Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Enhanced and directional single-photon emission in hyperbolic metamaterials

Not Accessible

Your library or personal account may give you access

Abstract

We propose an approach to enhance and direct the spontaneous emission from isolated emitters embedded inside hyperbolic metamaterials (HMMs) into single-photon beams. The approach rests on collective plasmonic Bloch modes of HMMs, which propagate in highly directional beams called quantum resonance cones. We propose a pumping scheme using the transparency window of the HMM that occurs near the topological transition. Finally, we address the challenge of outcoupling these broadband resonance cones into vacuum using a dielectric bullseye grating. We give a detailed analysis of quenching and design the metamaterial to have a huge Purcell factor in a broad bandwidth in spite of the losses in the metal. Our work should help motivate experiments in the development of single-photon sources for broadband emitters such as nitrogen vacancy centers in diamond.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Hyperbolic metamaterial resonator–antenna scheme for large, broadband emission enhancement and single-photon collection

Faraz A. Inam, Nadeem Ahmed, Michael J. Steel, and Stefania Castelletto
J. Opt. Soc. Am. B 35(9) 2153-2162 (2018)

Study of cavity-enhanced dipole emission on a hyperbolic metamaterial slab

Yue Cheng, Cheng-Ting Liao, Zhi-Hong Xie, Yu-Chueh Hung, and Ming-Chang Lee
J. Opt. Soc. Am. B 36(2) 426-434 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved