L. Y. M. Tobing, L. Tjahjana, S. Darmawan, and D. H. Zhang, “Numerical and experimental studies of coupling-induced phase shift in resonator and interferometric integrated optics devices,” Opt. Express 20, 5789–5801 (2012).

[CrossRef]

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Near-field mapping of optical eigenstates in coupled disk microresonators,” Phys. Rev. A 85, 033827 (2012).

[CrossRef]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).

[CrossRef]

S. I. Schmid, K. Xia, and J. Evers, “Pathway interference in a loop array of three coupled microresonators,” Phys. Rev. A 84, 013808 (2011).

[CrossRef]

O. Schwelb and I. Chremmos, “Defect assisted coupled resonator optical waveguide: weak perturbations,” Opt. Commun. 283, 3686–3690 (2010).

[CrossRef]

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits,” J. Opt. 12, 104008 (2010).

[CrossRef]

Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode splitting in coupled cavity system,” Opt. Express 18, 8367–8382 (2010).

[CrossRef]

M. Hammer, “HCMT models of optical microring-resonator circuits,” J. Opt. Soc. Am. B 27, 2237–2246 (2010).

[CrossRef]

Q. Li, M. Soltani, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, “Quantitative modeling of coupling-induced resonance frequency shift in microring resonators,” Opt. Express 17, 23474–23486 (2009).

[CrossRef]

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Observation of optical coupling in microdisk resonators,” Phys. Rev. A 80, 043841 (2009).

[CrossRef]

O. Schwelb, “On the nature of resonance splitting in coupled multiring optical resonators,” Opt. Commun. 281, 1065–1071 (2008).

[CrossRef]

M. Maksimovic, M. Hammer, and E. van Groesen, “Field representation for optical defect microcavities in multilayer structures using quasi-normal modes,” Opt. Commun. 281, 1401–1411 (2008).

[CrossRef]

M. Maksimovic, M. Hammer, and E. van Groesen, “Coupled optical defect microcavities in 1d photonic crystals and quasi-normal modes,” Opt. Eng. 47, 114601 (2008).

[CrossRef]

M. Hammer, “Hybrid analytical/numerical coupled-mode modeling of guided wave devices,” J. Lightwave Technol. 25, 2287–2298 (2007).

[CrossRef]

F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15, 17273–17281 (2007).

[CrossRef]

S. V. Pishko, P. D. Sewell, T. M. Benson, and S. V. Boriskina, “Efficient analysis and design of low-loss whispering-gallery-mode coupled resonator optical waveguide bends,” J. Lightwave Technol. 25, 2487–2494 (2007).

[CrossRef]

K. R. Hiremath, R. Stoffer, and M. Hammer, “Modeling of circular integrated optical microresonators by 2-D frequency-domain coupled mode theory,” Opt. Commun. 257, 277–297 (2006).

[CrossRef]

J. Čtyroký, I. Richter, and M. Šiňor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron. 38, 781–797 (2006).

[CrossRef]

S. V. Boriskina, “Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules,” Opt. Lett. 31, 338–340 (2006).

[CrossRef]

M. A. Popović, C. Manolatou, and M. R. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express 14, 1208–1222 (2006).

[CrossRef]

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Čtyroký, “Analytical approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2005).

[CrossRef]

L. Prkna, J. Čtyroký, and M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quantum Electron. 36, 259–269 (2004).

[CrossRef]

J. K. S. Poon, J. Scheuer, and A. Yariv, “Wavelength-selective reflector based on a circular array of coupled microring resonators,” IEEE Photon. Technol. Lett. 16, 1331–1333 (2004).

[CrossRef]

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).

[CrossRef]

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, “Microring resonator arrays for VLSI photonics,” IEEE Photon. Technol. Lett. 12, 323–325 (2000).

[CrossRef]

A. Yariv, “Universal relations for coupling of optical power between miroresonators and dielectric waveguide,” Electron. Lett. 36, 321–322 (2000).

[CrossRef]

M. Lohmeyer, N. Bahlmann, and P. Hertel, “Geometry tolerance estimation for rectangular dielectric waveguide devices by means of perturbation theory,” Opt. Commun. 163, 86–94 (1999).

[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).

[CrossRef]

P. T. Leung, S. Y. Liu, and K. Young, “Completeness and orthogonality of quasinormal modes in leaky optical cavities,” Phys. Rev. A 49, 3057–3067 (1994).

[CrossRef]

D. R. Rowland and J. D. Love, “Evanescent wave coupling of whispering gallery modes of a dielectric cylinder,” IEE Proc. J 140, 177–188 (1993).

[CrossRef]

M. Lohmeyer, N. Bahlmann, and P. Hertel, “Geometry tolerance estimation for rectangular dielectric waveguide devices by means of perturbation theory,” Opt. Commun. 163, 86–94 (1999).

[CrossRef]

M. Bertolotti, “Linear one dimensional resonant cavities,” in Microresonators as Building Blocks for VLSI Photonics, F. Michelotti, A. Driessen, and M. Bertolotti, eds., Vol. 709 of AIP Conference Proceedings (American Institute of Physics, 2004), pp. 19–47.

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits,” J. Opt. 12, 104008 (2010).

[CrossRef]

F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15, 17273–17281 (2007).

[CrossRef]

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Near-field mapping of optical eigenstates in coupled disk microresonators,” Phys. Rev. A 85, 033827 (2012).

[CrossRef]

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Observation of optical coupling in microdisk resonators,” Phys. Rev. A 80, 043841 (2009).

[CrossRef]

O. Schwelb and I. Chremmos, “Defect assisted coupled resonator optical waveguide: weak perturbations,” Opt. Commun. 283, 3686–3690 (2010).

[CrossRef]

O. Schwelb and I. Chremmos, “Band-limited microresonator reflectors and mirror structures,” in Photonic Microresonator Research and Applications, I. Chremmos, N. Uzunoglu, and O. Schwelb, eds., Vol. 156 of Springer Series in Optical Sciences (Springer, 2010), pp. 139–163.

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, “Microring resonator arrays for VLSI photonics,” IEEE Photon. Technol. Lett. 12, 323–325 (2000).

[CrossRef]

J. Čtyroký, I. Richter, and M. Šiňor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron. 38, 781–797 (2006).

[CrossRef]

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Čtyroký, “Analytical approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2005).

[CrossRef]

L. Prkna, J. Čtyroký, and M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quantum Electron. 36, 259–269 (2004).

[CrossRef]

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits,” J. Opt. 12, 104008 (2010).

[CrossRef]

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Near-field mapping of optical eigenstates in coupled disk microresonators,” Phys. Rev. A 85, 033827 (2012).

[CrossRef]

S. I. Schmid, K. Xia, and J. Evers, “Pathway interference in a loop array of three coupled microresonators,” Phys. Rev. A 84, 013808 (2011).

[CrossRef]

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits,” J. Opt. 12, 104008 (2010).

[CrossRef]

F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15, 17273–17281 (2007).

[CrossRef]

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).

[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, 1992).

E. Franchimon, “Modelling circular optical microresonators using whispering gallery modes,” M.Sc. thesis (University of Twente, 2010).

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).

[CrossRef]

M. Hammer, “HCMT models of optical microring-resonator circuits,” J. Opt. Soc. Am. B 27, 2237–2246 (2010).

[CrossRef]

M. Maksimovic, M. Hammer, and E. van Groesen, “Field representation for optical defect microcavities in multilayer structures using quasi-normal modes,” Opt. Commun. 281, 1401–1411 (2008).

[CrossRef]

M. Maksimovic, M. Hammer, and E. van Groesen, “Coupled optical defect microcavities in 1d photonic crystals and quasi-normal modes,” Opt. Eng. 47, 114601 (2008).

[CrossRef]

M. Hammer, “Hybrid analytical/numerical coupled-mode modeling of guided wave devices,” J. Lightwave Technol. 25, 2287–2298 (2007).

[CrossRef]

K. R. Hiremath, R. Stoffer, and M. Hammer, “Modeling of circular integrated optical microresonators by 2-D frequency-domain coupled mode theory,” Opt. Commun. 257, 277–297 (2006).

[CrossRef]

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Čtyroký, “Analytical approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2005).

[CrossRef]

M. Lohmeyer, N. Bahlmann, and P. Hertel, “Geometry tolerance estimation for rectangular dielectric waveguide devices by means of perturbation theory,” Opt. Commun. 163, 86–94 (1999).

[CrossRef]

K. R. Hiremath, R. Stoffer, and M. Hammer, “Modeling of circular integrated optical microresonators by 2-D frequency-domain coupled mode theory,” Opt. Commun. 257, 277–297 (2006).

[CrossRef]

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Čtyroký, “Analytical approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2005).

[CrossRef]

L. Prkna, J. Čtyroký, and M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quantum Electron. 36, 259–269 (2004).

[CrossRef]

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).

[CrossRef]

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Near-field mapping of optical eigenstates in coupled disk microresonators,” Phys. Rev. A 85, 033827 (2012).

[CrossRef]

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).

[CrossRef]

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).

[CrossRef]

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Near-field mapping of optical eigenstates in coupled disk microresonators,” Phys. Rev. A 85, 033827 (2012).

[CrossRef]

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Observation of optical coupling in microdisk resonators,” Phys. Rev. A 80, 043841 (2009).

[CrossRef]

B. Kettner, “Detection of spurious modes in resonance mode computations—Pole condition method,” PhD Dissertation (Freie Universität zu Berlin, 2012).

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Near-field mapping of optical eigenstates in coupled disk microresonators,” Phys. Rev. A 85, 033827 (2012).

[CrossRef]

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Near-field mapping of optical eigenstates in coupled disk microresonators,” Phys. Rev. A 85, 033827 (2012).

[CrossRef]

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Observation of optical coupling in microdisk resonators,” Phys. Rev. A 80, 043841 (2009).

[CrossRef]

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, “Microring resonator arrays for VLSI photonics,” IEEE Photon. Technol. Lett. 12, 323–325 (2000).

[CrossRef]

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Near-field mapping of optical eigenstates in coupled disk microresonators,” Phys. Rev. A 85, 033827 (2012).

[CrossRef]

P. T. Leung, S. Y. Liu, and K. Young, “Completeness and orthogonality of quasinormal modes in leaky optical cavities,” Phys. Rev. A 49, 3057–3067 (1994).

[CrossRef]

Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode splitting in coupled cavity system,” Opt. Express 18, 8367–8382 (2010).

[CrossRef]

Q. Li, M. Soltani, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, “Quantitative modeling of coupling-induced resonance frequency shift in microring resonators,” Opt. Express 17, 23474–23486 (2009).

[CrossRef]

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Near-field mapping of optical eigenstates in coupled disk microresonators,” Phys. Rev. A 85, 033827 (2012).

[CrossRef]

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, “Microring resonator arrays for VLSI photonics,” IEEE Photon. Technol. Lett. 12, 323–325 (2000).

[CrossRef]

P. T. Leung, S. Y. Liu, and K. Young, “Completeness and orthogonality of quasinormal modes in leaky optical cavities,” Phys. Rev. A 49, 3057–3067 (1994).

[CrossRef]

M. Lohmeyer, N. Bahlmann, and P. Hertel, “Geometry tolerance estimation for rectangular dielectric waveguide devices by means of perturbation theory,” Opt. Commun. 163, 86–94 (1999).

[CrossRef]

D. R. Rowland and J. D. Love, “Evanescent wave coupling of whispering gallery modes of a dielectric cylinder,” IEE Proc. J 140, 177–188 (1993).

[CrossRef]

M. Maksimovic, M. Hammer, and E. van Groesen, “Field representation for optical defect microcavities in multilayer structures using quasi-normal modes,” Opt. Commun. 281, 1401–1411 (2008).

[CrossRef]

M. Maksimovic, M. Hammer, and E. van Groesen, “Coupled optical defect microcavities in 1d photonic crystals and quasi-normal modes,” Opt. Eng. 47, 114601 (2008).

[CrossRef]

M. Maksimovic, “Optical resonances in multilayer structures,” Ph.D. thesis (University of Twente, 2008).

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).

[CrossRef]

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits,” J. Opt. 12, 104008 (2010).

[CrossRef]

F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15, 17273–17281 (2007).

[CrossRef]

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits,” J. Opt. 12, 104008 (2010).

[CrossRef]

F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15, 17273–17281 (2007).

[CrossRef]

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, “Microring resonator arrays for VLSI photonics,” IEEE Photon. Technol. Lett. 12, 323–325 (2000).

[CrossRef]

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Near-field mapping of optical eigenstates in coupled disk microresonators,” Phys. Rev. A 85, 033827 (2012).

[CrossRef]

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Observation of optical coupling in microdisk resonators,” Phys. Rev. A 80, 043841 (2009).

[CrossRef]

J. K. S. Poon, J. Scheuer, and A. Yariv, “Wavelength-selective reflector based on a circular array of coupled microring resonators,” IEEE Photon. Technol. Lett. 16, 1331–1333 (2004).

[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, 1992).

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Čtyroký, “Analytical approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2005).

[CrossRef]

L. Prkna, J. Čtyroký, and M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quantum Electron. 36, 259–269 (2004).

[CrossRef]

J. Čtyroký, I. Richter, and M. Šiňor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron. 38, 781–797 (2006).

[CrossRef]

D. R. Rowland and J. D. Love, “Evanescent wave coupling of whispering gallery modes of a dielectric cylinder,” IEE Proc. J 140, 177–188 (1993).

[CrossRef]

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits,” J. Opt. 12, 104008 (2010).

[CrossRef]

J. K. S. Poon, J. Scheuer, and A. Yariv, “Wavelength-selective reflector based on a circular array of coupled microring resonators,” IEEE Photon. Technol. Lett. 16, 1331–1333 (2004).

[CrossRef]

S. I. Schmid, K. Xia, and J. Evers, “Pathway interference in a loop array of three coupled microresonators,” Phys. Rev. A 84, 013808 (2011).

[CrossRef]

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Near-field mapping of optical eigenstates in coupled disk microresonators,” Phys. Rev. A 85, 033827 (2012).

[CrossRef]

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Observation of optical coupling in microdisk resonators,” Phys. Rev. A 80, 043841 (2009).

[CrossRef]

O. Schwelb and I. Chremmos, “Defect assisted coupled resonator optical waveguide: weak perturbations,” Opt. Commun. 283, 3686–3690 (2010).

[CrossRef]

O. Schwelb, “On the nature of resonance splitting in coupled multiring optical resonators,” Opt. Commun. 281, 1065–1071 (2008).

[CrossRef]

O. Schwelb and I. Chremmos, “Band-limited microresonator reflectors and mirror structures,” in Photonic Microresonator Research and Applications, I. Chremmos, N. Uzunoglu, and O. Schwelb, eds., Vol. 156 of Springer Series in Optical Sciences (Springer, 2010), pp. 139–163.

J. Čtyroký, I. Richter, and M. Šiňor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron. 38, 781–797 (2006).

[CrossRef]

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).

[CrossRef]

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits,” J. Opt. 12, 104008 (2010).

[CrossRef]

K. R. Hiremath, R. Stoffer, and M. Hammer, “Modeling of circular integrated optical microresonators by 2-D frequency-domain coupled mode theory,” Opt. Commun. 257, 277–297 (2006).

[CrossRef]

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Čtyroký, “Analytical approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2005).

[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, 1992).

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits,” J. Opt. 12, 104008 (2010).

[CrossRef]

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Near-field mapping of optical eigenstates in coupled disk microresonators,” Phys. Rev. A 85, 033827 (2012).

[CrossRef]

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Observation of optical coupling in microdisk resonators,” Phys. Rev. A 80, 043841 (2009).

[CrossRef]

M. Maksimovic, M. Hammer, and E. van Groesen, “Coupled optical defect microcavities in 1d photonic crystals and quasi-normal modes,” Opt. Eng. 47, 114601 (2008).

[CrossRef]

M. Maksimovic, M. Hammer, and E. van Groesen, “Field representation for optical defect microcavities in multilayer structures using quasi-normal modes,” Opt. Commun. 281, 1401–1411 (2008).

[CrossRef]

C. Vassallo, Optical Waveguide Concepts (Elsevier, 1991).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, 1992).

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).

[CrossRef]

S. I. Schmid, K. Xia, and J. Evers, “Pathway interference in a loop array of three coupled microresonators,” Phys. Rev. A 84, 013808 (2011).

[CrossRef]

J. K. S. Poon, J. Scheuer, and A. Yariv, “Wavelength-selective reflector based on a circular array of coupled microring resonators,” IEEE Photon. Technol. Lett. 16, 1331–1333 (2004).

[CrossRef]

A. Yariv, “Universal relations for coupling of optical power between miroresonators and dielectric waveguide,” Electron. Lett. 36, 321–322 (2000).

[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).

[CrossRef]

P. T. Leung, S. Y. Liu, and K. Young, “Completeness and orthogonality of quasinormal modes in leaky optical cavities,” Phys. Rev. A 49, 3057–3067 (1994).

[CrossRef]

L. Zschiedrich, “Transparent boundary conditions for Maxwells equations: numerical concepts beyond the PML method,” PhD Dissertation (Freie Universität zu Berlin, 2009).

A. Yariv, “Universal relations for coupling of optical power between miroresonators and dielectric waveguide,” Electron. Lett. 36, 321–322 (2000).

[CrossRef]

D. R. Rowland and J. D. Love, “Evanescent wave coupling of whispering gallery modes of a dielectric cylinder,” IEE Proc. J 140, 177–188 (1993).

[CrossRef]

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, “Microring resonator arrays for VLSI photonics,” IEEE Photon. Technol. Lett. 12, 323–325 (2000).

[CrossRef]

J. K. S. Poon, J. Scheuer, and A. Yariv, “Wavelength-selective reflector based on a circular array of coupled microring resonators,” IEEE Photon. Technol. Lett. 16, 1331–1333 (2004).

[CrossRef]

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits,” J. Opt. 12, 104008 (2010).

[CrossRef]

O. Schwelb, “On the nature of resonance splitting in coupled multiring optical resonators,” Opt. Commun. 281, 1065–1071 (2008).

[CrossRef]

O. Schwelb and I. Chremmos, “Defect assisted coupled resonator optical waveguide: weak perturbations,” Opt. Commun. 283, 3686–3690 (2010).

[CrossRef]

K. R. Hiremath, R. Stoffer, and M. Hammer, “Modeling of circular integrated optical microresonators by 2-D frequency-domain coupled mode theory,” Opt. Commun. 257, 277–297 (2006).

[CrossRef]

M. Maksimovic, M. Hammer, and E. van Groesen, “Field representation for optical defect microcavities in multilayer structures using quasi-normal modes,” Opt. Commun. 281, 1401–1411 (2008).

[CrossRef]

M. Lohmeyer, N. Bahlmann, and P. Hertel, “Geometry tolerance estimation for rectangular dielectric waveguide devices by means of perturbation theory,” Opt. Commun. 163, 86–94 (1999).

[CrossRef]

M. Maksimovic, M. Hammer, and E. van Groesen, “Coupled optical defect microcavities in 1d photonic crystals and quasi-normal modes,” Opt. Eng. 47, 114601 (2008).

[CrossRef]

M. A. Popović, C. Manolatou, and M. R. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express 14, 1208–1222 (2006).

[CrossRef]

Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode splitting in coupled cavity system,” Opt. Express 18, 8367–8382 (2010).

[CrossRef]

F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15, 17273–17281 (2007).

[CrossRef]

Q. Li, M. Soltani, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, “Quantitative modeling of coupling-induced resonance frequency shift in microring resonators,” Opt. Express 17, 23474–23486 (2009).

[CrossRef]

L. Y. M. Tobing, L. Tjahjana, S. Darmawan, and D. H. Zhang, “Numerical and experimental studies of coupling-induced phase shift in resonator and interferometric integrated optics devices,” Opt. Express 20, 5789–5801 (2012).

[CrossRef]

J. Čtyroký, I. Richter, and M. Šiňor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron. 38, 781–797 (2006).

[CrossRef]

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Čtyroký, “Analytical approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2005).

[CrossRef]

L. Prkna, J. Čtyroký, and M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quantum Electron. 36, 259–269 (2004).

[CrossRef]

P. T. Leung, S. Y. Liu, and K. Young, “Completeness and orthogonality of quasinormal modes in leaky optical cavities,” Phys. Rev. A 49, 3057–3067 (1994).

[CrossRef]

S. I. Schmid, K. Xia, and J. Evers, “Pathway interference in a loop array of three coupled microresonators,” Phys. Rev. A 84, 013808 (2011).

[CrossRef]

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Observation of optical coupling in microdisk resonators,” Phys. Rev. A 80, 043841 (2009).

[CrossRef]

C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Near-field mapping of optical eigenstates in coupled disk microresonators,” Phys. Rev. A 85, 033827 (2012).

[CrossRef]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).

[CrossRef]

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).

[CrossRef]

PhoeniX BV, P. O. Box 545, 7500 AM Enschede, The Netherlands, http://www.phoenixbv.com/http://www.phoenixbv.com/ .

JCMwave GmbH, Haarer Str. 14a, 85640 Putzbrunn/Munich, Germany, http://www.jcmwave.com .

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, 1992).

M. Bertolotti, “Linear one dimensional resonant cavities,” in Microresonators as Building Blocks for VLSI Photonics, F. Michelotti, A. Driessen, and M. Bertolotti, eds., Vol. 709 of AIP Conference Proceedings (American Institute of Physics, 2004), pp. 19–47.

M. Maksimovic, “Optical resonances in multilayer structures,” Ph.D. thesis (University of Twente, 2008).

E. Franchimon, “Modelling circular optical microresonators using whispering gallery modes,” M.Sc. thesis (University of Twente, 2010).

F. Michelotti, A. Driessen, and M. Bertolotti, eds., Microresonators as Building Blocks for VLSI Photonics, Vol. 709 of AIP Conference Proceedings (American Institute of Physics, 2004).

I. Chremmos, N. Uzunoglu, and O. Schwelb, eds., Photonic Microresonator Research and Applications, Vol. 156 of Springer Series in Optical Sciences (Springer, 2010).

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).

D. E. Amos, “A portable package for Bessel functions of a complex argument and nonnegative order,” http://www.netlib.org/amos .

K. R. Hiremath, “CIRCURS—Circular resonator simulator,” http://www.zib.de/hiremath/circurs/ .

C. Vassallo, Optical Waveguide Concepts (Elsevier, 1991).

M. Hammer, “METRIC—Mode expansion tools for 2D rectangular integrated optical circuits,” http://www.math.utwente.nl/~hammerm/Metric .

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

B. Kettner, “Detection of spurious modes in resonance mode computations—Pole condition method,” PhD Dissertation (Freie Universität zu Berlin, 2012).

L. Zschiedrich, “Transparent boundary conditions for Maxwells equations: numerical concepts beyond the PML method,” PhD Dissertation (Freie Universität zu Berlin, 2009).

O. Schwelb and I. Chremmos, “Band-limited microresonator reflectors and mirror structures,” in Photonic Microresonator Research and Applications, I. Chremmos, N. Uzunoglu, and O. Schwelb, eds., Vol. 156 of Springer Series in Optical Sciences (Springer, 2010), pp. 139–163.