Abstract

We propose an approach to enhance and direct the spontaneous emission from isolated emitters embedded inside hyperbolic metamaterials (HMMs) into single-photon beams. The approach rests on collective plasmonic Bloch modes of HMMs, which propagate in highly directional beams called quantum resonance cones. We propose a pumping scheme using the transparency window of the HMM that occurs near the topological transition. Finally, we address the challenge of outcoupling these broadband resonance cones into vacuum using a dielectric bullseye grating. We give a detailed analysis of quenching and design the metamaterial to have a huge Purcell factor in a broad bandwidth in spite of the losses in the metal. Our work should help motivate experiments in the development of single-photon sources for broadband emitters such as nitrogen vacancy centers in diamond.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2010).
  2. E. Altewischer, M. P. Van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418, 304–306 (2002).
    [CrossRef]
  3. A. Huck, S. Smolka, P. Lodahl, A. S. Sørensen, A. Boltasseva, J. Janousek, and U. L. Andersen, “Demonstration of quadrature-squeezed surface plasmons in a gold waveguide,” Phys. Rev. Lett. 102, 246802 (2009).
    [CrossRef]
  4. G. Di Martino, Y. Sonnefraud, S. Kena-Cohen, M. Tame, A. K. Azdemir, M. S. Kim, and S. A. Maier, “Quantum statistics of surface plasmon polaritons in metallic stripe waveguides,” Nano Lett. 12, 2504–2508 (2012).
    [CrossRef]
  5. Z. Jacob and V. M. Shalaev, “Plasmonics goes quantum,” Science 334, 463–464 (2011).
    [CrossRef]
  6. Z. Jacob, “Quantum plasmonics,” MRS Bull. 37, 761–767 (2012).
    [CrossRef]
  7. B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog, Phys. 68, 1129 (2005).
    [CrossRef]
  8. P. Grangier, B. Sanders, and J. Vuckovic, eds, “Special issue on Focus on Single Photons on Demand,” New J. Phys. 6, E04 (2004).
    [CrossRef]
  9. R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 26802 (2010).
    [CrossRef]
  10. I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Grard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17, 2095–2110 (2009).
    [CrossRef]
  11. K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gtzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
    [CrossRef]
  12. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
    [CrossRef]
  13. I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5, 397–405 (2011).
    [CrossRef]
  14. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5, 195–199 (2010).
    [CrossRef]
  15. J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond-silver aperture,” Nat. Photonics 5, 738–743 (2011).
    [CrossRef]
  16. A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 96801 (2011).
    [CrossRef]
  17. K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105, 227403 (2010).
    [CrossRef]
  18. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
    [CrossRef]
  19. G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
    [CrossRef]
  20. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
    [CrossRef]
  21. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
    [CrossRef]
  22. J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
    [CrossRef]
  23. D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244 (2004).
    [CrossRef]
  24. R. K. Fisher and R. W. Gould, “Resonance cones in the field pattern of a short antenna in an anisotropic plasma,” Phys. Rev. Lett. 22, 1093–1095 (1969).
    [CrossRef]
  25. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (IEEE, 1994).
  26. K. G. Balmain, A. A. E. Luttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” IEEE Antennas Wirel. Propag. Letters 1, 146–149 (2002).
    [CrossRef]
  27. Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100, 181105 (2012).
    [CrossRef]
  28. M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35, 1863–1865 (2010).
    [CrossRef]
  29. Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
    [CrossRef]
  30. I. Iorsh, A. Poddubny, A. Orlov, P. Belov, and Y. S. Kivshar, “Spontaneous emission enhancement in metal–dielectric metamaterials,” Phys. Lett. A 376, 185–187 (2012).
  31. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2006).
  32. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials.,” J. Opt. 14, 063001 (2012).
    [CrossRef]
  33. K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6, 459–462 (2012).
    [CrossRef]
  34. Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114, 7269–7273 (2010).
    [CrossRef]
  35. P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80, 195106 (2009).
    [CrossRef]
  36. A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Lett. 9, 4228–4233 (2009).
    [CrossRef]
  37. D. E. Chang, A. S. Srensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 53002 (2006).
    [CrossRef]
  38. Q. Quan, I. Bulu, and M. Lončar, “Broadband waveguide QED system on a chip,” Phys. Rev. A 80, 011810 (2009).
    [CrossRef]
  39. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  40. X. Ni, Z. Liu, and A. V. Kildishev, Nanohub PhotonicsDB (Optical Constants, 2010).
  41. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
    [CrossRef]
  42. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [CrossRef]
  43. N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
    [CrossRef]
  44. J. S. Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp,” Nat. Sci. Rep. 2, 829 (2012).
    [CrossRef]
  45. Q. Gan and F. J. Bartoli, “Surface dispersion engineering of planar plasmonic chirped grating for complete visible rainbow trapping,” Appl. Phys. Lett. 98, 251103 (2011).
    [CrossRef]

2012

G. Di Martino, Y. Sonnefraud, S. Kena-Cohen, M. Tame, A. K. Azdemir, M. S. Kim, and S. A. Maier, “Quantum statistics of surface plasmon polaritons in metallic stripe waveguides,” Nano Lett. 12, 2504–2508 (2012).
[CrossRef]

Z. Jacob, “Quantum plasmonics,” MRS Bull. 37, 761–767 (2012).
[CrossRef]

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100, 181105 (2012).
[CrossRef]

I. Iorsh, A. Poddubny, A. Orlov, P. Belov, and Y. S. Kivshar, “Spontaneous emission enhancement in metal–dielectric metamaterials,” Phys. Lett. A 376, 185–187 (2012).

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials.,” J. Opt. 14, 063001 (2012).
[CrossRef]

K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6, 459–462 (2012).
[CrossRef]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[CrossRef]

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[CrossRef]

J. S. Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp,” Nat. Sci. Rep. 2, 829 (2012).
[CrossRef]

2011

Q. Gan and F. J. Bartoli, “Surface dispersion engineering of planar plasmonic chirped grating for complete visible rainbow trapping,” Appl. Phys. Lett. 98, 251103 (2011).
[CrossRef]

Z. Jacob and V. M. Shalaev, “Plasmonics goes quantum,” Science 334, 463–464 (2011).
[CrossRef]

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gtzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[CrossRef]

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5, 397–405 (2011).
[CrossRef]

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond-silver aperture,” Nat. Photonics 5, 738–743 (2011).
[CrossRef]

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 96801 (2011).
[CrossRef]

2010

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105, 227403 (2010).
[CrossRef]

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5, 195–199 (2010).
[CrossRef]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef]

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 26802 (2010).
[CrossRef]

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114, 7269–7273 (2010).
[CrossRef]

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35, 1863–1865 (2010).
[CrossRef]

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
[CrossRef]

2009

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80, 195106 (2009).
[CrossRef]

A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Lett. 9, 4228–4233 (2009).
[CrossRef]

Q. Quan, I. Bulu, and M. Lončar, “Broadband waveguide QED system on a chip,” Phys. Rev. A 80, 011810 (2009).
[CrossRef]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Grard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17, 2095–2110 (2009).
[CrossRef]

A. Huck, S. Smolka, P. Lodahl, A. S. Sørensen, A. Boltasseva, J. Janousek, and U. L. Andersen, “Demonstration of quadrature-squeezed surface plasmons in a gold waveguide,” Phys. Rev. Lett. 102, 246802 (2009).
[CrossRef]

2007

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[CrossRef]

2006

D. E. Chang, A. S. Srensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 53002 (2006).
[CrossRef]

2005

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog, Phys. 68, 1129 (2005).
[CrossRef]

2004

P. Grangier, B. Sanders, and J. Vuckovic, eds, “Special issue on Focus on Single Photons on Demand,” New J. Phys. 6, E04 (2004).
[CrossRef]

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244 (2004).
[CrossRef]

2002

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

E. Altewischer, M. P. Van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418, 304–306 (2002).
[CrossRef]

K. G. Balmain, A. A. E. Luttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” IEEE Antennas Wirel. Propag. Letters 1, 146–149 (2002).
[CrossRef]

1984

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1969

R. K. Fisher and R. W. Gould, “Resonance cones in the field pattern of a short antenna in an anisotropic plasma,” Phys. Rev. Lett. 22, 1093–1095 (1969).
[CrossRef]

Aharonovich, I.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5, 397–405 (2011).
[CrossRef]

Akimov, A. V.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[CrossRef]

Altewischer, E.

E. Altewischer, M. P. Van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418, 304–306 (2002).
[CrossRef]

Andersen, U. L.

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 96801 (2011).
[CrossRef]

A. Huck, S. Smolka, P. Lodahl, A. S. Sørensen, A. Boltasseva, J. Janousek, and U. L. Andersen, “Demonstration of quadrature-squeezed surface plasmons in a gold waveguide,” Phys. Rev. Lett. 102, 246802 (2009).
[CrossRef]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Avrutsky, I.

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
[CrossRef]

Azdemir, A. K.

G. Di Martino, Y. Sonnefraud, S. Kena-Cohen, M. Tame, A. K. Azdemir, M. S. Kim, and S. A. Maier, “Quantum statistics of surface plasmon polaritons in metallic stripe waveguides,” Nano Lett. 12, 2504–2508 (2012).
[CrossRef]

Babinec, T. M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond-silver aperture,” Nat. Photonics 5, 738–743 (2011).
[CrossRef]

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5, 195–199 (2010).
[CrossRef]

Balmain, K. G.

K. G. Balmain, A. A. E. Luttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” IEEE Antennas Wirel. Propag. Letters 1, 146–149 (2002).
[CrossRef]

Barnakov, Y. A.

Bartoli, F. J.

Q. Gan and F. J. Bartoli, “Surface dispersion engineering of planar plasmonic chirped grating for complete visible rainbow trapping,” Appl. Phys. Lett. 98, 251103 (2011).
[CrossRef]

Belov, P.

I. Iorsh, A. Poddubny, A. Orlov, P. Belov, and Y. S. Kivshar, “Spontaneous emission enhancement in metal–dielectric metamaterials,” Phys. Lett. A 376, 185–187 (2012).

Boltasseva, A.

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
[CrossRef]

A. Huck, S. Smolka, P. Lodahl, A. S. Sørensen, A. Boltasseva, J. Janousek, and U. L. Andersen, “Demonstration of quadrature-squeezed surface plasmons in a gold waveguide,” Phys. Rev. Lett. 102, 246802 (2009).
[CrossRef]

Bonner, C. E.

Bouillard, J. S.

J. S. Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp,” Nat. Sci. Rep. 2, 829 (2012).
[CrossRef]

Brongersma, M. L.

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114, 7269–7273 (2010).
[CrossRef]

Bulu, I.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond-silver aperture,” Nat. Photonics 5, 738–743 (2011).
[CrossRef]

Q. Quan, I. Bulu, and M. Lončar, “Broadband waveguide QED system on a chip,” Phys. Rev. A 80, 011810 (2009).
[CrossRef]

Chang, D. E.

D. E. Chang, A. S. Srensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 53002 (2006).
[CrossRef]

Chen, X. W.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gtzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[CrossRef]

Choy, J. T.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond-silver aperture,” Nat. Photonics 5, 738–743 (2011).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2010).

Claudon, J.

Cortes, C. L.

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials.,” J. Opt. 14, 063001 (2012).
[CrossRef]

Cui, S.

K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6, 459–462 (2012).
[CrossRef]

de Leon, N. P.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[CrossRef]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Di Martino, G.

G. Di Martino, Y. Sonnefraud, S. Kena-Cohen, M. Tame, A. K. Azdemir, M. S. Kim, and S. A. Maier, “Quantum statistics of surface plasmon polaritons in metallic stripe waveguides,” Nano Lett. 12, 2504–2508 (2012).
[CrossRef]

Dickson, W.

J. S. Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp,” Nat. Sci. Rep. 2, 829 (2012).
[CrossRef]

Dignam, M. M.

P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80, 195106 (2009).
[CrossRef]

Dryden, D.

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Eghlidi, H.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gtzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[CrossRef]

Elser, J.

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
[CrossRef]

Englund, D.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef]

Englund, D. E.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[CrossRef]

Esteban, R.

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 26802 (2010).
[CrossRef]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Felsen, L. B.

L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (IEEE, 1994).

Fisher, R. K.

R. K. Fisher and R. W. Gould, “Resonance cones in the field pattern of a short antenna in an anisotropic plasma,” Phys. Rev. Lett. 22, 1093–1095 (1969).
[CrossRef]

Ford, G. W.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
[CrossRef]

Friedler, I.

Gan, Q.

Q. Gan and F. J. Bartoli, “Surface dispersion engineering of planar plasmonic chirped grating for complete visible rainbow trapping,” Appl. Phys. Lett. 98, 251103 (2011).
[CrossRef]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Gould, R. W.

R. K. Fisher and R. W. Gould, “Resonance cones in the field pattern of a short antenna in an anisotropic plasma,” Phys. Rev. Lett. 22, 1093–1095 (1969).
[CrossRef]

Grangier, P.

P. Grangier, B. Sanders, and J. Vuckovic, eds, “Special issue on Focus on Single Photons on Demand,” New J. Phys. 6, E04 (2004).
[CrossRef]

Grard, J. M.

Greentree, A. D.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5, 397–405 (2011).
[CrossRef]

Greffet, J. J.

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 26802 (2010).
[CrossRef]

Gtzinger, S.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gtzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[CrossRef]

Hatami, F.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef]

Hausmann, B. J. M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond-silver aperture,” Nat. Photonics 5, 738–743 (2011).
[CrossRef]

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5, 195–199 (2010).
[CrossRef]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2006).

Hemmer, P. R.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5, 195–199 (2010).
[CrossRef]

D. E. Chang, A. S. Srensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 53002 (2006).
[CrossRef]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Hu, E. L.

K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6, 459–462 (2012).
[CrossRef]

Huck, A.

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 96801 (2011).
[CrossRef]

A. Huck, S. Smolka, P. Lodahl, A. S. Sørensen, A. Boltasseva, J. Janousek, and U. L. Andersen, “Demonstration of quadrature-squeezed surface plasmons in a gold waveguide,” Phys. Rev. Lett. 102, 246802 (2009).
[CrossRef]

Hughes, S.

P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80, 195106 (2009).
[CrossRef]

Hugonin, J. P.

Iorsh, I.

I. Iorsh, A. Poddubny, A. Orlov, P. Belov, and Y. S. Kivshar, “Spontaneous emission enhancement in metal–dielectric metamaterials,” Phys. Lett. A 376, 185–187 (2012).

Jacob, Z.

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials.,” J. Opt. 14, 063001 (2012).
[CrossRef]

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100, 181105 (2012).
[CrossRef]

Z. Jacob, “Quantum plasmonics,” MRS Bull. 37, 761–767 (2012).
[CrossRef]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[CrossRef]

Z. Jacob and V. M. Shalaev, “Plasmonics goes quantum,” Science 334, 463–464 (2011).
[CrossRef]

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35, 1863–1865 (2010).
[CrossRef]

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
[CrossRef]

Janousek, J.

A. Huck, S. Smolka, P. Lodahl, A. S. Sørensen, A. Boltasseva, J. Janousek, and U. L. Andersen, “Demonstration of quadrature-squeezed surface plasmons in a gold waveguide,” Phys. Rev. Lett. 102, 246802 (2009).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jun, Y. C.

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114, 7269–7273 (2010).
[CrossRef]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Kena-Cohen, S.

G. Di Martino, Y. Sonnefraud, S. Kena-Cohen, M. Tame, A. K. Azdemir, M. S. Kim, and S. A. Maier, “Quantum statistics of surface plasmon polaritons in metallic stripe waveguides,” Nano Lett. 12, 2504–2508 (2012).
[CrossRef]

Khan, M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond-silver aperture,” Nat. Photonics 5, 738–743 (2011).
[CrossRef]

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5, 195–199 (2010).
[CrossRef]

Khurgin, J. B.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

Kildishev, A. V.

X. Ni, Z. Liu, and A. V. Kildishev, Nanohub PhotonicsDB (Optical Constants, 2010).

Kim, J. Y.

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
[CrossRef]

Kim, M. S.

G. Di Martino, Y. Sonnefraud, S. Kena-Cohen, M. Tame, A. K. Azdemir, M. S. Kim, and S. A. Maier, “Quantum statistics of surface plasmon polaritons in metallic stripe waveguides,” Nano Lett. 12, 2504–2508 (2012).
[CrossRef]

Kivshar, Y. S.

I. Iorsh, A. Poddubny, A. Orlov, P. Belov, and Y. S. Kivshar, “Spontaneous emission enhancement in metal–dielectric metamaterials,” Phys. Lett. A 376, 185–187 (2012).

Koenderink, A. F.

A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Lett. 9, 4228–4233 (2009).
[CrossRef]

Kolinko, P.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244 (2004).
[CrossRef]

Kremer, P. C.

K. G. Balmain, A. A. E. Luttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” IEEE Antennas Wirel. Propag. Letters 1, 146–149 (2002).
[CrossRef]

Kretzschmar, I.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[CrossRef]

Krishnamoorthy, H. N. S.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[CrossRef]

Kukura, P.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gtzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[CrossRef]

Kumar, S.

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 96801 (2011).
[CrossRef]

Lalanne, P.

Lee, K. G.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gtzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[CrossRef]

Lettow, R.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gtzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[CrossRef]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Li, H.

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Liu, T. L.

K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6, 459–462 (2012).
[CrossRef]

Liu, Z.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[CrossRef]

X. Ni, Z. Liu, and A. V. Kildishev, Nanohub PhotonicsDB (Optical Constants, 2010).

Lodahl, P.

A. Huck, S. Smolka, P. Lodahl, A. S. Sørensen, A. Boltasseva, J. Janousek, and U. L. Andersen, “Demonstration of quadrature-squeezed surface plasmons in a gold waveguide,” Phys. Rev. Lett. 102, 246802 (2009).
[CrossRef]

Loncar, M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond-silver aperture,” Nat. Photonics 5, 738–743 (2011).
[CrossRef]

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5, 195–199 (2010).
[CrossRef]

Q. Quan, I. Bulu, and M. Lončar, “Broadband waveguide QED system on a chip,” Phys. Rev. A 80, 011810 (2009).
[CrossRef]

Lounis, B.

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog, Phys. 68, 1129 (2005).
[CrossRef]

Lukin, M. D.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[CrossRef]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef]

D. E. Chang, A. S. Srensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 53002 (2006).
[CrossRef]

Luttgen, A. A. E.

K. G. Balmain, A. A. E. Luttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” IEEE Antennas Wirel. Propag. Letters 1, 146–149 (2002).
[CrossRef]

Maier, S. A.

G. Di Martino, Y. Sonnefraud, S. Kena-Cohen, M. Tame, A. K. Azdemir, M. S. Kim, and S. A. Maier, “Quantum statistics of surface plasmon polaritons in metallic stripe waveguides,” Nano Lett. 12, 2504–2508 (2012).
[CrossRef]

Maletinsky, P.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond-silver aperture,” Nat. Photonics 5, 738–743 (2011).
[CrossRef]

Marcuvitz, N.

L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (IEEE, 1994).

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Mayy, M.

Maze, J. R.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5, 195–199 (2010).
[CrossRef]

Menon, V. M.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[CrossRef]

Mock, J. J.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244 (2004).
[CrossRef]

Molesky, S.

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials.,” J. Opt. 14, 063001 (2012).
[CrossRef]

Naik, G. V.

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
[CrossRef]

Narimanov, E.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[CrossRef]

Narimanov, E. E.

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100, 181105 (2012).
[CrossRef]

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35, 1863–1865 (2010).
[CrossRef]

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
[CrossRef]

Nataraj, G.

Newman, W.

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials.,” J. Opt. 14, 063001 (2012).
[CrossRef]

Ni, X.

X. Ni, Z. Liu, and A. V. Kildishev, Nanohub PhotonicsDB (Optical Constants, 2010).

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2010).

Noginov, M. A.

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2006).

Orlov, A.

I. Iorsh, A. Poddubny, A. Orlov, P. Belov, and Y. S. Kivshar, “Spontaneous emission enhancement in metal–dielectric metamaterials,” Phys. Lett. A 376, 185–187 (2012).

Orrit, M.

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog, Phys. 68, 1129 (2005).
[CrossRef]

Ou, J. Y.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105, 227403 (2010).
[CrossRef]

Pala, R.

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114, 7269–7273 (2010).
[CrossRef]

Park, H.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[CrossRef]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Patterson, M.

P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80, 195106 (2009).
[CrossRef]

Plum, E.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105, 227403 (2010).
[CrossRef]

Poddubny, A.

I. Iorsh, A. Poddubny, A. Orlov, P. Belov, and Y. S. Kivshar, “Spontaneous emission enhancement in metal–dielectric metamaterials,” Phys. Lett. A 376, 185–187 (2012).

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
[CrossRef]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Prawer, S.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5, 397–405 (2011).
[CrossRef]

Quan, Q.

Q. Quan, I. Bulu, and M. Lončar, “Broadband waveguide QED system on a chip,” Phys. Rev. A 80, 011810 (2009).
[CrossRef]

Renn, A.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gtzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[CrossRef]

Reza, A.

P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80, 195106 (2009).
[CrossRef]

Rivoire, K.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef]

Russell, K. J.

K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6, 459–462 (2012).
[CrossRef]

Rye, P.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244 (2004).
[CrossRef]

Salakhutdinov, I.

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
[CrossRef]

Sanders, B.

P. Grangier, B. Sanders, and J. Vuckovic, eds, “Special issue on Focus on Single Photons on Demand,” New J. Phys. 6, E04 (2004).
[CrossRef]

Sandoghdar, V.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gtzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[CrossRef]

Sauvan, C.

Schurig, D.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244 (2004).
[CrossRef]

Shakoor, A.

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 96801 (2011).
[CrossRef]

Shalaev, V. M.

Z. Jacob and V. M. Shalaev, “Plasmonics goes quantum,” Science 334, 463–464 (2011).
[CrossRef]

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
[CrossRef]

Shields, B.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef]

Shields, B. J.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[CrossRef]

Smith, D. R.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244 (2004).
[CrossRef]

Smolka, S.

A. Huck, S. Smolka, P. Lodahl, A. S. Sørensen, A. Boltasseva, J. Janousek, and U. L. Andersen, “Demonstration of quadrature-squeezed surface plasmons in a gold waveguide,” Phys. Rev. Lett. 102, 246802 (2009).
[CrossRef]

Smolyaninov, I. I.

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100, 181105 (2012).
[CrossRef]

Sonnefraud, Y.

G. Di Martino, Y. Sonnefraud, S. Kena-Cohen, M. Tame, A. K. Azdemir, M. S. Kim, and S. A. Maier, “Quantum statistics of surface plasmon polaritons in metallic stripe waveguides,” Nano Lett. 12, 2504–2508 (2012).
[CrossRef]

Soref, R. A.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

Sørensen, A. S.

A. Huck, S. Smolka, P. Lodahl, A. S. Sørensen, A. Boltasseva, J. Janousek, and U. L. Andersen, “Demonstration of quadrature-squeezed surface plasmons in a gold waveguide,” Phys. Rev. Lett. 102, 246802 (2009).
[CrossRef]

Srensen, A. S.

D. E. Chang, A. S. Srensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 53002 (2006).
[CrossRef]

Sun, C.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[CrossRef]

Sun, G.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

Tame, M.

G. Di Martino, Y. Sonnefraud, S. Kena-Cohen, M. Tame, A. K. Azdemir, M. S. Kim, and S. A. Maier, “Quantum statistics of surface plasmon polaritons in metallic stripe waveguides,” Nano Lett. 12, 2504–2508 (2012).
[CrossRef]

Tanaka, K.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105, 227403 (2010).
[CrossRef]

Teperik, T. V.

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 26802 (2010).
[CrossRef]

Uchino, T.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105, 227403 (2010).
[CrossRef]

Van Exter, M. P.

E. Altewischer, M. P. Van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418, 304–306 (2002).
[CrossRef]

Van Vlack, C.

P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80, 195106 (2009).
[CrossRef]

Vilain, S.

J. S. Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp,” Nat. Sci. Rep. 2, 829 (2012).
[CrossRef]

Vuckovic, J.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef]

P. Grangier, B. Sanders, and J. Vuckovic, eds, “Special issue on Focus on Single Photons on Demand,” New J. Phys. 6, E04 (2004).
[CrossRef]

Weber, W. H.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
[CrossRef]

Woerdman, J. P.

E. Altewischer, M. P. Van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418, 304–306 (2002).
[CrossRef]

Wurtz, G. A.

J. S. Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp,” Nat. Sci. Rep. 2, 829 (2012).
[CrossRef]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Xiong, Y.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[CrossRef]

Yacoby, A.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond-silver aperture,” Nat. Photonics 5, 738–743 (2011).
[CrossRef]

Yao, P.

P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80, 195106 (2009).
[CrossRef]

Yu, C. L.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[CrossRef]

Zayats, A. V.

J. S. Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp,” Nat. Sci. Rep. 2, 829 (2012).
[CrossRef]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Zhang, X.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[CrossRef]

Zhang, Y.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5, 195–199 (2010).
[CrossRef]

Zheludev, N. I.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105, 227403 (2010).
[CrossRef]

Zhu, G.

Appl. Phys. B

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
[CrossRef]

Appl. Phys. Lett.

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100, 181105 (2012).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
[CrossRef]

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244 (2004).
[CrossRef]

Q. Gan and F. J. Bartoli, “Surface dispersion engineering of planar plasmonic chirped grating for complete visible rainbow trapping,” Appl. Phys. Lett. 98, 251103 (2011).
[CrossRef]

IEEE Antennas Wirel. Propag. Letters

K. G. Balmain, A. A. E. Luttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” IEEE Antennas Wirel. Propag. Letters 1, 146–149 (2002).
[CrossRef]

J. Opt.

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials.,” J. Opt. 14, 063001 (2012).
[CrossRef]

J. Phys. Chem. C

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114, 7269–7273 (2010).
[CrossRef]

MRS Bull.

Z. Jacob, “Quantum plasmonics,” MRS Bull. 37, 761–767 (2012).
[CrossRef]

Nano Lett.

G. Di Martino, Y. Sonnefraud, S. Kena-Cohen, M. Tame, A. K. Azdemir, M. S. Kim, and S. A. Maier, “Quantum statistics of surface plasmon polaritons in metallic stripe waveguides,” Nano Lett. 12, 2504–2508 (2012).
[CrossRef]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[CrossRef]

A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Lett. 9, 4228–4233 (2009).
[CrossRef]

Nat. Mater.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Nat. Nanotechnol.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5, 195–199 (2010).
[CrossRef]

Nat. Photonics

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond-silver aperture,” Nat. Photonics 5, 738–743 (2011).
[CrossRef]

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5, 397–405 (2011).
[CrossRef]

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gtzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[CrossRef]

K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6, 459–462 (2012).
[CrossRef]

Nat. Sci. Rep.

J. S. Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp,” Nat. Sci. Rep. 2, 829 (2012).
[CrossRef]

Nature

E. Altewischer, M. P. Van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418, 304–306 (2002).
[CrossRef]

New J. Phys.

P. Grangier, B. Sanders, and J. Vuckovic, eds, “Special issue on Focus on Single Photons on Demand,” New J. Phys. 6, E04 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Lett. A

I. Iorsh, A. Poddubny, A. Orlov, P. Belov, and Y. S. Kivshar, “Spontaneous emission enhancement in metal–dielectric metamaterials,” Phys. Lett. A 376, 185–187 (2012).

Phys. Rep.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
[CrossRef]

Phys. Rev. A

Q. Quan, I. Bulu, and M. Lončar, “Broadband waveguide QED system on a chip,” Phys. Rev. A 80, 011810 (2009).
[CrossRef]

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80, 195106 (2009).
[CrossRef]

Phys. Rev. Lett.

R. K. Fisher and R. W. Gould, “Resonance cones in the field pattern of a short antenna in an anisotropic plasma,” Phys. Rev. Lett. 22, 1093–1095 (1969).
[CrossRef]

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 96801 (2011).
[CrossRef]

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105, 227403 (2010).
[CrossRef]

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 26802 (2010).
[CrossRef]

A. Huck, S. Smolka, P. Lodahl, A. S. Sørensen, A. Boltasseva, J. Janousek, and U. L. Andersen, “Demonstration of quadrature-squeezed surface plasmons in a gold waveguide,” Phys. Rev. Lett. 102, 246802 (2009).
[CrossRef]

D. E. Chang, A. S. Srensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 53002 (2006).
[CrossRef]

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[CrossRef]

Rep. Prog, Phys.

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog, Phys. 68, 1129 (2005).
[CrossRef]

Science

Z. Jacob and V. M. Shalaev, “Plasmonics goes quantum,” Science 334, 463–464 (2011).
[CrossRef]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Other

X. Ni, Z. Liu, and A. V. Kildishev, Nanohub PhotonicsDB (Optical Constants, 2010).

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2010).

L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (IEEE, 1994).

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Multilayer stack of Ag / TiO 2 with 10 / 30 nm layer thicknesses behaves like a homogeneous metamaterial slab with hyperbolic dispersion ( ϵ 0 , ϵ 0 ) above λ 720 nm . The emitter is embedded symmetrically in a 30 nm layer of TiO 2 . (b) The direction of power flow is normal to the isofrequency surface. In hyperbolic metamaterials (HMMs), the power flow of all high- k states tends to bunch and point in the same direction, thus forming resonance cones. (c) A quantum dot embedded in an HMM emits preferentially into high- k states within the resonance cone ( λ = 800 nm ). The power density and Poynting vector are normalized by the total time-averaged power emitted from the oscillating point dipole. The gray arrows show the asymptotic direction of power flow for extremely high- k states for an ideal HMM.

Fig. 2.
Fig. 2.

(a) Large decay rate enhancement is predicted across the region of hyperbolic dispersion. (b) The WLDOS (normalized by vacuum) available to a quantum emitter embedded in a multilayer realization of a HMM show that emission occurs into bulk waveguide modes of the HMM slab in the region of hyperbolic dispersion. (c) The transmission coefficient (computed using a transfer matrix method for a plane wave launched from the embedded layer) at the top of the multilayer slab shows that the HMM waveguide modes propagate to the top of the HMM slab and can be outcoupled.

Fig. 3.
Fig. 3.

(a) Schematic of a dipole embedded symmetrically between two 370 nm thick HMM slabs composed of Ag / TiO 2 with a silver filling fraction of 0.25. Type 2 hyperbolic dispersion is predicted above λ 720 nm . The coupling to the metamaterial changes as the embedded layer thickness is varied. (b) Schematic of a dipole placed above one of the finite HMM slabs from (a). (c) Decay-rate enhancement β at λ = 900 nm is stronger when the dipole is embedded between two HMMs. (d) In the extreme near field, the decay-rate enhancement varies as the inverse cube of the interaction distance, which is attributed to emission into high- k HMM modes and quenching. In the far field, the decay-rate enhancement is governed by plane-wave interference effects.

Fig. 4.
Fig. 4.

(a) Schematic of a dipole embedded symmetrically between two 4.5 period multilayer HMM slabs composed of Ag / TiO 2 with thicknesses of 10 / 30 nm , respectively. Type 2 hyperbolic dispersion is predicted above λ 720 nm . The embedded layer thickness is varied. (b) A dipole is placed above one of the finite HMM slabs from (a). The dipole/interface distance is varied. (c) Decay rate β calculations at λ = 900 nm show that the enhancement is considerably stronger when the dipole is embedded between two multilayer HMMs. (d) In the extreme near field, the decay rate enhancement varies as the inverse cube of the interaction distance; this is attributed to (1) emission into a GPM and quenching for the embedded emitter and (2) emission quenching when the emitter is placed above the multilayer. In the far field, the decay-rate enhancement is governed by propagating wave interference effects.

Fig. 5.
Fig. 5.

Far-field LDOS: calculated WLDOS at various far-field interaction distances at λ = 900 nm show that when d 1 / 2 λ / ϵ 150 nm , low- k interactions dominate. As the dipole is brought closer (embedded layer shrunk), emission is shifted into high- k modes. The peaks in the low- k LDOS are due to propagating wave interference.

Fig. 6.
Fig. 6.

Near-field LDOS—EMT: calculated WLDOS at various near-field interaction distances at λ = 900 nm show that as the interaction distance d is decreased, additional high- k modes become accessible to the emitter. The HMM modes are recognizable as sharp peaks in ρ and are attributed to propagating waveguide modes of the HMM. When the emitter is embedded between two HMM slabs, the coupling to high- k HMM modes is slightly stronger and the onset of the strong near-field interactions occurs at larger d . At very small d , emission quenching begins to dominate. This is recognized as the wide smooth peak in ρ . Emission into the high- k HMM modes and emission quenching cause the total decay-rate enhancement β to scale as d 3 in the extreme near field.

Fig. 7.
Fig. 7.

Near-field LDOS—multilayer system: calculated WLDOS at various interaction distances at λ = 900 nm show that as the interaction distance d is decreased, additional high- k modes become accessible to the emitter. No high- k HMM modes exist above the cutoff (dashed line) related to the unit cell size. In the case of the emitter above the multilayer slab, the onset of emission into LSWs (smooth broad peak) occurs at much smaller distances than in the EMT case. In the embedded case, we also see the presence of a GPM, identified by the large peak, which shifts with embedded layer thickness. This emission can be suppressed using the appropriate gap size. Again, the onset of emission into LSWs occurs at smaller distances than in the EMT case.

Fig. 8.
Fig. 8.

(a) Parallel and perpendicular components of the dielectric permittivity predicted by EMT for a 10 and 30 nm Ag / TiO 2 multilayer structure. A topological transition between elliptical dispersion and hyperbolic dispersion occurs just above λ OTT 720 nm . (b) Using a large dielectric constant half-space superstrate ( ϵ 1 ), the high- k modes of the resonance cones are outcoupled into well-defined propagating modes in the far field of the dielectric over a broadband spectral range. There is excellent agreement between the topological transition predicted by EMT and the large Purcell factor achieved in the practical multilayer structure.

Fig. 9.
Fig. 9.

(a) Subwavelength cylindrical bullseye grating can be used to scatter the high- k , states which are intrinsically confined to the HMM slab, into vacuum propagating modes. (b) FDTD simulations show that the spectral location of the maximum far-field Purcell factor F p can be tuned by varying the grating period. (c) The directivity D = P ( θ ) / ( P tot / 4 π ) is shown at the location of maximum far-field enhancement ( Λ = 400 nm ; λ max 900 nm ). The emission from the bullseye occurs into a highly directive conical shell. The small grey curve shows the directivity of a dipole in TiO 2 . Directivity is a measure of the power density directed along a particular direction relative to an isotropic point source emitting the same total power.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k x 2 / ϵ + k z 2 / ϵ = ( ω / c ) 2 ,
tan θ RC = ϵ ϵ .
Γ = 2 ω 2 c 2 ( μ⃗ · Im [ G ¯ ¯ ( r 0 , r 0 , ω ) ] · μ⃗ ) ,
β = Γ / Γ 0 = ( 1 η ) + η Re [ 0 ρ ( λ , d , k⃗ ) d k ] ,
ρ ( λ , d , k⃗ ) = 3 2 1 k 1 3 1 | μ⃗ | 2 k x k z e i 2 k z d { 1 2 μ 2 [ ( 1 + r ( s ) ) k 1 2 ( 1 r ( p ) ) k z 2 ] + μ 2 ( 1 + r ( p ) ) k 2 } ,

Metrics