Abstract

We develop a dynamical theory of heat transfer between two nanosystems. In particular, we consider the resonant heat transfer between two nanoparticles due to the coupling of localized surface modes having a finite spectral width. We model the coupled nanosystem by two coupled quantum mechanical oscillators, each interacting with its own heat bath, and obtain a master equation for the dynamics of heat transfer. The damping rates in the master equation are related to the lifetimes of localized plasmons in the nanoparticles. We study the dynamics toward the steady state and establish connection with the standard theory of heat transfer in the steady state. For strongly coupled nanoparticles, we predict Rabi oscillations in the mean occupation number of surface plasmons in each nanoparticle.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature dependence of optical near-field energy transfer rate between two quantum dots in nanophotonic devices

Arash Karimkhani and Mohammad Kazem Moravvej-Farshi
Appl. Opt. 49(6) 1012-1019 (2010)

Dynamics of trapped particle cooling in the Lamb–Dicke limit

Stig Stenholm
J. Opt. Soc. Am. B 2(11) 1743-1750 (1985)

Quantum model of cooling and force sensing with an optically trapped nanoparticle

B. Rodenburg, L. P. Neukirch, A. N. Vamivakas, and M. Bhattacharya
Optica 3(3) 318-323 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (55)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription