Abstract

High intensity optical excitation to transform a crystalline semiconductor into a plasmonic metal at near-infrared wavelengths is theoretically investigated. A calculated intensity of 51.46GW/cm2 is sufficient to transform GaAs into metal at 1.55 μm to support plasmonic modes. A practical nanoscale plasmonic gap waveguide is designed based on the GaAs/GaN materials system, demonstrating the capability of obtaining plasmonic waveguiding by high intensity optical excitation. The propagation characteristics of the plasmonic gap mode in the designed waveguide can be dynamically tuned over a broad range of values by varying the intensity of the pump excitation using modest average powers between 15 and 75 mW.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Maier, Plasmonics—Fundamentals and Applications (Springer, 2007).
  2. M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, and H. A. Atwater, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
    [CrossRef]
  3. T. Sands, J. P. Harbison, N. Tabatabaie, W. K. Chan, H. L. Gilchrist, T. L. Cheeks, L. T. Florez, and V. G. Keramidas, “Epitaxial metal(NiAl)-semiconductor(III-V) heterostructures by MBE,” Surf. Sci. 228, 1–8 (1990).
    [CrossRef]
  4. M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22, 143201 (2010).
    [CrossRef]
  5. V. A. Fedotov, T. Uchino, and J. Y. Ou, “Low-loss plasmonic metal material based on epitaxial gold monocrystal film,” Opt. Express 20, 9545–9550 (2012).
    [CrossRef]
  6. J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and J. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
    [CrossRef]
  7. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18, 12971–12979 (2010).
    [CrossRef]
  8. L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2004).
  9. D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, and K. C. Vernon, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
    [CrossRef]
  10. T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93, 241115(2008).
    [CrossRef]
  11. J. Gómez Rivas, M. Kuttge, P. Haring Bolivar, and H. Kurz, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93, 256804 (2004).
    [CrossRef]
  12. E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100, 123901 (2008).
    [CrossRef]
  13. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstrations of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2011).
    [CrossRef]
  14. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
    [CrossRef]
  15. G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4, 295–297 (2011).
    [CrossRef]
  16. D. Li and C. Z. Ning, “All-semiconductor active plasmonic system in mid-infrared wavelengths,” Opt. Express 19, 14594–14603 (2011).
    [CrossRef]
  17. M. Durach, A. Rusina, M. F. Kling, and M. I. Stockman, “Metallization of nanofilms in strong adiabatic electric fields,” Phys. Rev. Lett. 105, 086803 (2010).
    [CrossRef]
  18. A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2012).
    [CrossRef]
  19. M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2012).
    [CrossRef]
  20. D. M. Goodmanson, “A recursion relation for matrix elements of the quantum bouncer,” Am. J. Phys. 68, 866–868 (2000).
    [CrossRef]
  21. C. Zener, “Non-adiabatic crossing of energy levels,” Proc. R. Soc. A 137, 696–702 (1932).
    [CrossRef]
  22. A. N. Oraevsky, “Whether is it possible to produce high concentrations of carriers in a semiconductor for observing the Bose condensate at room temperature?” Quantum Electron. 33, 377–379 (2003).
    [CrossRef]
  23. M. Rasolt, “Plasmon-phonon-assisted electron-hole recombination in Si at very high carrier density,” Phys. Rev. B 33, 1166–1176 (1986).
    [CrossRef]
  24. H. M. van Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53 μm picosecond laser pulses,” Phys. Rev. B 35, 8166–8176 (1987).
    [CrossRef]
  25. M. Combescot and J. Bok, “Electron-hole plasma generation and evolution in semiconductors,” J. Lumin. 30, 1–17 (1985).
    [CrossRef]
  26. R. Schroeder and B. Ullrich, “Absorption and subsequent emission saturation of two-photon excited materials: theory and experiment,” Opt. Lett. 27, 1285–1287 (2002).
    [CrossRef]
  27. J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer 48, 501–509 (2005).
    [CrossRef]
  28. P. Allenspacher, B. Hüttner, and W. Riede, “Ultrashort pulse damage of Si and Ge semiconductors,” Proc. SPIE 4932, 359–365 (2003).
    [CrossRef]
  29. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 2643–2650 (2000).
    [CrossRef]
  30. P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, “Ultrafast electronic disordering during femtosecond laser melting of GaAs,” Phys. Rev. Lett. 67, 1023–1026 (1991).
    [CrossRef]
  31. S. V. Novikov, N. M. Stanton, R. P. Campion, R. D. Morris, H. L. Geen, C. T. Foxon, and A. J. Kent, “Growth and characterization of free-standing zinc-blende (cubic) GaN layers and substrates,” Semicond. Sci. Technol. 23, 015018 (2008).
    [CrossRef]
  32. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511–2521(2007).
    [CrossRef]
  33. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
    [CrossRef]
  34. A. Y. Elezzabi, Z. Han, S. Sederberg, and V. Van, “Ultrafast all-optical modulation in silicon-based nanoplasmonic devices,” Opt. Express 17, 11045–11056 (2009).
    [CrossRef]

2012 (4)

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2012).
[CrossRef]

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2012).
[CrossRef]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[CrossRef]

V. A. Fedotov, T. Uchino, and J. Y. Ou, “Low-loss plasmonic metal material based on epitaxial gold monocrystal film,” Opt. Express 20, 9545–9550 (2012).
[CrossRef]

2011 (3)

D. Li and C. Z. Ning, “All-semiconductor active plasmonic system in mid-infrared wavelengths,” Opt. Express 19, 14594–14603 (2011).
[CrossRef]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4, 295–297 (2011).
[CrossRef]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstrations of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2011).
[CrossRef]

2010 (3)

M. Durach, A. Rusina, M. F. Kling, and M. I. Stockman, “Metallization of nanofilms in strong adiabatic electric fields,” Phys. Rev. Lett. 105, 086803 (2010).
[CrossRef]

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22, 143201 (2010).
[CrossRef]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18, 12971–12979 (2010).
[CrossRef]

2009 (2)

A. Y. Elezzabi, Z. Han, S. Sederberg, and V. Van, “Ultrafast all-optical modulation in silicon-based nanoplasmonic devices,” Opt. Express 17, 11045–11056 (2009).
[CrossRef]

J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and J. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef]

2008 (5)

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100, 123901 (2008).
[CrossRef]

S. V. Novikov, N. M. Stanton, R. P. Campion, R. D. Morris, H. L. Geen, C. T. Foxon, and A. J. Kent, “Growth and characterization of free-standing zinc-blende (cubic) GaN layers and substrates,” Semicond. Sci. Technol. 23, 015018 (2008).
[CrossRef]

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[CrossRef]

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, and H. A. Atwater, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
[CrossRef]

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93, 241115(2008).
[CrossRef]

2007 (1)

2005 (2)

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer 48, 501–509 (2005).
[CrossRef]

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, and K. C. Vernon, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

2004 (1)

J. Gómez Rivas, M. Kuttge, P. Haring Bolivar, and H. Kurz, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[CrossRef]

2003 (2)

A. N. Oraevsky, “Whether is it possible to produce high concentrations of carriers in a semiconductor for observing the Bose condensate at room temperature?” Quantum Electron. 33, 377–379 (2003).
[CrossRef]

P. Allenspacher, B. Hüttner, and W. Riede, “Ultrashort pulse damage of Si and Ge semiconductors,” Proc. SPIE 4932, 359–365 (2003).
[CrossRef]

2002 (1)

2000 (2)

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 2643–2650 (2000).
[CrossRef]

D. M. Goodmanson, “A recursion relation for matrix elements of the quantum bouncer,” Am. J. Phys. 68, 866–868 (2000).
[CrossRef]

1991 (1)

P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, “Ultrafast electronic disordering during femtosecond laser melting of GaAs,” Phys. Rev. Lett. 67, 1023–1026 (1991).
[CrossRef]

1990 (1)

T. Sands, J. P. Harbison, N. Tabatabaie, W. K. Chan, H. L. Gilchrist, T. L. Cheeks, L. T. Florez, and V. G. Keramidas, “Epitaxial metal(NiAl)-semiconductor(III-V) heterostructures by MBE,” Surf. Sci. 228, 1–8 (1990).
[CrossRef]

1987 (1)

H. M. van Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53 μm picosecond laser pulses,” Phys. Rev. B 35, 8166–8176 (1987).
[CrossRef]

1986 (1)

M. Rasolt, “Plasmon-phonon-assisted electron-hole recombination in Si at very high carrier density,” Phys. Rev. B 33, 1166–1176 (1986).
[CrossRef]

1985 (1)

M. Combescot and J. Bok, “Electron-hole plasma generation and evolution in semiconductors,” J. Lumin. 30, 1–17 (1985).
[CrossRef]

1932 (1)

C. Zener, “Non-adiabatic crossing of energy levels,” Proc. R. Soc. A 137, 696–702 (1932).
[CrossRef]

Aitchison, J. S.

Alam, M. Z.

Allenspacher, P.

P. Allenspacher, B. Hüttner, and W. Riede, “Ultrashort pulse damage of Si and Ge semiconductors,” Proc. SPIE 4932, 359–365 (2003).
[CrossRef]

Apalkov, V.

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2012).
[CrossRef]

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2012).
[CrossRef]

Arnold, M. D.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22, 143201 (2010).
[CrossRef]

Atwater, H. A.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, and H. A. Atwater, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
[CrossRef]

Barnes, W. L.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93, 241115(2008).
[CrossRef]

Barth, J. V.

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2012).
[CrossRef]

Beraun, J. E.

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer 48, 501–509 (2005).
[CrossRef]

Blaber, M. G.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22, 143201 (2010).
[CrossRef]

Bloembergen, N.

P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, “Ultrafast electronic disordering during femtosecond laser melting of GaAs,” Phys. Rev. Lett. 67, 1023–1026 (1991).
[CrossRef]

Bok, J.

M. Combescot and J. Bok, “Electron-hole plasma generation and evolution in semiconductors,” J. Lumin. 30, 1–17 (1985).
[CrossRef]

Boltasseva, A.

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[CrossRef]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstrations of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2011).
[CrossRef]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4, 295–297 (2011).
[CrossRef]

Bonn, M.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100, 123901 (2008).
[CrossRef]

Bothschafter, E. M.

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2012).
[CrossRef]

Bouhelier, A.

J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and J. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef]

Campion, R. P.

S. V. Novikov, N. M. Stanton, R. P. Campion, R. D. Morris, H. L. Geen, C. T. Foxon, and A. J. Kent, “Growth and characterization of free-standing zinc-blende (cubic) GaN layers and substrates,” Semicond. Sci. Technol. 23, 015018 (2008).
[CrossRef]

Chan, W. K.

T. Sands, J. P. Harbison, N. Tabatabaie, W. K. Chan, H. L. Gilchrist, T. L. Cheeks, L. T. Florez, and V. G. Keramidas, “Epitaxial metal(NiAl)-semiconductor(III-V) heterostructures by MBE,” Surf. Sci. 228, 1–8 (1990).
[CrossRef]

Cheeks, T. L.

T. Sands, J. P. Harbison, N. Tabatabaie, W. K. Chan, H. L. Gilchrist, T. L. Cheeks, L. T. Florez, and V. G. Keramidas, “Epitaxial metal(NiAl)-semiconductor(III-V) heterostructures by MBE,” Surf. Sci. 228, 1–8 (1990).
[CrossRef]

Chen, J. K.

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer 48, 501–509 (2005).
[CrossRef]

Colas des Francs, G.

J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and J. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef]

Combescot, M.

M. Combescot and J. Bok, “Electron-hole plasma generation and evolution in semiconductors,” J. Lumin. 30, 1–17 (1985).
[CrossRef]

Dereux, J.

J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and J. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef]

Durach, M.

M. Durach, A. Rusina, M. F. Kling, and M. I. Stockman, “Metallization of nanofilms in strong adiabatic electric fields,” Phys. Rev. Lett. 105, 086803 (2010).
[CrossRef]

Elezzabi, A. Y.

Ernstorfer, R.

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2012).
[CrossRef]

Fan, S.

Fedotov, V. A.

Fiess, M.

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2012).
[CrossRef]

Finot, C.

J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and J. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef]

Florez, L. T.

T. Sands, J. P. Harbison, N. Tabatabaie, W. K. Chan, H. L. Gilchrist, T. L. Cheeks, L. T. Florez, and V. G. Keramidas, “Epitaxial metal(NiAl)-semiconductor(III-V) heterostructures by MBE,” Surf. Sci. 228, 1–8 (1990).
[CrossRef]

Ford, M. J.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22, 143201 (2010).
[CrossRef]

Foxon, C. T.

S. V. Novikov, N. M. Stanton, R. P. Campion, R. D. Morris, H. L. Geen, C. T. Foxon, and A. J. Kent, “Growth and characterization of free-standing zinc-blende (cubic) GaN layers and substrates,” Semicond. Sci. Technol. 23, 015018 (2008).
[CrossRef]

Garcia-Vidal, F. J.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100, 123901 (2008).
[CrossRef]

Geen, H. L.

S. V. Novikov, N. M. Stanton, R. P. Campion, R. D. Morris, H. L. Geen, C. T. Foxon, and A. J. Kent, “Growth and characterization of free-standing zinc-blende (cubic) GaN layers and substrates,” Semicond. Sci. Technol. 23, 015018 (2008).
[CrossRef]

Gerster, D.

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2012).
[CrossRef]

Gilchrist, H. L.

T. Sands, J. P. Harbison, N. Tabatabaie, W. K. Chan, H. L. Gilchrist, T. L. Cheeks, L. T. Florez, and V. G. Keramidas, “Epitaxial metal(NiAl)-semiconductor(III-V) heterostructures by MBE,” Surf. Sci. 228, 1–8 (1990).
[CrossRef]

Gómez Rivas, J.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100, 123901 (2008).
[CrossRef]

J. Gómez Rivas, M. Kuttge, P. Haring Bolivar, and H. Kurz, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[CrossRef]

Goodmanson, D. M.

D. M. Goodmanson, “A recursion relation for matrix elements of the quantum bouncer,” Am. J. Phys. 68, 866–868 (2000).
[CrossRef]

Gramotnev, D. K.

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, and K. C. Vernon, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Grandidier, J.

J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and J. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef]

Han, Z.

Harbison, J. P.

T. Sands, J. P. Harbison, N. Tabatabaie, W. K. Chan, H. L. Gilchrist, T. L. Cheeks, L. T. Florez, and V. G. Keramidas, “Epitaxial metal(NiAl)-semiconductor(III-V) heterostructures by MBE,” Surf. Sci. 228, 1–8 (1990).
[CrossRef]

Haring Bolivar, P.

J. Gómez Rivas, M. Kuttge, P. Haring Bolivar, and H. Kurz, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[CrossRef]

Hendry, E.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100, 123901 (2008).
[CrossRef]

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93, 241115(2008).
[CrossRef]

Hibbins, A. P.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100, 123901 (2008).
[CrossRef]

Hofstetter, M.

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2012).
[CrossRef]

Holzner, S.

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2012).
[CrossRef]

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2012).
[CrossRef]

Hüttner, B.

P. Allenspacher, B. Hüttner, and W. Riede, “Ultrashort pulse damage of Si and Ge semiconductors,” Proc. SPIE 4932, 359–365 (2003).
[CrossRef]

Isaac, T. H.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93, 241115(2008).
[CrossRef]

Karpowicz, N.

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2012).
[CrossRef]

Kent, A. J.

S. V. Novikov, N. M. Stanton, R. P. Campion, R. D. Morris, H. L. Geen, C. T. Foxon, and A. J. Kent, “Growth and characterization of free-standing zinc-blende (cubic) GaN layers and substrates,” Semicond. Sci. Technol. 23, 015018 (2008).
[CrossRef]

Keramidas, V. G.

T. Sands, J. P. Harbison, N. Tabatabaie, W. K. Chan, H. L. Gilchrist, T. L. Cheeks, L. T. Florez, and V. G. Keramidas, “Epitaxial metal(NiAl)-semiconductor(III-V) heterostructures by MBE,” Surf. Sci. 228, 1–8 (1990).
[CrossRef]

Kienberger, R.

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2012).
[CrossRef]

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2012).
[CrossRef]

Kildishev, A. V.

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[CrossRef]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstrations of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2011).
[CrossRef]

Kling, M. F.

M. Durach, A. Rusina, M. F. Kling, and M. I. Stockman, “Metallization of nanofilms in strong adiabatic electric fields,” Phys. Rev. Lett. 105, 086803 (2010).
[CrossRef]

Korbman, M.

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2012).
[CrossRef]

Krausz, F.

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2012).
[CrossRef]

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2012).
[CrossRef]

Kurz, H.

J. Gómez Rivas, M. Kuttge, P. Haring Bolivar, and H. Kurz, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[CrossRef]

Kuttge, M.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, and H. A. Atwater, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
[CrossRef]

J. Gómez Rivas, M. Kuttge, P. Haring Bolivar, and H. Kurz, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[CrossRef]

Lezec, H. J.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, and H. A. Atwater, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
[CrossRef]

Li, D.

Liu, J.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstrations of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2011).
[CrossRef]

Lockwood, D. J.

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2004).

Lockyear, M. J.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100, 123901 (2008).
[CrossRef]

MacDonald, K. F.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[CrossRef]

Maier, S.

S. Maier, Plasmonics—Fundamentals and Applications (Springer, 2007).

Markey, L.

J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and J. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef]

Martin-Moreno, L.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100, 123901 (2008).
[CrossRef]

Massenot, S.

J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and J. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef]

Matsuzaki, Y.

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, and K. C. Vernon, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Mazur, E.

P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, “Ultrafast electronic disordering during femtosecond laser melting of GaAs,” Phys. Rev. Lett. 67, 1023–1026 (1991).
[CrossRef]

Meier, J.

Mojahedi, M.

Morris, R. D.

S. V. Novikov, N. M. Stanton, R. P. Campion, R. D. Morris, H. L. Geen, C. T. Foxon, and A. J. Kent, “Growth and characterization of free-standing zinc-blende (cubic) GaN layers and substrates,” Semicond. Sci. Technol. 23, 015018 (2008).
[CrossRef]

Mühlbrandt, S.

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2012).
[CrossRef]

Naik, G. V.

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[CrossRef]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstrations of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2011).
[CrossRef]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4, 295–297 (2011).
[CrossRef]

Ni, X.

Ning, C. Z.

Novikov, S. V.

S. V. Novikov, N. M. Stanton, R. P. Campion, R. D. Morris, H. L. Geen, C. T. Foxon, and A. J. Kent, “Growth and characterization of free-standing zinc-blende (cubic) GaN layers and substrates,” Semicond. Sci. Technol. 23, 015018 (2008).
[CrossRef]

Ogawa, T.

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, and K. C. Vernon, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Oraevsky, A. N.

A. N. Oraevsky, “Whether is it possible to produce high concentrations of carriers in a semiconductor for observing the Bose condensate at room temperature?” Quantum Electron. 33, 377–379 (2003).
[CrossRef]

Ou, J. Y.

Paasch-Colberg, T.

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2012).
[CrossRef]

Pavesi, L.

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2004).

Pile, D. F.

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, and K. C. Vernon, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Rasolt, M.

M. Rasolt, “Plasmon-phonon-assisted electron-hole recombination in Si at very high carrier density,” Phys. Rev. B 33, 1166–1176 (1986).
[CrossRef]

Reichert, J.

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2012).
[CrossRef]

Riede, W.

P. Allenspacher, B. Hüttner, and W. Riede, “Ultrashort pulse damage of Si and Ge semiconductors,” Proc. SPIE 4932, 359–365 (2003).
[CrossRef]

Rusina, A.

M. Durach, A. Rusina, M. F. Kling, and M. I. Stockman, “Metallization of nanofilms in strong adiabatic electric fields,” Phys. Rev. Lett. 105, 086803 (2010).
[CrossRef]

Saeta, P.

P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, “Ultrafast electronic disordering during femtosecond laser melting of GaAs,” Phys. Rev. Lett. 67, 1023–1026 (1991).
[CrossRef]

Sámson, Z. L.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[CrossRef]

Sands, T.

T. Sands, J. P. Harbison, N. Tabatabaie, W. K. Chan, H. L. Gilchrist, T. L. Cheeks, L. T. Florez, and V. G. Keramidas, “Epitaxial metal(NiAl)-semiconductor(III-V) heterostructures by MBE,” Surf. Sci. 228, 1–8 (1990).
[CrossRef]

Sands, T. D.

Schiffrin, A.

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2012).
[CrossRef]

Schroeder, J. L.

Schroeder, R.

Schultze, M.

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2012).
[CrossRef]

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2012).
[CrossRef]

Schweinberger, W.

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2012).
[CrossRef]

Sederberg, S.

Shalaev, V. M.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstrations of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2011).
[CrossRef]

Siegal, Y.

P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, “Ultrafast electronic disordering during femtosecond laser melting of GaAs,” Phys. Rev. Lett. 67, 1023–1026 (1991).
[CrossRef]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 2643–2650 (2000).
[CrossRef]

Sommer, A.

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2012).
[CrossRef]

Stanton, N. M.

S. V. Novikov, N. M. Stanton, R. P. Campion, R. D. Morris, H. L. Geen, C. T. Foxon, and A. J. Kent, “Growth and characterization of free-standing zinc-blende (cubic) GaN layers and substrates,” Semicond. Sci. Technol. 23, 015018 (2008).
[CrossRef]

Stockman, M. I.

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2012).
[CrossRef]

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2012).
[CrossRef]

M. Durach, A. Rusina, M. F. Kling, and M. I. Stockman, “Metallization of nanofilms in strong adiabatic electric fields,” Phys. Rev. Lett. 105, 086803 (2010).
[CrossRef]

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[CrossRef]

Tabatabaie, N.

T. Sands, J. P. Harbison, N. Tabatabaie, W. K. Chan, H. L. Gilchrist, T. L. Cheeks, L. T. Florez, and V. G. Keramidas, “Epitaxial metal(NiAl)-semiconductor(III-V) heterostructures by MBE,” Surf. Sci. 228, 1–8 (1990).
[CrossRef]

Tzou, D. Y.

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer 48, 501–509 (2005).
[CrossRef]

Uchino, T.

Ullrich, B.

Van, V.

van Driel, H. M.

H. M. van Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53 μm picosecond laser pulses,” Phys. Rev. B 35, 8166–8176 (1987).
[CrossRef]

Verhoeven, J.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, and H. A. Atwater, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
[CrossRef]

Vernon, K. C.

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, and K. C. Vernon, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Veronis, G.

Vesseur, E. J. R.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, and H. A. Atwater, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
[CrossRef]

von der Linde, D.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 2643–2650 (2000).
[CrossRef]

Wang, J.-K.

P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, “Ultrafast electronic disordering during femtosecond laser melting of GaAs,” Phys. Rev. Lett. 67, 1023–1026 (1991).
[CrossRef]

Weeber, J.-C.

J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and J. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef]

Yakovlev, V. S.

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2012).
[CrossRef]

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2012).
[CrossRef]

Zener, C.

C. Zener, “Non-adiabatic crossing of energy levels,” Proc. R. Soc. A 137, 696–702 (1932).
[CrossRef]

Zheludev, N. I.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[CrossRef]

Am. J. Phys. (1)

D. M. Goodmanson, “A recursion relation for matrix elements of the quantum bouncer,” Am. J. Phys. 68, 866–868 (2000).
[CrossRef]

Appl. Phys. Lett. (3)

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, and H. A. Atwater, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
[CrossRef]

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, and K. C. Vernon, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93, 241115(2008).
[CrossRef]

Int. J. Heat Mass Transfer (1)

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer 48, 501–509 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Lumin. (1)

M. Combescot and J. Bok, “Electron-hole plasma generation and evolution in semiconductors,” J. Lumin. 30, 1–17 (1985).
[CrossRef]

J. Phys. Condens. Matter (1)

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22, 143201 (2010).
[CrossRef]

Nano Lett. (1)

J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and J. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef]

Nat. Photonics (1)

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[CrossRef]

Nature (2)

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2012).
[CrossRef]

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2012).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B (3)

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 2643–2650 (2000).
[CrossRef]

M. Rasolt, “Plasmon-phonon-assisted electron-hole recombination in Si at very high carrier density,” Phys. Rev. B 33, 1166–1176 (1986).
[CrossRef]

H. M. van Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53 μm picosecond laser pulses,” Phys. Rev. B 35, 8166–8176 (1987).
[CrossRef]

Phys. Rev. Lett. (4)

M. Durach, A. Rusina, M. F. Kling, and M. I. Stockman, “Metallization of nanofilms in strong adiabatic electric fields,” Phys. Rev. Lett. 105, 086803 (2010).
[CrossRef]

J. Gómez Rivas, M. Kuttge, P. Haring Bolivar, and H. Kurz, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[CrossRef]

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100, 123901 (2008).
[CrossRef]

P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, “Ultrafast electronic disordering during femtosecond laser melting of GaAs,” Phys. Rev. Lett. 67, 1023–1026 (1991).
[CrossRef]

Phys. Status Solidi Rapid Res. Lett. (1)

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4, 295–297 (2011).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstrations of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2011).
[CrossRef]

Proc. R. Soc. A (1)

C. Zener, “Non-adiabatic crossing of energy levels,” Proc. R. Soc. A 137, 696–702 (1932).
[CrossRef]

Proc. SPIE (1)

P. Allenspacher, B. Hüttner, and W. Riede, “Ultrashort pulse damage of Si and Ge semiconductors,” Proc. SPIE 4932, 359–365 (2003).
[CrossRef]

Quantum Electron. (1)

A. N. Oraevsky, “Whether is it possible to produce high concentrations of carriers in a semiconductor for observing the Bose condensate at room temperature?” Quantum Electron. 33, 377–379 (2003).
[CrossRef]

Semicond. Sci. Technol. (1)

S. V. Novikov, N. M. Stanton, R. P. Campion, R. D. Morris, H. L. Geen, C. T. Foxon, and A. J. Kent, “Growth and characterization of free-standing zinc-blende (cubic) GaN layers and substrates,” Semicond. Sci. Technol. 23, 015018 (2008).
[CrossRef]

Surf. Sci. (1)

T. Sands, J. P. Harbison, N. Tabatabaie, W. K. Chan, H. L. Gilchrist, T. L. Cheeks, L. T. Florez, and V. G. Keramidas, “Epitaxial metal(NiAl)-semiconductor(III-V) heterostructures by MBE,” Surf. Sci. 228, 1–8 (1990).
[CrossRef]

Other (2)

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2004).

S. Maier, Plasmonics—Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematics of the (a) cross section of GaAs/GaN semiconductor plasmonic waveguide with etch depth D=400nm, ridge width W=300nm, spacing between ridges S=200nm, and the GaAs layer thickness T=200nm, (b) the excitation pump mode electric field intensity profile at λ=800nm, and (c) the probe mode electric field intensity profile at λ=1550nm.

Fig. 2.
Fig. 2.

Plots of (a) real part (εr) and (b) imaginary part (εi) of the dielectric permittivity of GaAs as a function of the pump excitation peak intensity.

Fig. 3.
Fig. 3.

Plots of 1550 nm wavelength probe plasmonic gap mode properties as a function of average excitation power, including the (a) effective index (neff), (b) phase constant (β), (c) modal loss (L), and (d) fraction of mode power in the air gap region (η).

Fig. 4.
Fig. 4.

Plots of (a) group velocity (υg) and (b) GVD of 1550 nm wavelength probe plasmonic gap mode as a function of average excitation power.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)=ε(1ωp2ω2+iγω),
ωp2=ne2εome.
dndt=PR=α0I+α2I2hν(An+Bn2+Cn3).
α0(I)=α01+I/Is0,
Is0=ωτσ012ln2π.
α2(I)=α21+I2/Is22,
Is2=2ωτσ212ln2π,
β=ωcεMεDεM+εD,
n=α0I+α2I2hν×tp.

Metrics