Abstract

An approach to describing of the excitation and propagation of the surface plasmon polaritons (SPPs) along the surface with the nanodisks that are located above them is proposed. In the framework of the proposed approach the dissipation function is calculated for the different geometry of the systems with the disks. The Fano-like antiresonance curves of absorption profiles have been obtained. The antiresonance absorption characteristics have been explained by the interaction between the SPP with the continuous spectrum and localized plasmon polaritons at the cylinders with the discrete spectrum. The obtained result is similar to the well-known Fano effect.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19, 22029–22106 (2011).
    [CrossRef]
  2. A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16–S50 (2003).
    [CrossRef]
  3. A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15, 16667–16680 (2007).
    [CrossRef]
  4. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
    [CrossRef]
  5. A. Benahmed and C. M. Ho, “Using surface plasmon propagation through nanostructures for chemical and biological sensing,” in NSTI-Nanotech 2006 (NSTI, 2006), pp. 182–185.
  6. H.-E. Schaefer, Nanoscience: The Science of the Small in Physics, Engineering, Chemistry, Biology and Medicine (Springer, 2010).
  7. Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005).
    [CrossRef]
  8. T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
    [CrossRef]
  9. F. J. García-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Ríos, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999).
    [CrossRef]
  10. C. Reinhardt, R. Kiyan, A. Seidel, S. Passinger, A. L. Stepanov, A. B. Evlyukhin, and B. N. Chichkov, “Focusing and manipulation of surface plasmon polaritons by laser fabricated dielectric structures,” Proc. SPIE 6642, 664205 (2007).
    [CrossRef]
  11. A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007).
    [CrossRef]
  12. L. Cao, N. C. Panoiu, R. D. R. Bhat, and R. M. Osgood, “Surface second-harmonic generation from scattering of surface plasmon polaritons from radially symmetric nanostructures,” Phys. Rev. B 79, 235416 (2009).
    [CrossRef]
  13. S. Balci, E. Karademir, C. Kocabas, and A. Aydinli, “Direct imaging of localized surface plasmon polaritons,” Opt. Lett. 36, 3401–3403 (2011).
    [CrossRef]
  14. C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
    [CrossRef]
  15. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
    [CrossRef]
  16. X. Xiao, J. Wu, M. Jinbo, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett. 98, 011911 (2011).
    [CrossRef]
  17. I. S. Maksymov and A. E. Miroshnichenko, “Fano resonance tunable plasmonic-photonic nanoantennas,” in Progress Electromagnetic Research Symposium Abstracts, KL, Malaysia, 27–30 March2012, p. 769.
  18. V. Lozovski, “The effective susceptibility concept in the electrodynamics of nano-systems,” J. Comput. Theor. Nanosci. 7, 2077–2093 (2010).
    [CrossRef]
  19. Yu. Demidenko, D. Makarov, and V. Lozovski, “Local-field effects in magneto-plasmonic nanocomposites,” J. Opt. Soc. Am. B 27, 2700–2706 (2010).
    [CrossRef]
  20. M. L. Bah, A. Akjoulj, and L. Dobrzynski, “Response functions in layered dielectric media,” Surf. Sci. Rep. 16, 97–131 (1992).
    [CrossRef]
  21. M. A. Ordal, L. L. Long, R. J. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983).
    [CrossRef]
  22. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
    [CrossRef]
  23. B. I. Khudik, V. Z. Lozovski, and I. V. Nazarenko-Baryakhtar, “Macroscopic electrodynamics of ultra-thin films,” Phys. Stat. Sol. B 153, 167–177 (1989).
    [CrossRef]

2011 (3)

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19, 22029–22106 (2011).
[CrossRef]

S. Balci, E. Karademir, C. Kocabas, and A. Aydinli, “Direct imaging of localized surface plasmon polaritons,” Opt. Lett. 36, 3401–3403 (2011).
[CrossRef]

X. Xiao, J. Wu, M. Jinbo, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett. 98, 011911 (2011).
[CrossRef]

2010 (2)

V. Lozovski, “The effective susceptibility concept in the electrodynamics of nano-systems,” J. Comput. Theor. Nanosci. 7, 2077–2093 (2010).
[CrossRef]

Yu. Demidenko, D. Makarov, and V. Lozovski, “Local-field effects in magneto-plasmonic nanocomposites,” J. Opt. Soc. Am. B 27, 2700–2706 (2010).
[CrossRef]

2009 (1)

L. Cao, N. C. Panoiu, R. D. R. Bhat, and R. M. Osgood, “Surface second-harmonic generation from scattering of surface plasmon polaritons from radially symmetric nanostructures,” Phys. Rev. B 79, 235416 (2009).
[CrossRef]

2008 (1)

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

2007 (3)

C. Reinhardt, R. Kiyan, A. Seidel, S. Passinger, A. L. Stepanov, A. B. Evlyukhin, and B. N. Chichkov, “Focusing and manipulation of surface plasmon polaritons by laser fabricated dielectric structures,” Proc. SPIE 6642, 664205 (2007).
[CrossRef]

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007).
[CrossRef]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15, 16667–16680 (2007).
[CrossRef]

2005 (2)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[CrossRef]

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005).
[CrossRef]

2003 (1)

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16–S50 (2003).
[CrossRef]

1999 (1)

1998 (1)

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

1992 (1)

M. L. Bah, A. Akjoulj, and L. Dobrzynski, “Response functions in layered dielectric media,” Surf. Sci. Rep. 16, 97–131 (1992).
[CrossRef]

1989 (1)

B. I. Khudik, V. Z. Lozovski, and I. V. Nazarenko-Baryakhtar, “Macroscopic electrodynamics of ultra-thin films,” Phys. Stat. Sol. B 153, 167–177 (1989).
[CrossRef]

1983 (2)

M. A. Ordal, L. L. Long, R. J. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983).
[CrossRef]

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Akjoulj, A.

M. L. Bah, A. Akjoulj, and L. Dobrzynski, “Response functions in layered dielectric media,” Surf. Sci. Rep. 16, 97–131 (1992).
[CrossRef]

Alexander, R. W.

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

Aydinli, A.

Bah, M. L.

M. L. Bah, A. Akjoulj, and L. Dobrzynski, “Response functions in layered dielectric media,” Surf. Sci. Rep. 16, 97–131 (1992).
[CrossRef]

Balci, S.

Bell, R. J.

Bell, R. R.

Benahmed, A.

A. Benahmed and C. M. Ho, “Using surface plasmon propagation through nanostructures for chemical and biological sensing,” in NSTI-Nanotech 2006 (NSTI, 2006), pp. 182–185.

Bhat, R. D. R.

L. Cao, N. C. Panoiu, R. D. R. Bhat, and R. M. Osgood, “Surface second-harmonic generation from scattering of surface plasmon polaritons from radially symmetric nanostructures,” Phys. Rev. B 79, 235416 (2009).
[CrossRef]

Bozhevolnyi, S. I.

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007).
[CrossRef]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15, 16667–16680 (2007).
[CrossRef]

Brucoli, G.

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007).
[CrossRef]

Bustarret, E.

Cao, L.

L. Cao, N. C. Panoiu, R. D. R. Bhat, and R. M. Osgood, “Surface second-harmonic generation from scattering of surface plasmon polaritons from radially symmetric nanostructures,” Phys. Rev. B 79, 235416 (2009).
[CrossRef]

Chichkov, B. N.

C. Reinhardt, R. Kiyan, A. Seidel, S. Passinger, A. L. Stepanov, A. B. Evlyukhin, and B. N. Chichkov, “Focusing and manipulation of surface plasmon polaritons by laser fabricated dielectric structures,” Proc. SPIE 6642, 664205 (2007).
[CrossRef]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15, 16667–16680 (2007).
[CrossRef]

Dechelette, A.

Demidenko, Yu.

Dobrzynski, L.

M. L. Bah, A. Akjoulj, and L. Dobrzynski, “Response functions in layered dielectric media,” Surf. Sci. Rep. 16, 97–131 (1992).
[CrossRef]

Evlyukhin, A. B.

C. Reinhardt, R. Kiyan, A. Seidel, S. Passinger, A. L. Stepanov, A. B. Evlyukhin, and B. N. Chichkov, “Focusing and manipulation of surface plasmon polaritons by laser fabricated dielectric structures,” Proc. SPIE 6642, 664205 (2007).
[CrossRef]

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007).
[CrossRef]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15, 16667–16680 (2007).
[CrossRef]

Fahr, S.

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Fournier, T.

García-Vidal, F. J.

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007).
[CrossRef]

F. J. García-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Ríos, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999).
[CrossRef]

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Ho, C. M.

A. Benahmed and C. M. Ho, “Using surface plasmon propagation through nanostructures for chemical and biological sensing,” in NSTI-Nanotech 2006 (NSTI, 2006), pp. 182–185.

Jinbo, M.

X. Xiao, J. Wu, M. Jinbo, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett. 98, 011911 (2011).
[CrossRef]

Karademir, E.

Khudik, B. I.

B. I. Khudik, V. Z. Lozovski, and I. V. Nazarenko-Baryakhtar, “Macroscopic electrodynamics of ultra-thin films,” Phys. Stat. Sol. B 153, 167–177 (1989).
[CrossRef]

Kim, J.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005).
[CrossRef]

Kiyan, R.

C. Reinhardt, R. Kiyan, A. Seidel, S. Passinger, A. L. Stepanov, A. B. Evlyukhin, and B. N. Chichkov, “Focusing and manipulation of surface plasmon polaritons by laser fabricated dielectric structures,” Proc. SPIE 6642, 664205 (2007).
[CrossRef]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15, 16667–16680 (2007).
[CrossRef]

Kocabas, C.

Lederer, F.

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

Lee, L. P.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005).
[CrossRef]

Li, S.

X. Xiao, J. Wu, M. Jinbo, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett. 98, 011911 (2011).
[CrossRef]

Liu, G. L.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005).
[CrossRef]

Long, L. L.

López-Rios, T.

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

López-Ríos, T.

Lozovski, V.

V. Lozovski, “The effective susceptibility concept in the electrodynamics of nano-systems,” J. Comput. Theor. Nanosci. 7, 2077–2093 (2010).
[CrossRef]

Yu. Demidenko, D. Makarov, and V. Lozovski, “Local-field effects in magneto-plasmonic nanocomposites,” J. Opt. Soc. Am. B 27, 2700–2706 (2010).
[CrossRef]

Lozovski, V. Z.

B. I. Khudik, V. Z. Lozovski, and I. V. Nazarenko-Baryakhtar, “Macroscopic electrodynamics of ultra-thin films,” Phys. Stat. Sol. B 153, 167–177 (1989).
[CrossRef]

Lu, Y.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005).
[CrossRef]

Makarov, D.

Maksymov, I. S.

I. S. Maksymov and A. E. Miroshnichenko, “Fano resonance tunable plasmonic-photonic nanoantennas,” in Progress Electromagnetic Research Symposium Abstracts, KL, Malaysia, 27–30 March2012, p. 769.

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[CrossRef]

Martín-Moreno, L.

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007).
[CrossRef]

Mejia, Y. X.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005).
[CrossRef]

Mendoza, D.

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Miroshnichenko, A. E.

I. S. Maksymov and A. E. Miroshnichenko, “Fano resonance tunable plasmonic-photonic nanoantennas,” in Progress Electromagnetic Research Symposium Abstracts, KL, Malaysia, 27–30 March2012, p. 769.

Miyamaru, F.

X. Xiao, J. Wu, M. Jinbo, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett. 98, 011911 (2011).
[CrossRef]

Nazarenko-Baryakhtar, I. V.

B. I. Khudik, V. Z. Lozovski, and I. V. Nazarenko-Baryakhtar, “Macroscopic electrodynamics of ultra-thin films,” Phys. Stat. Sol. B 153, 167–177 (1989).
[CrossRef]

Ordal, M. A.

Osgood, R. M.

L. Cao, N. C. Panoiu, R. D. R. Bhat, and R. M. Osgood, “Surface second-harmonic generation from scattering of surface plasmon polaritons from radially symmetric nanostructures,” Phys. Rev. B 79, 235416 (2009).
[CrossRef]

Pannetier, B.

F. J. García-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Ríos, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999).
[CrossRef]

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Panoiu, N. C.

L. Cao, N. C. Panoiu, R. D. R. Bhat, and R. M. Osgood, “Surface second-harmonic generation from scattering of surface plasmon polaritons from radially symmetric nanostructures,” Phys. Rev. B 79, 235416 (2009).
[CrossRef]

Passinger, S.

C. Reinhardt, R. Kiyan, A. Seidel, S. Passinger, A. L. Stepanov, A. B. Evlyukhin, and B. N. Chichkov, “Focusing and manipulation of surface plasmon polaritons by laser fabricated dielectric structures,” Proc. SPIE 6642, 664205 (2007).
[CrossRef]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15, 16667–16680 (2007).
[CrossRef]

Reinhardt, C.

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15, 16667–16680 (2007).
[CrossRef]

C. Reinhardt, R. Kiyan, A. Seidel, S. Passinger, A. L. Stepanov, A. B. Evlyukhin, and B. N. Chichkov, “Focusing and manipulation of surface plasmon polaritons by laser fabricated dielectric structures,” Proc. SPIE 6642, 664205 (2007).
[CrossRef]

Rockstuhl, C.

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

Sánchez-Dehesa, J.

F. J. García-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Ríos, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999).
[CrossRef]

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Schaefer, H.-E.

H.-E. Schaefer, Nanoscience: The Science of the Small in Physics, Engineering, Chemistry, Biology and Medicine (Springer, 2010).

Seidel, A.

C. Reinhardt, R. Kiyan, A. Seidel, S. Passinger, A. L. Stepanov, A. B. Evlyukhin, and B. N. Chichkov, “Focusing and manipulation of surface plasmon polaritons by laser fabricated dielectric structures,” Proc. SPIE 6642, 664205 (2007).
[CrossRef]

Sheng, P.

X. Xiao, J. Wu, M. Jinbo, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett. 98, 011911 (2011).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[CrossRef]

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16–S50 (2003).
[CrossRef]

Stepanov, A. L.

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15, 16667–16680 (2007).
[CrossRef]

C. Reinhardt, R. Kiyan, A. Seidel, S. Passinger, A. L. Stepanov, A. B. Evlyukhin, and B. N. Chichkov, “Focusing and manipulation of surface plasmon polaritons by laser fabricated dielectric structures,” Proc. SPIE 6642, 664205 (2007).
[CrossRef]

Stockman, M. I.

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

Takeda, M. W.

X. Xiao, J. Wu, M. Jinbo, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett. 98, 011911 (2011).
[CrossRef]

Ward, C. A.

Wen, W.

X. Xiao, J. Wu, M. Jinbo, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett. 98, 011911 (2011).
[CrossRef]

Wu, J.

X. Xiao, J. Wu, M. Jinbo, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett. 98, 011911 (2011).
[CrossRef]

Xiao, X.

X. Xiao, J. Wu, M. Jinbo, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett. 98, 011911 (2011).
[CrossRef]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[CrossRef]

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16–S50 (2003).
[CrossRef]

Zhang, M.

X. Xiao, J. Wu, M. Jinbo, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett. 98, 011911 (2011).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

X. Xiao, J. Wu, M. Jinbo, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett. 98, 011911 (2011).
[CrossRef]

J. Appl. Phys. (1)

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

J. Comput. Theor. Nanosci. (1)

V. Lozovski, “The effective susceptibility concept in the electrodynamics of nano-systems,” J. Comput. Theor. Nanosci. 7, 2077–2093 (2010).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A (1)

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16–S50 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[CrossRef]

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Phys. Rev. B (3)

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007).
[CrossRef]

L. Cao, N. C. Panoiu, R. D. R. Bhat, and R. M. Osgood, “Surface second-harmonic generation from scattering of surface plasmon polaritons from radially symmetric nanostructures,” Phys. Rev. B 79, 235416 (2009).
[CrossRef]

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

Phys. Rev. Lett. (1)

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Phys. Stat. Sol. B (1)

B. I. Khudik, V. Z. Lozovski, and I. V. Nazarenko-Baryakhtar, “Macroscopic electrodynamics of ultra-thin films,” Phys. Stat. Sol. B 153, 167–177 (1989).
[CrossRef]

Proc. SPIE (1)

C. Reinhardt, R. Kiyan, A. Seidel, S. Passinger, A. L. Stepanov, A. B. Evlyukhin, and B. N. Chichkov, “Focusing and manipulation of surface plasmon polaritons by laser fabricated dielectric structures,” Proc. SPIE 6642, 664205 (2007).
[CrossRef]

Surf. Sci. Rep. (1)

M. L. Bah, A. Akjoulj, and L. Dobrzynski, “Response functions in layered dielectric media,” Surf. Sci. Rep. 16, 97–131 (1992).
[CrossRef]

Other (3)

A. Benahmed and C. M. Ho, “Using surface plasmon propagation through nanostructures for chemical and biological sensing,” in NSTI-Nanotech 2006 (NSTI, 2006), pp. 182–185.

H.-E. Schaefer, Nanoscience: The Science of the Small in Physics, Engineering, Chemistry, Biology and Medicine (Springer, 2010).

I. S. Maksymov and A. E. Miroshnichenko, “Fano resonance tunable plasmonic-photonic nanoantennas,” in Progress Electromagnetic Research Symposium Abstracts, KL, Malaysia, 27–30 March2012, p. 769.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Geometry of the problem. Lb is the average distance between the lateral surfaces of adjacent particles; ϑ is the angle of incidence of external radiation.

Fig. 2.
Fig. 2.

Dependence of Imχzz(P)(ω) (curve 1) and Imχxx,yy(P)(ω) (curve 2) of a single disk of 100 nm in diameter and a height of 20 nm. The plasma frequency of a semiconductor is ωp=202cm1.

Fig. 3.
Fig. 3.

Absorption spectra of p-polarized (curve 1) and s-polarized (curve 2) light by the InSb surface that is coated with the flat disks with a particle concentration of 2.5·1012m2.

Fig. 4.
Fig. 4.

Dependence of the absorption spectra covering the surface of the semiconductor by the nanocylinders on their shape, showing the transition from a height of 20 nm (curve 1) to 100 nm (curve 5) with a pitch of 20 nm. The diameter of the cylinders is 100 nm, and their concentration at the surface is 2.5·1013m2.

Fig. 5.
Fig. 5.

Dependence of the absorption spectra of p-polarized light surface of the semiconductor coated by the nanocylinders on their shape. Curve 1 corresponds to a height of 20 nm, curve 2–40 nm, curve 3–50 nm, and curve 4–60 nm. The diameter of the cylinders is 100 nm, and their concentration at the surface is 2.5·1013m2.

Fig. 6.
Fig. 6.

Dependence of the absorption spectra of p-polarized light surface of the semiconductor coated by the nanocylinders on their shape. Curve 1 corresponds to a height of 60 nm, curve 2–65 nm, curve 3–70 nm, and curve 4–100 nm. The diameter of the cylinders is 100 nm, and the concentration at the surface is 2.5·1013m2.

Fig. 7.
Fig. 7.

Curves of Re(det[Ω(S)(k,ω,ξ)]1) for the InSb surface that is coated by nanodisks with a height of 20 nm (curve 1), 60 nm (curve 2), 65 nm (curve 3), 70 nm (curve 4), and 100 nm (curve 5).

Fig. 8.
Fig. 8.

Dependence of the absorption spectra of the system of the nanodisks with the height of 20 nm (curves 1 and 2) and 60 nm (curves 3 and 4) on the degree of doping of the substrate. Curves 1 and 3 correspond to the plasma with the frequency of 202cm1, and curves 2 and 4 to a frequency of 167cm1.

Fig. 9.
Fig. 9.

Dependence of the absorption spectra of the system of the nanocylinders with the height of 70 nm on the concentration of the particles on the surface. Curve 1 corresponds to the concentration of n=2.5·1013m2, curve 2 to n=2.1·1013m2, curve 3 to n=1.6·1013m2, and curve 4 to n=8.2·1012m2.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

χ(P)(ω,ξ)=χ(m)(ω)[U+A(ω,ξ)A(m)(ω)]1,
χ(S)(k,ω,ξ)=χ(P)(ω,ξ)Ω(S)(k,ω,ξ),
Ω(S)(k,ω,ξ)=[U+nk02VPG(22)(k,l,l,ω)χ(P)(ω,ξ)]1.
QS(k,ω)=ω2hImχyy(P)(ω)0hdz|Ωyy(S)(k,z,ω)|2I0S(k,ω)
QP(k,ω)=ω2hImχij(P)(ω)0hdzΩjl(S)(k,z,ω)[Ωik(S)(k,z,ω)]*Ej(0)(k,ω)[Ek(0)(k,ω)]*
ε(m)(ω)=1(ωp(m))2/[ω(ω+iγe(m))],
ε(1)(ω)=ε(1+ωLO2ωTO2ωTO2ω2iωγphωp2ω(ω+iγe)),
Redet[U+nk02VPG(22)(k,l,l,ω)χ(P)(ω,ξ)]=0,

Metrics