Abstract

We propose a decoy-state method to increase key generation rate of frequency-coded (FC) implementation of B92 quantum key distribution (QKD) protocol. Direct application of decoy-state method to FC-QKD results in a security loophole. We overcome this loophole by optimizing the ratio of decoy-to-signal carrier photon number to unity. Simulation results for a single-channel FC-QKD show 16 kbits of raw key length at a transmission distance of 70 km. We then extend the decoy-state method to subcarrier-multiplexed FC-QKD. We show that key generation rate and secure link length improves by a factor of 5 and 40 km, respectively, compared to single-carrier with decoy-state method.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Acín, N. Gisin, and V. Scarani, “Coherent-pulse implementations of quantum cryptography protocols resistant to photon-number-splitting attacks,” Phys. Rev. A 69, 012309 (2004).
    [CrossRef]
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145 (2002).
    [CrossRef]
  3. B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863–1869 (1995).
    [CrossRef]
  4. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
    [CrossRef]
  5. W. Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
    [CrossRef]
  6. Y. Zhao, B. Qi, X. Ma, H. K. Lo, and L. Qian, “Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber,” in Proceedings of IEEE Symposium on Information Theory (IEEE, 2006), pp. 2094–2098.
  7. C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
    [CrossRef]
  8. D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
    [CrossRef]
  9. J. M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, H. Porte, and W. T. Rhodes, “Phase-modulation transmission system for quantum cryptography,” Opt. Lett. 24, 104–106 (1999).
    [CrossRef]
  10. L. Duraffourg, J.-M. Merolla, J.-P. Goedgebuer, Y. Mazurenko, and W. T. Rhodes, “Compact transmission system using single-sideband modulation of light for quantum cryptography,” Opt. Lett. 26, 1427–1429 (2001).
    [CrossRef]
  11. O. L. Guerreau, J. M. Merolla, A. Soujaeff, F. Patois, J.-P. Goedgebuer, and F.-J. Malassenet, “Long distance QKD transmission using single sideband detection scheme with WDM synchronization,” IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
    [CrossRef]
  12. M. Bloch, S. W. McLaughlin, J. Merolla, and F. Patois, “Frequency-coded quantum key distribution,” Opt. Lett. 32, 301–303 (2007).
    [CrossRef]
  13. J. Cussey, F. Patois, N. Pelloquin, and J. M. Merolla, “High frequency spectral domain qkd architecture with dispersion management for wdm network,” in Proceedings of Optical Fiber Communication Conference (IEEE, 2008), paper no. OWJ3.
  14. P. Kumar and A. Prabhakar, “Evolution of quantum states of light in an electro-optic phase modulator,” IEEE J. Quantum Electron. 45, 149–156 (2009).
    [CrossRef]
  15. S. Bhattacharya and P. Kumar, “N-channel decoy-state method for scm fc-qkd,” in Proceedings of Frontiers in Optics (Optical Society of America, 2012).
  16. S. Bhattacharya and P. Kumar, “Decoy-pulse protocol for frequency-coded quantum key distribution,” in Proceedings of National Conference on Communications (NCC) 2012 (IEEE, 2012), pp. 1–4.
  17. O. L. Guerreau, F. J. Malassenet, S. W. McLaughlin, and J. M. Merolla, “Quantum key distribution without a single photon source using a strong reference,” IEEE Photon. Technol. Lett. 17, 1755–1757 (2005).
    [CrossRef]
  18. P. Kumar, “Optical modulation schemes for frequency-coded quantum key distribution,” in Proceedings of National Conference on Communications (NCC) 2010 (IEEE, 2010), pp. 1–5.
  19. L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
    [CrossRef]
  20. X. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
    [CrossRef]
  21. P. Kumar and A. Prabhakar, “Bit error rates in a frequency coded quantum key distribution system,” Opt. Commun. 282, 3827–3833 (2009).
    [CrossRef]
  22. R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, “Subcarrier multiplexing for high-speed optical transmission,” J. Lightwave Technol. 20, 417–427(2002).
    [CrossRef]
  23. J. Capmany, A. O-Blanch, J. Mora, A. R-Alba, W. Amaya, and A. Martnez, “Analysis of subcarrier multiplexed quantum key distribution systems: signal, intermodulation, and quantum bit error rate,” IEEE J. Sel. Top. Quantum Electron. 15, 1607–1621 (2009).
    [CrossRef]
  24. C. Huan-Hang, Y. Zong-Wen, and W. Xiang-Bin, “Decoy-state method of quantum key distribution with both source errors and statistics fluctuations,” Phys. Rev. A 86, 042307 (2012).
    [CrossRef]

2012 (1)

C. Huan-Hang, Y. Zong-Wen, and W. Xiang-Bin, “Decoy-state method of quantum key distribution with both source errors and statistics fluctuations,” Phys. Rev. A 86, 042307 (2012).
[CrossRef]

2010 (1)

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[CrossRef]

2009 (3)

P. Kumar and A. Prabhakar, “Bit error rates in a frequency coded quantum key distribution system,” Opt. Commun. 282, 3827–3833 (2009).
[CrossRef]

J. Capmany, A. O-Blanch, J. Mora, A. R-Alba, W. Amaya, and A. Martnez, “Analysis of subcarrier multiplexed quantum key distribution systems: signal, intermodulation, and quantum bit error rate,” IEEE J. Sel. Top. Quantum Electron. 15, 1607–1621 (2009).
[CrossRef]

P. Kumar and A. Prabhakar, “Evolution of quantum states of light in an electro-optic phase modulator,” IEEE J. Quantum Electron. 45, 149–156 (2009).
[CrossRef]

2007 (3)

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef]

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
[CrossRef]

M. Bloch, S. W. McLaughlin, J. Merolla, and F. Patois, “Frequency-coded quantum key distribution,” Opt. Lett. 32, 301–303 (2007).
[CrossRef]

2005 (2)

O. L. Guerreau, F. J. Malassenet, S. W. McLaughlin, and J. M. Merolla, “Quantum key distribution without a single photon source using a strong reference,” IEEE Photon. Technol. Lett. 17, 1755–1757 (2005).
[CrossRef]

X. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[CrossRef]

2004 (1)

A. Acín, N. Gisin, and V. Scarani, “Coherent-pulse implementations of quantum cryptography protocols resistant to photon-number-splitting attacks,” Phys. Rev. A 69, 012309 (2004).
[CrossRef]

2003 (2)

W. Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
[CrossRef]

O. L. Guerreau, J. M. Merolla, A. Soujaeff, F. Patois, J.-P. Goedgebuer, and F.-J. Malassenet, “Long distance QKD transmission using single sideband detection scheme with WDM synchronization,” IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
[CrossRef]

2002 (2)

2001 (1)

2000 (1)

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[CrossRef]

1999 (1)

1995 (1)

B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863–1869 (1995).
[CrossRef]

Acín, A.

A. Acín, N. Gisin, and V. Scarani, “Coherent-pulse implementations of quantum cryptography protocols resistant to photon-number-splitting attacks,” Phys. Rev. A 69, 012309 (2004).
[CrossRef]

Allen, C. T.

Amaya, W.

J. Capmany, A. O-Blanch, J. Mora, A. R-Alba, W. Amaya, and A. Martnez, “Analysis of subcarrier multiplexed quantum key distribution systems: signal, intermodulation, and quantum bit error rate,” IEEE J. Sel. Top. Quantum Electron. 15, 1607–1621 (2009).
[CrossRef]

Bhattacharya, S.

S. Bhattacharya and P. Kumar, “Decoy-pulse protocol for frequency-coded quantum key distribution,” in Proceedings of National Conference on Communications (NCC) 2012 (IEEE, 2012), pp. 1–4.

S. Bhattacharya and P. Kumar, “N-channel decoy-state method for scm fc-qkd,” in Proceedings of Frontiers in Optics (Optical Society of America, 2012).

Bloch, M.

Brassard, G.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[CrossRef]

Capmany, J.

J. Capmany, A. O-Blanch, J. Mora, A. R-Alba, W. Amaya, and A. Martnez, “Analysis of subcarrier multiplexed quantum key distribution systems: signal, intermodulation, and quantum bit error rate,” IEEE J. Sel. Top. Quantum Electron. 15, 1607–1621 (2009).
[CrossRef]

Cussey, J.

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[CrossRef]

J. Cussey, F. Patois, N. Pelloquin, and J. M. Merolla, “High frequency spectral domain qkd architecture with dispersion management for wdm network,” in Proceedings of Optical Fiber Communication Conference (IEEE, 2008), paper no. OWJ3.

Demarest, K. R.

Duraffourg, L.

Emplit, P.

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[CrossRef]

Gao, W. B.

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef]

Gisin, N.

A. Acín, N. Gisin, and V. Scarani, “Coherent-pulse implementations of quantum cryptography protocols resistant to photon-number-splitting attacks,” Phys. Rev. A 69, 012309 (2004).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863–1869 (1995).
[CrossRef]

Goedgebuer, J. P.

Goedgebuer, J.-P.

O. L. Guerreau, J. M. Merolla, A. Soujaeff, F. Patois, J.-P. Goedgebuer, and F.-J. Malassenet, “Long distance QKD transmission using single sideband detection scheme with WDM synchronization,” IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
[CrossRef]

L. Duraffourg, J.-M. Merolla, J.-P. Goedgebuer, Y. Mazurenko, and W. T. Rhodes, “Compact transmission system using single-sideband modulation of light for quantum cryptography,” Opt. Lett. 26, 1427–1429 (2001).
[CrossRef]

Guerreau, O. L.

O. L. Guerreau, F. J. Malassenet, S. W. McLaughlin, and J. M. Merolla, “Quantum key distribution without a single photon source using a strong reference,” IEEE Photon. Technol. Lett. 17, 1755–1757 (2005).
[CrossRef]

O. L. Guerreau, J. M. Merolla, A. Soujaeff, F. Patois, J.-P. Goedgebuer, and F.-J. Malassenet, “Long distance QKD transmission using single sideband detection scheme with WDM synchronization,” IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
[CrossRef]

Harrington, J. W.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
[CrossRef]

Hiskett, P. A.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
[CrossRef]

Huang, R.

Huan-Hang, C.

C. Huan-Hang, Y. Zong-Wen, and W. Xiang-Bin, “Decoy-state method of quantum key distribution with both source errors and statistics fluctuations,” Phys. Rev. A 86, 042307 (2012).
[CrossRef]

Hughes, R. J.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
[CrossRef]

Hui, R.

Huttner, B.

B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863–1869 (1995).
[CrossRef]

Huy, K. P.

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[CrossRef]

Hwang, W. Y.

W. Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
[CrossRef]

Imoto, N.

B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863–1869 (1995).
[CrossRef]

Kumar, P.

P. Kumar and A. Prabhakar, “Bit error rates in a frequency coded quantum key distribution system,” Opt. Commun. 282, 3827–3833 (2009).
[CrossRef]

P. Kumar and A. Prabhakar, “Evolution of quantum states of light in an electro-optic phase modulator,” IEEE J. Quantum Electron. 45, 149–156 (2009).
[CrossRef]

S. Bhattacharya and P. Kumar, “Decoy-pulse protocol for frequency-coded quantum key distribution,” in Proceedings of National Conference on Communications (NCC) 2012 (IEEE, 2012), pp. 1–4.

S. Bhattacharya and P. Kumar, “N-channel decoy-state method for scm fc-qkd,” in Proceedings of Frontiers in Optics (Optical Society of America, 2012).

P. Kumar, “Optical modulation schemes for frequency-coded quantum key distribution,” in Proceedings of National Conference on Communications (NCC) 2010 (IEEE, 2010), pp. 1–5.

Lita, A. E.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
[CrossRef]

Lo, H. K.

X. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[CrossRef]

Y. Zhao, B. Qi, X. Ma, H. K. Lo, and L. Qian, “Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber,” in Proceedings of IEEE Symposium on Information Theory (IEEE, 2006), pp. 2094–2098.

Lütkenhaus, N.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[CrossRef]

Ma, H. X.

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef]

Ma, X.

X. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[CrossRef]

Y. Zhao, B. Qi, X. Ma, H. K. Lo, and L. Qian, “Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber,” in Proceedings of IEEE Symposium on Information Theory (IEEE, 2006), pp. 2094–2098.

Malassenet, F. J.

O. L. Guerreau, F. J. Malassenet, S. W. McLaughlin, and J. M. Merolla, “Quantum key distribution without a single photon source using a strong reference,” IEEE Photon. Technol. Lett. 17, 1755–1757 (2005).
[CrossRef]

Malassenet, F.-J.

O. L. Guerreau, J. M. Merolla, A. Soujaeff, F. Patois, J.-P. Goedgebuer, and F.-J. Malassenet, “Long distance QKD transmission using single sideband detection scheme with WDM synchronization,” IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
[CrossRef]

Martnez, A.

J. Capmany, A. O-Blanch, J. Mora, A. R-Alba, W. Amaya, and A. Martnez, “Analysis of subcarrier multiplexed quantum key distribution systems: signal, intermodulation, and quantum bit error rate,” IEEE J. Sel. Top. Quantum Electron. 15, 1607–1621 (2009).
[CrossRef]

Massar, S.

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[CrossRef]

Mazurenko, Y.

McLaughlin, S. W.

M. Bloch, S. W. McLaughlin, J. Merolla, and F. Patois, “Frequency-coded quantum key distribution,” Opt. Lett. 32, 301–303 (2007).
[CrossRef]

O. L. Guerreau, F. J. Malassenet, S. W. McLaughlin, and J. M. Merolla, “Quantum key distribution without a single photon source using a strong reference,” IEEE Photon. Technol. Lett. 17, 1755–1757 (2005).
[CrossRef]

Merolla, J.

Merolla, J. M.

O. L. Guerreau, F. J. Malassenet, S. W. McLaughlin, and J. M. Merolla, “Quantum key distribution without a single photon source using a strong reference,” IEEE Photon. Technol. Lett. 17, 1755–1757 (2005).
[CrossRef]

O. L. Guerreau, J. M. Merolla, A. Soujaeff, F. Patois, J.-P. Goedgebuer, and F.-J. Malassenet, “Long distance QKD transmission using single sideband detection scheme with WDM synchronization,” IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
[CrossRef]

J. Cussey, F. Patois, N. Pelloquin, and J. M. Merolla, “High frequency spectral domain qkd architecture with dispersion management for wdm network,” in Proceedings of Optical Fiber Communication Conference (IEEE, 2008), paper no. OWJ3.

Merolla, J.-M.

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[CrossRef]

L. Duraffourg, J.-M. Merolla, J.-P. Goedgebuer, Y. Mazurenko, and W. T. Rhodes, “Compact transmission system using single-sideband modulation of light for quantum cryptography,” Opt. Lett. 26, 1427–1429 (2001).
[CrossRef]

Mérolla, J. M.

Mor, T.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[CrossRef]

B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863–1869 (1995).
[CrossRef]

Mora, J.

J. Capmany, A. O-Blanch, J. Mora, A. R-Alba, W. Amaya, and A. Martnez, “Analysis of subcarrier multiplexed quantum key distribution systems: signal, intermodulation, and quantum bit error rate,” IEEE J. Sel. Top. Quantum Electron. 15, 1607–1621 (2009).
[CrossRef]

Nam, S. W.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
[CrossRef]

Nguyen, A. T.

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[CrossRef]

Nordholt, J. E.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
[CrossRef]

O-Blanch, A.

J. Capmany, A. O-Blanch, J. Mora, A. R-Alba, W. Amaya, and A. Martnez, “Analysis of subcarrier multiplexed quantum key distribution systems: signal, intermodulation, and quantum bit error rate,” IEEE J. Sel. Top. Quantum Electron. 15, 1607–1621 (2009).
[CrossRef]

Olislager, L.

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[CrossRef]

Pan, J. W.

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef]

Patois, F.

M. Bloch, S. W. McLaughlin, J. Merolla, and F. Patois, “Frequency-coded quantum key distribution,” Opt. Lett. 32, 301–303 (2007).
[CrossRef]

O. L. Guerreau, J. M. Merolla, A. Soujaeff, F. Patois, J.-P. Goedgebuer, and F.-J. Malassenet, “Long distance QKD transmission using single sideband detection scheme with WDM synchronization,” IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
[CrossRef]

J. Cussey, F. Patois, N. Pelloquin, and J. M. Merolla, “High frequency spectral domain qkd architecture with dispersion management for wdm network,” in Proceedings of Optical Fiber Communication Conference (IEEE, 2008), paper no. OWJ3.

Pelloquin, N.

J. Cussey, F. Patois, N. Pelloquin, and J. M. Merolla, “High frequency spectral domain qkd architecture with dispersion management for wdm network,” in Proceedings of Optical Fiber Communication Conference (IEEE, 2008), paper no. OWJ3.

Peng, C. Z.

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef]

Peterson, C. G.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
[CrossRef]

Porte, H.

Prabhakar, A.

P. Kumar and A. Prabhakar, “Evolution of quantum states of light in an electro-optic phase modulator,” IEEE J. Quantum Electron. 45, 149–156 (2009).
[CrossRef]

P. Kumar and A. Prabhakar, “Bit error rates in a frequency coded quantum key distribution system,” Opt. Commun. 282, 3827–3833 (2009).
[CrossRef]

Qi, B.

X. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[CrossRef]

Y. Zhao, B. Qi, X. Ma, H. K. Lo, and L. Qian, “Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber,” in Proceedings of IEEE Symposium on Information Theory (IEEE, 2006), pp. 2094–2098.

Qian, L.

Y. Zhao, B. Qi, X. Ma, H. K. Lo, and L. Qian, “Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber,” in Proceedings of IEEE Symposium on Information Theory (IEEE, 2006), pp. 2094–2098.

R-Alba, A.

J. Capmany, A. O-Blanch, J. Mora, A. R-Alba, W. Amaya, and A. Martnez, “Analysis of subcarrier multiplexed quantum key distribution systems: signal, intermodulation, and quantum bit error rate,” IEEE J. Sel. Top. Quantum Electron. 15, 1607–1621 (2009).
[CrossRef]

Rhodes, W. T.

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

Rice, P. R.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
[CrossRef]

Richards, D.

Rosenberg, D.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
[CrossRef]

Sanders, B. C.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[CrossRef]

Scarani, V.

A. Acín, N. Gisin, and V. Scarani, “Coherent-pulse implementations of quantum cryptography protocols resistant to photon-number-splitting attacks,” Phys. Rev. A 69, 012309 (2004).
[CrossRef]

Soujaeff, A.

O. L. Guerreau, J. M. Merolla, A. Soujaeff, F. Patois, J.-P. Goedgebuer, and F.-J. Malassenet, “Long distance QKD transmission using single sideband detection scheme with WDM synchronization,” IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

Wang, X. B.

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef]

Xiang-Bin, W.

C. Huan-Hang, Y. Zong-Wen, and W. Xiang-Bin, “Decoy-state method of quantum key distribution with both source errors and statistics fluctuations,” Phys. Rev. A 86, 042307 (2012).
[CrossRef]

Yang, D.

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef]

Yang, T.

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef]

Yin, H.

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

Zeng, H. P.

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef]

Zhang, J.

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef]

Zhao, Y.

X. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[CrossRef]

Y. Zhao, B. Qi, X. Ma, H. K. Lo, and L. Qian, “Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber,” in Proceedings of IEEE Symposium on Information Theory (IEEE, 2006), pp. 2094–2098.

Zhu, B.

Zong-Wen, Y.

C. Huan-Hang, Y. Zong-Wen, and W. Xiang-Bin, “Decoy-state method of quantum key distribution with both source errors and statistics fluctuations,” Phys. Rev. A 86, 042307 (2012).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. Kumar and A. Prabhakar, “Evolution of quantum states of light in an electro-optic phase modulator,” IEEE J. Quantum Electron. 45, 149–156 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

O. L. Guerreau, J. M. Merolla, A. Soujaeff, F. Patois, J.-P. Goedgebuer, and F.-J. Malassenet, “Long distance QKD transmission using single sideband detection scheme with WDM synchronization,” IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
[CrossRef]

J. Capmany, A. O-Blanch, J. Mora, A. R-Alba, W. Amaya, and A. Martnez, “Analysis of subcarrier multiplexed quantum key distribution systems: signal, intermodulation, and quantum bit error rate,” IEEE J. Sel. Top. Quantum Electron. 15, 1607–1621 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

O. L. Guerreau, F. J. Malassenet, S. W. McLaughlin, and J. M. Merolla, “Quantum key distribution without a single photon source using a strong reference,” IEEE Photon. Technol. Lett. 17, 1755–1757 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (1)

P. Kumar and A. Prabhakar, “Bit error rates in a frequency coded quantum key distribution system,” Opt. Commun. 282, 3827–3833 (2009).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (5)

C. Huan-Hang, Y. Zong-Wen, and W. Xiang-Bin, “Decoy-state method of quantum key distribution with both source errors and statistics fluctuations,” Phys. Rev. A 86, 042307 (2012).
[CrossRef]

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[CrossRef]

X. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[CrossRef]

B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863–1869 (1995).
[CrossRef]

A. Acín, N. Gisin, and V. Scarani, “Coherent-pulse implementations of quantum cryptography protocols resistant to photon-number-splitting attacks,” Phys. Rev. A 69, 012309 (2004).
[CrossRef]

Phys. Rev. Lett. (4)

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef]

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
[CrossRef]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[CrossRef]

W. Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
[CrossRef]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

Other (5)

J. Cussey, F. Patois, N. Pelloquin, and J. M. Merolla, “High frequency spectral domain qkd architecture with dispersion management for wdm network,” in Proceedings of Optical Fiber Communication Conference (IEEE, 2008), paper no. OWJ3.

Y. Zhao, B. Qi, X. Ma, H. K. Lo, and L. Qian, “Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber,” in Proceedings of IEEE Symposium on Information Theory (IEEE, 2006), pp. 2094–2098.

P. Kumar, “Optical modulation schemes for frequency-coded quantum key distribution,” in Proceedings of National Conference on Communications (NCC) 2010 (IEEE, 2010), pp. 1–5.

S. Bhattacharya and P. Kumar, “N-channel decoy-state method for scm fc-qkd,” in Proceedings of Frontiers in Optics (Optical Society of America, 2012).

S. Bhattacharya and P. Kumar, “Decoy-pulse protocol for frequency-coded quantum key distribution,” in Proceedings of National Conference on Communications (NCC) 2012 (IEEE, 2012), pp. 1–4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Single-channel FC setup for B92 QKD [9,21]. PMA,B, Alice and Bob’s phase modulators; Sync, Synchronization channel; MUX, Multiplexer; DEMUX, Demultiplexer.

Fig. 2.
Fig. 2.

CR and QBER as a function of μL for a 70 km link [16].

Fig. 3.
Fig. 3.

Key generation rate as a function of link length with and without decoy states [16].

Fig. 4.
Fig. 4.

Setup of a 3-channel SCM FC scheme. PMA,B, Alice and Bob’s phase modulators; sync, synchronization channel; APD, avalanche photodetector.

Fig. 5.
Fig. 5.

Total QBER of decoy-state SCM FC-QKD as a function of μL for a 70 km link.

Fig. 6.
Fig. 6.

Key generation rate as a function of link length for various FC-QKD schemes.

Tables (3)

Tables Icon

Table 1. System Parameters for Calculating QBER

Tables Icon

Table 2. Parameters to Estimate Key Ratea

Tables Icon

Table 3. Optimum Values of Secure Key Rate and Key Length for a 70 km Link

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

|μL;ω0|μLJ1(m)ejϕ;ω0Ω|μLJ0(m);ω0|μLJ1(m)ejϕ;ω0+Ω,
CR=J02(md)J02(ms),
EA(t)=E0ejω0t[1+jmxii=1Ncos(Ωit+ϕi)],
EB(t)=E0ejω0t[1+jmxii=1NejΩit(ejϕi+ejϕi)+ejΩit(ejϕi+ejϕi)].
QBERtotal=i=13(Pimdi+Pdark2Ptotali),
Ptotali=Psigi+Pimdi+PdarkiPsigi·PimdiPsigi·PdarkiPimdi·Pdarki+Psigi·Pimdi·Pdarki.
CRi=J02(mdi)J02(msi).

Metrics