Abstract

We theoretically study the role of the mode structure of a multicomponent Bose–Einstein condensate (BEC) in the potential created by a nonlinear optical lattice. We describe a multisoliton complex (MSC) as a superposition of different fundamental soliton modes in the matter-wave system. Using a similarity transformation, we solve the nonlinear evolution equation of the multimode coupled matter-wave field and construct a set of analytical bright soliton solutions. A perturbation method is used to examine the linear stability of the constructed solitons. Based on these particular solutions, we numerically analyze the mode structure of a MSC. The results show that the periodicity causes a Bloch modulation in the envelopes of the density distribution. When different fundamental modes collide with each other in the nonlinear lattice, the collision-induced shifts, and the space-dependent modulation of external potentials change the density profile of the multimode soliton complex. Therefore, the mode structure, which is absent in a one-mode BEC, provides the possible multiscale modeling of the matter-wave field with extra degrees of freedom.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (83)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription