. Lett. 27, 1836–1838 (2002).
[CrossRef]

Payne, M. G.

L. Deng, M. G. Payne, and R. W. Garrett, “Nonlinear frequency conversion with short laser pulses and maximum atomic coherence,” Phys. Rev. A 58, 707–712 (1998).
[CrossRef]

Pons, M. L.

J. H. Eberly, M. L. Pons, and H. R. Haq, “Dressed-field pulses in an absorbing medium,” Phys. Rev. Lett. 72, 56–59 (1994).
[CrossRef]

Rebic, S.

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbolán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

Richter, T.

M. Fleischhauer, and T. Richter, “Pulse matching and correlation of phase fluctuations in Λ systems,” Phys. Rev. A 51, 2430–2442 (1995).
[CrossRef]

Rosenbluh, M.

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Switching from positive to negative dispersion in transparent degenerate and near-degenerate systems,” Phys. Rev. A 68, 043818 (2003).
[CrossRef]

Schneider, U.

M. Heinz, F. Vewinger, U. Schneider, L. P. Yatsenko, and K. Bergmann, “Phase control in a coherent superposition of degenerate quantum states through frequency control,” Opt. Commun. 264, 248–255 (2006).
[CrossRef]

Scully, M. O.

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[CrossRef]

Shapiro, M.

I. Thanopulos, P. Král, and M. Shapiro, “Complete control of population transfer between clusters of degenerate states,” Phys. Rev. Lett. 92, 113003 (2004).
[CrossRef]

Shore, B. W.

F. Vewinger, M. Heinz, B. W. Shore, and K. Bergmann, “Amplitude and phase control of a coherent superposition of degenerate states. II. Experiment,” Phys. Rev. A 75, 043407 (2007).
[CrossRef]

F. Vewinger, M. Heinz, B. W. Shore, and K. Bergmann, “Amplitude and phase control of a coherent superposition of degenerate states. I. Theory,” Phys. Rev. A 75, 043406 (2007).
[CrossRef]

Z. Kis, A. Karpati, B. W. Shore, and N. V. Vitanov, “Stimulated Raman adiabatic passage among degenerate-level manifolds,” Phys. Rev. A 70, 053405 (2004).
[CrossRef]

N. V. Vitanov, Z. Kis, and B. W. Shore, “Coherent excitation of a degenerate two-level system by an elliptically polarized laser pulse,” Phys. Rev. A 68, 063414 (2003).
[CrossRef]

R. G. Unanyan, B. W. Shore, and K. Bergmann, “Preparation of an N-component maximal coherent superposition state using the stimulated Raman adiabatic passage method,” Phys. Rev. A 63, 043401 (2001).
[CrossRef]

R. G. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155, 144–154 (1998).
[CrossRef]

J. R. Morris and B. W. Shore, “Reduction of degenerate two-level excitation to independent two-state systems,” Phys. Rev. A 27, 906–912 (1983).
[CrossRef]

B. W. Shore, The Theory of Coherent Atomic Exciation (Wiley, 1990), Vol. 2.

Stoicheff, B. P.

K. Hakuta, L. Marmet, and B. P. Stoicheff, “Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen,” Phys. Rev. Lett. 66, 596–599 (1991).
[CrossRef]

Thanopulos, I.

I. Thanopulos, P. Král, and M. Shapiro, “Complete control of population transfer between clusters of degenerate states,” Phys. Rev. Lett. 92, 113003 (2004).
[CrossRef]

Tombesi, P.

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbolán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

Unanyan, R. G.

R. G. Unanyan, B. W. Shore, and K. Bergmann, “Preparation of an N-component maximal coherent superposition state using the stimulated Raman adiabatic passage method,” Phys. Rev. A 63, 043401 (2001).
[CrossRef]

R. G. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155, 144–154 (1998).
[CrossRef]

Vewinger, F.

L. Karpa, F. Vewinger, and M. Weitz, “Resonance beating of light stored using atomic spinor polaritons,” Phys. Rev. Lett. 101, 170406 (2008).
[CrossRef]

F. Vewinger, M. Heinz, B. W. Shore, and K. Bergmann, “Amplitude and phase control of a coherent superposition of degenerate states. I. Theory,” Phys. Rev. A 75, 043406 (2007).
[CrossRef]

F. Vewinger, M. Heinz, B. W. Shore, and K. Bergmann, “Amplitude and phase control of a coherent superposition of degenerate states. II. Experiment,” Phys. Rev. A 75, 043407 (2007).
[CrossRef]

M. Heinz, F. Vewinger, U. Schneider, L. P. Yatsenko, and K. Bergmann, “Phase control in a coherent superposition of degenerate quantum states through frequency control,” Opt. Commun. 264, 248–255 (2006).
[CrossRef]

Vitali, D.

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbolán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

Vitanov, N. V.

Z. Kis, N. V. Vitanov, A. Karpati, C. Barthel, and K. Bergmann, “Creation of arbitrary coherent superposition states by stimulated Raman adiabatic passage,” Phys. Rev. A 72, 033403 (2005).
[CrossRef]

Z. Kis, A. Karpati, B. W. Shore, and N. V. Vitanov, “Stimulated Raman adiabatic passage among degenerate-level manifolds,” Phys. Rev. A 70, 053405 (2004).
[CrossRef]

N. V. Vitanov, Z. Kis, and B. W. Shore, “Coherent excitation of a degenerate two-level system by an elliptically polarized laser pulse,” Phys. Rev. A 68, 063414 (2003).
[CrossRef]

Volkov, A. V.

A. V. Volkov, N. A. Druzhinina, and O. M. Parshkov, “Adiabatons in the nonstationary double resonance on degenerate quantum transitions,” Quantum Electron. 39, 917–922 (2009).
[CrossRef]

A. V. Volkov, N. A. Druzhinina, and O. M. Parshkov, “Numerical simulation of nonstationary effects of radiation polarization for the Λ interaction scheme in the case of degenerate energy levels,” Quantum Electron. 39, 845–852 (2009).
[CrossRef]

Wang, H.

S. Li, X. Yang, X. Cao, C. Xie, and H. Wang, “Two electromagnetically induced transparency windows and an enhanced electromagnetically induced transparency signal in a four-level tripod atomic system,” J. Phys. B 40, 3211–3219 (2007).
[CrossRef]

Weitz, M.

L. Karpa, F. Vewinger, and M. Weitz, “Resonance beating of light stored using atomic spinor polaritons,” Phys. Rev. Lett. 101, 170406 (2008).
[CrossRef]

Wilson-Gordon, A. D.

A. Eilam, A. D. Wilson-Gordon, and H. Friedmann, “Enhanced frequency conversion of nonadiabatic pulses in a double Λsystem driven by two pumps with and without carrier beams,” Opt. Commun. 277, 186–195 (2007).
[CrossRef]

A. Eilam, A. D. Wilson-Gordon, and H. Friedmann, “Enhanced frequency conversion of nonadiabatic resonant pulses in coherently prepared Λ systems,” Phys. Rev. A 73, 053805 (2006).
[CrossRef]

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Switching from positive to negative dispersion in transparent degenerate and near-degenerate systems,” Phys. Rev. A 68, 043818 (2003).
[CrossRef]

Xia, H.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef]

Xie, C.

S. Li, X. Yang, X. Cao, C. Xie, and H. Wang, “Two electromagnetically induced transparency windows and an enhanced electromagnetically induced transparency signal in a four-level tripod atomic system,” J. Phys. B 40, 3211–3219 (2007).
[CrossRef]

Yabin, D.

D. Yabin, Z. Junxiang, W. Haihong, and G. Jiangrui, “Quantum interference effects in a multi-driven transition Fg=3↔Fe=2,” Opt. Commun. 259, 765–771 (2006).
[CrossRef]

Yang, X.

S. Li, X. Yang, X. Cao, C. Xie, and H. Wang, “Two electromagnetically induced transparency windows and an enhanced electromagnetically induced transparency signal in a four-level tripod atomic system,” J. Phys. B 40, 3211–3219 (2007).
[CrossRef]

Yatsenko, L. P.

M. Heinz, F. Vewinger, U. Schneider, L. P. Yatsenko, and K. Bergmann, “Phase control in a coherent superposition of degenerate quantum states through frequency control,” Opt. Commun. 264, 248–255 (2006).
[CrossRef]

Yin, G. Y.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[CrossRef]

Yu, I. A.

P.-C. Guan and I. A. Yu, “Role of degenerate Zeeman states in the storage and retrieval of light pulses,” Phys. Rev. A 75, 013812 (2007).
[CrossRef]

P.-C. Guan and I. A. Yu, “Simplification of the electromagnetically induced transparency system with degenerate Zeeman states,” Phys. Rev. A 76, 033817 (2007).
[CrossRef]

Zare, R. N.

R. N. Zare, Angular Momentum (Wiley, 1988).

J. Exp. Theor. Phys. (1)

I. E. Mazets, “Adiabatic propagation of quantized light pulses in an atomic medium with the tripod level configuration,” J. Exp. Theor. Phys. 103, 365–369 (2006).
[CrossRef]

J. Phys. B (2)

S. Li, X. Yang, X. Cao, C. Xie, and H. Wang, “Two electromagnetically induced transparency windows and an enhanced electromagnetically induced transparency signal in a four-level tripod atomic system,” J. Phys. B 40, 3211–3219 (2007).
[CrossRef]

A. Karpati and Z. Kis, “Adiabatic creation of coherent superposition states via multiple intermediate states,” J. Phys. B 36, 905–919 (2003).
[CrossRef]

Opt. Commun. (5)

M. Heinz, F. Vewinger, U. Schneider, L. P. Yatsenko, and K. Bergmann, “Phase control in a coherent superposition of degenerate quantum states through frequency control,” Opt. Commun. 264, 248–255 (2006).
[CrossRef]

D. Yabin, Z. Junxiang, W. Haihong, and G. Jiangrui, “Quantum interference effects in a multi-driven transition Fg=3↔Fe=2,” Opt. Commun. 259, 765–771 (2006).
[CrossRef]

A. Eilam, A. D. Wilson-Gordon, and H. Friedmann, “Enhanced frequency conversion of nonadiabatic pulses in a double Λsystem driven by two pumps with and without carrier beams,” Opt. Commun. 277, 186–195 (2007).
[CrossRef]

E. Cerboneschi and E. Arimondo, “Matched pulses and electromagnetically induced transparency for the interaction of laser pulse pairs with a double-vee system,” Opt. Commun. 127, 55–61 (1996).
[CrossRef]

R. G. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155, 144–154 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (25)

Z. Kis and E. Paspalakis, “Enhancing nonlinear frequency conversion using spatially dependent coherence,” Phys. Rev. A 68, 043817 (2003).
[CrossRef]

A. Eilam, A. D. Wilson-Gordon, and H. Friedmann, “Enhanced frequency conversion of nonadiabatic resonant pulses in coherently prepared Λ systems,” Phys. Rev. A 73, 053805 (2006).
[CrossRef]

M. Fleischhauer, and T. Richter, “Pulse matching and correlation of phase fluctuations in Λ systems,” Phys. Rev. A 51, 2430–2442 (1995).
[CrossRef]

W. Harshawardhan and G. S. Agarwal, “Enhancement of nonlinear-optical signals under coherent-population-trapping conditions,” Phys. Rev. A 58, 598–604 (1998).
[CrossRef]

L. Deng, M. G. Payne, and R. W. Garrett, “Nonlinear frequency conversion with short laser pulses and maximum atomic coherence,” Phys. Rev. A 58, 707–712 (1998).
[CrossRef]

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Propagation and nonlinear generation dynamics in a coherently prepared four-level system,” Phys. Rev. A 65, 053808 (2002).
[CrossRef]

E. Paspalakis and Z. Kis, “Pulse propagation in a coherently prepared multilevel medium,” Phys. Rev. A 66, 025802 (2002).
[CrossRef]

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[CrossRef]

I. E. Mazets, “Adiabatic pulse propagation in coherent atomic media with the tripod level configuration,” Phys. Rev. A 71, 023806 (2005).
[CrossRef]

E. A. Korsunsky and D. V. Kosachiov, “Phase-dependent nonlinear optics with double-Λ atoms,” Phys. Rev. A 60, 4996–5009 (1999).
[CrossRef]

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbolán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

J. R. Csesznegi, B. K. Clark, and R. Grobe, “Controlled excitation of selected regions inside dielectric media,” Phys. Rev. A 57, 4860–4868 (1998).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: dark-state polaritons,” Phys. Rev. A 65, 022314 (2002).
[CrossRef]

O. Kocharovskaya and P. Mandel, “Amplification without inversion,” Phys. Rev. A 42, 523–535 (1990).
[CrossRef]

E. Cerboneschi and E. Arimondo, “Transparency and dressing for optical pulse pairs through a double-Λ absorbing medium,” Phys. Rev. A 52, R1823–R1826 (1995).
[CrossRef]

R. G. Unanyan, B. W. Shore, and K. Bergmann, “Preparation of an N-component maximal coherent superposition state using the stimulated Raman adiabatic passage method,” Phys. Rev. A 63, 043401 (2001).
[CrossRef]

F. Vewinger, M. Heinz, B. W. Shore, and K. Bergmann, “Amplitude and phase control of a coherent superposition of degenerate states. I. Theory,” Phys. Rev. A 75, 043406 (2007).
[CrossRef]

F. Vewinger, M. Heinz, B. W. Shore, and K. Bergmann, “Amplitude and phase control of a coherent superposition of degenerate states. II. Experiment,” Phys. Rev. A 75, 043407 (2007).
[CrossRef]

Z. Kis, A. Karpati, B. W. Shore, and N. V. Vitanov, “Stimulated Raman adiabatic passage among degenerate-level manifolds,” Phys. Rev. A 70, 053405 (2004).
[CrossRef]

Z. Kis, N. V. Vitanov, A. Karpati, C. Barthel, and K. Bergmann, “Creation of arbitrary coherent superposition states by stimulated Raman adiabatic passage,” Phys. Rev. A 72, 033403 (2005).
[CrossRef]

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Switching from positive to negative dispersion in transparent degenerate and near-degenerate systems,” Phys. Rev. A 68, 043818 (2003).
[CrossRef]

N. V. Vitanov, Z. Kis, and B. W. Shore, “Coherent excitation of a degenerate two-level system by an elliptically polarized laser pulse,” Phys. Rev. A 68, 063414 (2003).
[CrossRef]

P.-C. Guan and I. A. Yu, “Simplification of the electromagnetically induced transparency system with degenerate Zeeman states,” Phys. Rev. A 76, 033817 (2007).
[CrossRef]

P.-C. Guan and I. A. Yu, “Role of degenerate Zeeman states in the storage and retrieval of light pulses,” Phys. Rev. A 75, 013812 (2007).
[CrossRef]

J. R. Morris and B. W. Shore, “Reduction of degenerate two-level excitation to independent two-state systems,” Phys. Rev. A 27, 906–912 (1983).
[CrossRef]

Phys. Rev. Lett. (14)

L. Karpa, F. Vewinger, and M. Weitz, “Resonance beating of light stored using atomic spinor polaritons,” Phys. Rev. Lett. 101, 170406 (2008).
[CrossRef]

I. Thanopulos, P. Král, and M. Shapiro, “Complete control of population transfer between clusters of degenerate states,” Phys. Rev. Lett. 92, 113003 (2004).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef]

J. R. Csesznegi and R. Grobe, “Recall and creation of spatial excitation distributions in dielectric media,” Phys. Rev. Lett. 79, 3162–3165 (1997).
[CrossRef]

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[CrossRef]

S. E. Harris, “Electromagnetically induced transparency with matched pulses,” Phys. Rev. Lett. 70, 552–555 (1993).
[CrossRef]

S. E. Harris, “Normal modes of electromagnetically induced transparency,” Phys. Rev. Lett. 72, 52–55 (1994).
[CrossRef]

J. H. Eberly, M. L. Pons, and H. R. Haq, “Dressed-field pulses in an absorbing medium,” Phys. Rev. Lett. 72, 56–59 (1994).
[CrossRef]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[CrossRef]

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef]

K. Hakuta, L. Marmet, and B. P. Stoicheff, “Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen,” Phys. Rev. Lett. 66, 596–599 (1991).
[CrossRef]

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef]

Quantum Electron. (2)

A. V. Volkov, N. A. Druzhinina, and O. M. Parshkov, “Numerical simulation of nonstationary effects of radiation polarization for the Λ interaction scheme in the case of degenerate energy levels,” Quantum Electron. 39, 845–852 (2009).
[CrossRef]

A. V. Volkov, N. A. Druzhinina, and O. M. Parshkov, “Adiabatons in the nonstationary double resonance on degenerate quantum transitions,” Quantum Electron. 39, 917–922 (2009).
[CrossRef]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Other (4)

E. Arimondo, in Progress in Optics, E. Wolf, ed. (Elsevier, 1996), Vol. 35, p. 257.

R. N. Zare, Angular Momentum (Wiley, 1988).

B. W. Shore, The Theory of Coherent Atomic Exciation (Wiley, 1990), Vol. 2.

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scheme of the coupling configuration. The ground-state manifold g consists of the sublevels of a five-fold degenerate Jg=2 state. The sublevels are coupled by an elliptically polarized weak probe field to the excited-state manifold e, which consists of the sublevels of a Je=1 state. The probe field is detuned by Δp from exact resonance. The excited-state manifold e is coupled further by an elliptically polarized strong control field to a Ja=0 auxiliary state. The control field is detuned by Δc from exact resonance. The circles on the Mg=2,0,+2 sublevels represent the initial occupations.

Fig. 2.
Fig. 2.

MS transformation for the control field transition results in a pair of coupled–uncoupled excited states to the auxiliary state.

Fig. 3.
Fig. 3.

Linear susceptibility of the six-level system for the probe field. In the horizontal axis the probe field detuning Δp is measured in Γe units. The absorption (upper panels) and phase shift (lower panels) associated with the modes are shown in arbitrary units. The susceptibility curves for one of the modes are drawn with solid green lines, whereas that for the other modes are drawn with dashed red lines. The parameters for the plots are given in the text.

Fig. 4.
Fig. 4.

In column (a) the absorption and phase shift curves are shown for the two modes in a system with φc=π/8. The rest of the parameters are the same as in Fig. 3(a). In column (b) the ellipticity parameter V is depicted for the modes.

Fig. 5.
Fig. 5.

Same as Fig. 3, but the coherences in the ground-state manifold are reduced to half of their original values.

Tables (1)

Tables Icon

Table 1. Stokes Parameters Associated with the Polarization States in Eqs. (27a) and (27b)

Equations (58)

Equations on this page are rendered with MathJax. Learn more.

E⃗k(t)=12([eEk(t)+e+E+k(t)]eiωkt+c.c.),
ΩMeMgp(t)=Eqp(t)e,Je,Me|deq|g,Jg,Mg,=Ωqp(t)ξMgMeeiφq
ΩMeMac(t)=Eqc(t)e,Je,Me|deq|a,Ja,Ma,=Ωqc(t)ζMaMeeiϑq
ddtϱ=i[H,ϱ]+LR(ϱ)+Lϕ(ϱ).
H=[012Ωc012ΩcΔcI212Ωp012ΩpδI3],
Ωc=[Ωcζ01eiϑΩ+cζ01eiϑ+],
Ωp=[Ω+pξ21eiφ+Ωpξ01eiφ00Ω+pξ01eiφ+Ωpξ21eiφ].
LR(ϱ)=Γeg2[2q=0,±MqϱMq|ee|ϱϱ|ee|]+Γea2[2q=0,±NqϱNq|ee|ϱϱ|ee|],
Lϕ(ϱ)=Γgϕ2[2|gg|ϱ|gg||gg|ϱϱ|gg|]+Γaϕ2[2|aa|ϱ|aa||aa|ϱϱ|aa|],
|bb|Mb|b,Mbb,Mb|.
U=[1000A000I3],
HMS=UHU=[012ΩcA012AΩcΔcI212AΩp012ΩpAδI3].
[Ωc0]=AΩc,
P⃗=12[P⃗(+)+P⃗()]=NTr{ϱd},
P(+)(t,z)=2Nd(ξ01ϱe1,g0+ξ21ϱe+1,g+2),
P+(+)(t,z)=2Nd(ξ21ϱe1,g2+ξ01ϱe+1,g0),
[P(+)(t,z;Δp)P+(+)(t,z;Δp)]=ε0[χχ+χ+χ++][Ep(t,z;Δp)E+p(t,z;Δp)],
itϱa0,g2=12Ωc*ϱe1,g2+12Ω+c*ϱe+1,g2(δ+iγagϕ)ϱa0,g2,
itϱa0,g0=12Ωc*ϱe1,g0+12Ω+c*ϱe+1,g0(δ+iγagϕ)ϱa0,g0,
itϱa0,g+2=12Ωc*ϱe1,g+2+12Ω+c*ϱe+1,g+2(δ+iγagϕ)ϱa0,g+2,
itϱe1,g2=12Ωcϱa0,g2+12Ωpξ01ϱg0,g2+12Ω+pξ21ϱg2,g2+[Δpiγegϕ]ϱe1,g2,
itϱe1,g0=12Ωcϱa0,g0+12Ωpξ01ϱg0,g0+12Ω+pξ21ϱg2,g0+[Δpiγegϕ]ϱe1,g0,
itϱe+1,g0=12Ω+cϱa0,g0+12Ωpξ21ϱg+2,g0+12Ω+pξ01ϱg0,g0+[Δpiγegϕ]ϱe+1,g0,
itϱe+1,g+2=12Ω+cϱa0,g+2+12Ωpξ21ϱg+2,g+2+12Ω+pξ01ϱg0,g+2+[Δpiγegϕ]ϱe+1,g+2,
ϱe1,g2=1D{Y·(Ωpξ01ϱg0,g2+Ω+pξ21ϱg2,g2)+Z·(Ωpξ21ϱg+2,g2+Ω+pξ01ϱg0,g2)},
ϱe1,g0=1D{Y·(Ωpξ01ϱg0,g0+Ω+pξ21ϱg2,g0)+Z·(Ωpξ21ϱg+2,g0+Ω+pξ01ϱg0,g0)},
ϱe+1,g0=1D{X·(Ωpξ21ϱg+2,g0+Ω+pξ01ϱg0,g0)+Z*·(Ωpξ01ϱg0,g0+Ω+pξ21ϱg2,g0)},
ϱe+1,g+2=1D{X·(Ωpξ21ϱg+2,g+2+Ω+pξ01ϱg0,g+2)+Z*·(Ωpξ01ϱg0,g+2+Ω+pξ21ϱg2,g+2)},
χ=Nd2ε0D{X·(ξ21)2ϱg+2,g+2+Y·(ξ01)2ϱg0,g0Zξ01ξ21ϱg+2,g0Z*ξ01ξ21ϱg0,g+2},
χ+=Nd2ε0D{Xξ21ξ01ϱg0,g+2+Yξ01ξ21ϱg2,g0Z·(ξ01)2ϱg0,g0Z*·(ξ21)2ϱg2,g+2},
χ+=Nd2ε0D{Xξ21ξ01ϱg+2,g0+Yξ01ξ21ϱg0,g2Z·(ξ21)2ϱg+2,g2Z*·(ξ01)2ϱg0,g0},
χ++=Nd2ε0D{X·(ξ01)2ϱg0,g0+Y·(ξ21)2ϱg2,g2Zξ01ξ21ϱg0,g2Z*ξ01ξ21ϱg2,g0}.
z[Ep(τ,z;Δp)E+p(τ,z;Δp)]=ik02[χχ+χ+χ++][Ep(τ,z;Δp)E+p(τ,z;Δp)].
E⃗p(τ,z;Δp)=exp(ik02χ·(zz0))E⃗p(τ,z0;Δp),
χ(Δp)S⃗iR(Δp)=χiS⃗iR(Δp),
S⃗iL(Δp)χ(Δp)=χiS⃗iL(Δp),
S⃗iL(Δp)·S⃗iR(Δp)=δij,
E⃗p(τ,z)=dΔp{j=01exp(ik02χj(Δp)·(zz0))S⃗jR(Δp)S⃗jL(Δp)}·E⃗p(τ,z0;Δp),
χ=Nd2ε0D[ABv1+|a|2ABv2a*bABv2*ab*ABv3+|b|2]
χ2χ·[AB·(v1+v3)+|a|2+|b|2]+(AB)2[v1v3|v2|2]+AB·[v3|a|2+v1|b|2+v2ab*+v2*a*b]=0,
χ2χ·[|a|2+|b|2]=0.
χ0=0,S⃗0=1|a|2+|b|2[ba],
χ1=Nd2ε0D(|a|2+|b|2),S⃗1=1|a|2+|b|2[a*b*],
χ2χ·[AB·(v1+v3)]+(AB)2[v1v3|v2|2]=0.
Ω+cΩc=ξ01cg0ξ21cg2=ξ21cg+2ξ01cg0.
χ2χ·[AB·3/10+(Ω+cΩc)2·3/80]=0.
S⃗0=12(1sin(2φc)cos(ϑc))[sinφccosφceiϑc(sinφccosφceiϑc)]12[11],
χ1=Nd2ABε0D=3Nd220ε0×Δp(Δp2|Ωc|24)+iΔp2γegϕΔp2(γegϕ)2+(|Ωc|24Δp2)2,
χ=Nd2ε0D[ABv1+Raa*ABv2Ra*bABv2*Rab*ABv3+Rbb*],
v1=(ξ21)2ϱg+2,g+2+(ξ01)2ϱg0,g0,
v3=(ξ21)2ϱg2,g2+(ξ01)2ϱg0,g0,
v2=ξ01ξ21(ϱg0,g+2+ϱg2,g0),
Raa=[|Ω+c|2(ξ01)2ϱg0,g0+|Ωc|2(ξ21)2ϱg+2,g+2(Zξ01ξ21ϱg+2,g0+c.c.)]/4,
Rbb=[|Ωc|2(ξ01)2ϱg0,g0+|Ω+c|2(ξ21)2ϱg2,g2(Zξ01ξ21ϱg0,g2+c.c.)]/4,
Rab*=[|Ωc|2ξ01ξ21ϱg+2,g0|Ω+c|2ξ01ξ21ϱg0,g2+Z(ξ21)2ϱg+2,g2+Z*(ξ01)2ϱg0,g0]/4,
χ2χ·[AB·(v1+v3)+Raa*+Rbb*]+(AB)2[v1v3|v2|2]+AB·[v3Raa*+v1Rbb*+v2Rab*+v2*Ra*b]+Raa*Rbb*Ra*bRab*=0,
χ2χ·[Raa*+Rbb*]+Raa*Rbb*Ra*bRab*=0.
χ±=Raa*+Rbb*2±12(Raa*Rbb*)2+4Rab*Ra*b.

Metrics