Abstract

Near-perfect IR light absorption at multiple wavelengths has been experimentally demonstrated by using multiplexed metal square plasmonic resonance structures. Optical power absorption over 95% has been observed in dual-band metamaterial absorbers at two separate wavelengths, and optical power absorption over 92.5% has been observed in triple-band metamaterial absorbers at three separate wavelengths. The peak absorption wavelengths are primarily determined by the sizes of the metal squares in the multiplexed structures. Electrical field distributions in the middle of the dielectric spacer layer were calculated at the peak absorption wavelengths. It is found that the strong light absorption corresponds to local quadrupole plasmon resonance modes in the metamaterial structures.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
    [CrossRef]
  2. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965).
    [CrossRef]
  3. O. Hunderi and H. P. Myers, “The optical absorption in partially disordered silver films,” J. Phys. F 3, 683–690 (1973).
    [CrossRef]
  4. M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19, 431–436 (1976).
    [CrossRef]
  5. E. Popov, L. Tsonev, and D. Maystre, “Losses of plasmon surface wave on metallic grating,” J. Mod. Opt. 37, 379–387 (1990).
    [CrossRef]
  6. E. Popov, L. Tsonev, and D. Maystre, “Lamellar metallic grating anomalies,” Appl. Opt. 33, 5214–5219 (1994).
    [CrossRef]
  7. E. Popov, D. Maystre, R. C. McPhedran, M. Neviere, M. C. Huthley, and G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16, 6146–6155 (2008).
    [CrossRef]
  8. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
    [CrossRef]
  9. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [CrossRef]
  10. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarization independent microwave absorption,” Appl. Phys. Lett. 94, 041913 (2009).
    [CrossRef]
  11. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
    [CrossRef]
  12. H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
    [CrossRef]
  13. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on negative index plasmonic metamaterial,” Phys. Rev. B 79, 033101 (2009).
    [CrossRef]
  14. C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17, 11039–11044 (2009).
    [CrossRef]
  15. C. Hu, L. Liu, Z. Zhao, X. Chen, and X. Luo, “Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies,” Opt. Express 17, 16745–16749 (2009).
    [CrossRef]
  16. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
    [CrossRef]
  17. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
    [CrossRef]
  18. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
    [CrossRef]
  19. D. Cheng, J. Xie, H. Zhang, C. Wang, N. Zhang, and L. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” J. Opt. Soc. Am. B 29, 1503–1510 (2012).
    [CrossRef]
  20. B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.-C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal–dielectric–metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
    [CrossRef]
  21. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
    [CrossRef]
  22. C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y.-C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20, 10376–10381 (2012).
    [CrossRef]
  23. C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37, 308–310 (2012).
    [CrossRef]
  24. H. M. Lee and J. C. Wu, “A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array,” J. Phys. D 45, 205101 (2012).
    [CrossRef]
  25. Y. Cui, K. H. Fung, J. Xu, S. He, and N. X. Fang, “Multiband plasmonic absorber based on transverse phase resonances,” Opt. Express 20, 17552–17559 (2012).
    [CrossRef]
  26. H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14, 085102 (2012).
    [CrossRef]
  27. Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
    [CrossRef]
  28. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27, 498–504 (2010).
    [CrossRef]
  29. H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
    [CrossRef]
  30. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36, 945–947 (2011).
    [CrossRef]
  31. X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Progress Electromagn. Res. 115, 381–397 (2011).
    [CrossRef]
  32. L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Progress Electromagn. Res. 113, 103–110 (2011).
    [CrossRef]
  33. X. Shen, T. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19, 9401–9407 (2011).
    [CrossRef]
  34. H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
    [CrossRef]
  35. B. Zhu, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Dual band switchable metamaterial electromagnetic absorber,” Progress Electromagn. Res. B 24, 121–129 (2010).
    [CrossRef]
  36. Q. Ye, Y. Liu, H. Lin, M. Li, and H. Yang, “Multi-band metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys. A 107, 155–160 (2012).
    [CrossRef]
  37. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37, 154–156 (2012).
    [CrossRef]
  38. J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at mid-wave infrared using multiplexed metal structures,” Opt. Lett. 37, 371–373 (2012).
    [CrossRef]
  39. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [CrossRef]
  40. M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23, 1980–1985 (1984).
    [CrossRef]
  41. H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
    [CrossRef]
  42. H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20, 7165–7172 (2012).
    [CrossRef]
  43. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
    [CrossRef]

2012 (11)

D. Cheng, J. Xie, H. Zhang, C. Wang, N. Zhang, and L. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” J. Opt. Soc. Am. B 29, 1503–1510 (2012).
[CrossRef]

C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y.-C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20, 10376–10381 (2012).
[CrossRef]

C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37, 308–310 (2012).
[CrossRef]

H. M. Lee and J. C. Wu, “A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array,” J. Phys. D 45, 205101 (2012).
[CrossRef]

Y. Cui, K. H. Fung, J. Xu, S. He, and N. X. Fang, “Multiband plasmonic absorber based on transverse phase resonances,” Opt. Express 20, 17552–17559 (2012).
[CrossRef]

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14, 085102 (2012).
[CrossRef]

Q. Ye, Y. Liu, H. Lin, M. Li, and H. Yang, “Multi-band metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys. A 107, 155–160 (2012).
[CrossRef]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37, 154–156 (2012).
[CrossRef]

J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at mid-wave infrared using multiplexed metal structures,” Opt. Lett. 37, 371–373 (2012).
[CrossRef]

H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20, 7165–7172 (2012).
[CrossRef]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[CrossRef]

2011 (7)

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36, 945–947 (2011).
[CrossRef]

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Progress Electromagn. Res. 115, 381–397 (2011).
[CrossRef]

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Progress Electromagn. Res. 113, 103–110 (2011).
[CrossRef]

X. Shen, T. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19, 9401–9407 (2011).
[CrossRef]

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[CrossRef]

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.-C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal–dielectric–metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
[CrossRef]

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[CrossRef]

2010 (7)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

B. Zhu, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Dual band switchable metamaterial electromagnetic absorber,” Progress Electromagn. Res. B 24, 121–129 (2010).
[CrossRef]

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27, 498–504 (2010).
[CrossRef]

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[CrossRef]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
[CrossRef]

2009 (5)

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarization independent microwave absorption,” Appl. Phys. Lett. 94, 041913 (2009).
[CrossRef]

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on negative index plasmonic metamaterial,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17, 11039–11044 (2009).
[CrossRef]

C. Hu, L. Liu, Z. Zhao, X. Chen, and X. Luo, “Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies,” Opt. Express 17, 16745–16749 (2009).
[CrossRef]

2008 (5)

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

E. Popov, D. Maystre, R. C. McPhedran, M. Neviere, M. C. Huthley, and G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16, 6146–6155 (2008).
[CrossRef]

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

1998 (1)

1994 (1)

1990 (1)

E. Popov, L. Tsonev, and D. Maystre, “Losses of plasmon surface wave on metallic grating,” J. Mod. Opt. 37, 379–387 (1990).
[CrossRef]

1984 (1)

1976 (1)

M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19, 431–436 (1976).
[CrossRef]

1973 (1)

O. Hunderi and H. P. Myers, “The optical absorption in partially disordered silver films,” J. Phys. F 3, 683–690 (1973).
[CrossRef]

1965 (1)

1902 (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
[CrossRef]

Abbas, M. N.

Abdelsalam, M.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

An, X.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14, 085102 (2012).
[CrossRef]

Averitt, R.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Averitt, R. D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef]

Avitzour, Y.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on negative index plasmonic metamaterial,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Azad, A. K.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[CrossRef]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
[CrossRef]

Bartlett, P. N.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

Baumberg, J. J.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

Bingham, C.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Bingham, C. M.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef]

Borisov, A. G.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

Buchwald, W.

Chang, Y.-C.

Chen, F.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
[CrossRef]

Chen, H.

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Progress Electromagn. Res. 113, 103–110 (2011).
[CrossRef]

Chen, H.-T.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37, 154–156 (2012).
[CrossRef]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[CrossRef]

H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20, 7165–7172 (2012).
[CrossRef]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
[CrossRef]

Chen, Q.

Chen, S.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14, 085102 (2012).
[CrossRef]

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.-C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal–dielectric–metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
[CrossRef]

Chen, X.

Cheng, C. W.

Cheng, D.

Cheng, H.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14, 085102 (2012).
[CrossRef]

Cheng, Q.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[CrossRef]

Chiu, C. W.

Chowdhury, D. R.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37, 154–156 (2012).
[CrossRef]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[CrossRef]

Cui, T.

Cui, T. J.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[CrossRef]

Cui, Y.

Cumming, D. R. S.

Deng, L.

Derrick, G. H.

Djurisic, A. B.

Dodge, M. J.

Elazar, J. M.

Fan, K.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Fang, N. X.

Feng, Y.

B. Zhu, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Dual band switchable metamaterial electromagnetic absorber,” Progress Electromagn. Res. B 24, 121–129 (2010).
[CrossRef]

Fung, K. H.

García de Abajo, F. J.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Grant, J.

Gu, C.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14, 085102 (2012).
[CrossRef]

Gui, T.

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Progress Electromagn. Res. 115, 381–397 (2011).
[CrossRef]

Guo, J.

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Hao, Q.

He, S.

He, X.-J.

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Progress Electromagn. Res. 115, 381–397 (2011).
[CrossRef]

Hendrickson, J.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Hessel, A.

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarization independent microwave absorption,” Appl. Phys. Lett. 94, 041913 (2009).
[CrossRef]

Hobson, P. A.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarization independent microwave absorption,” Appl. Phys. Lett. 94, 041913 (2009).
[CrossRef]

Hu, C.

Huang, C.

B. Zhu, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Dual band switchable metamaterial electromagnetic absorber,” Progress Electromagn. Res. B 24, 121–129 (2010).
[CrossRef]

Huang, L.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37, 154–156 (2012).
[CrossRef]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[CrossRef]

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Progress Electromagn. Res. 113, 103–110 (2011).
[CrossRef]

Huang, T. J.

Hunderi, O.

O. Hunderi and H. P. Myers, “The optical absorption in partially disordered silver films,” J. Phys. F 3, 683–690 (1973).
[CrossRef]

Huthley, M. C.

Hutley, M. C.

M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19, 431–436 (1976).
[CrossRef]

Jiang, T.

B. Zhu, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Dual band switchable metamaterial electromagnetic absorber,” Progress Electromagn. Res. B 24, 121–129 (2010).
[CrossRef]

Jiang, W. X.

Jiang, Z. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[CrossRef]

Jin, Y.

Khalid, A.

Khoo, I.-C.

Kiraly, B.

Lai, K. T.

Landy, N.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Landy, N. I.

Lawrence, C. R.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarization independent microwave absorption,” Appl. Phys. Lett. 94, 041913 (2009).
[CrossRef]

Lee, H. M.

H. M. Lee and J. C. Wu, “A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array,” J. Phys. D 45, 205101 (2012).
[CrossRef]

Li, H.

X. Shen, T. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19, 9401–9407 (2011).
[CrossRef]

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[CrossRef]

Li, J.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14, 085102 (2012).
[CrossRef]

Li, M.

Q. Ye, Y. Liu, H. Lin, M. Li, and H. Yang, “Multi-band metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys. A 107, 155–160 (2012).
[CrossRef]

Lin, H.

Q. Ye, Y. Liu, H. Lin, M. Li, and H. Yang, “Multi-band metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys. A 107, 155–160 (2012).
[CrossRef]

Liu, L.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Liu, X.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Liu, Y.

Q. Ye, Y. Liu, H. Lin, M. Li, and H. Yang, “Multi-band metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys. A 107, 155–160 (2012).
[CrossRef]

Liu, Y. L.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarization independent microwave absorption,” Appl. Phys. Lett. 94, 041913 (2009).
[CrossRef]

Luo, S.-N.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37, 154–156 (2012).
[CrossRef]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[CrossRef]

Luo, X.

Ma, H. F.

Ma, Y.

Majewski, M. L.

Mayer, T. S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[CrossRef]

Maystre, D.

E. Popov, D. Maystre, R. C. McPhedran, M. Neviere, M. C. Huthley, and G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16, 6146–6155 (2008).
[CrossRef]

E. Popov, L. Tsonev, and D. Maystre, “Lamellar metallic grating anomalies,” Appl. Opt. 33, 5214–5219 (1994).
[CrossRef]

E. Popov, L. Tsonev, and D. Maystre, “Losses of plasmon surface wave on metallic grating,” J. Mod. Opt. 37, 379–387 (1990).
[CrossRef]

M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19, 431–436 (1976).
[CrossRef]

McPhedran, R. C.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Myers, H. P.

O. Hunderi and H. P. Myers, “The optical absorption in partially disordered silver films,” J. Phys. F 3, 683–690 (1973).
[CrossRef]

Neviere, M.

O’Hara, J. F.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
[CrossRef]

Oliner, A. A.

Padilla, W.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Pilon, D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Popov, E.

Qiu, M.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Rakic, A. D.

Ramani, S.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[CrossRef]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37, 154–156 (2012).
[CrossRef]

Reiten, M. T.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37, 154–156 (2012).
[CrossRef]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[CrossRef]

Saha, S. C.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarization independent microwave absorption,” Appl. Phys. Lett. 94, 041913 (2009).
[CrossRef]

Shen, X.

Shen, X. P.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[CrossRef]

Shih, M. H.

Shrekenhamer, D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Shvets, G.

C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37, 308–310 (2012).
[CrossRef]

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on negative index plasmonic metamaterial,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Soref, R.

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

Strikwerda, A.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Strikwerda, A. C.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[CrossRef]

Sugawara, Y.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

Tao, H.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Taylor, A. J.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[CrossRef]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37, 154–156 (2012).
[CrossRef]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
[CrossRef]

Teperik, T. V.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

Tian, J.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14, 085102 (2012).
[CrossRef]

Toor, F.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[CrossRef]

Tsonev, L.

E. Popov, L. Tsonev, and D. Maystre, “Lamellar metallic grating anomalies,” Appl. Opt. 33, 5214–5219 (1994).
[CrossRef]

E. Popov, L. Tsonev, and D. Maystre, “Losses of plasmon surface wave on metallic grating,” J. Mod. Opt. 37, 379–387 (1990).
[CrossRef]

Urzhumov, Y. A.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on negative index plasmonic metamaterial,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Wang, C.

Wang, J.

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Progress Electromagn. Res. 115, 381–397 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Wang, Y.

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Progress Electromagn. Res. 115, 381–397 (2011).
[CrossRef]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Wen, Q. Y.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

Werner, D. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[CrossRef]

Wood, R. W.

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
[CrossRef]

Wu, C.

Wu, J. C.

H. M. Lee and J. C. Wu, “A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array,” J. Phys. D 45, 205101 (2012).
[CrossRef]

Wu, Q.

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Progress Electromagn. Res. 115, 381–397 (2011).
[CrossRef]

Xie, J.

Xie, Y. S.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

Xu, J.

Yang, H.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14, 085102 (2012).
[CrossRef]

Q. Ye, Y. Liu, H. Lin, M. Li, and H. Yang, “Multi-band metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys. A 107, 155–160 (2012).
[CrossRef]

Yang, Q. H.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

Ye, Q.

Q. Ye, Y. Liu, H. Lin, M. Li, and H. Yang, “Multi-band metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys. A 107, 155–160 (2012).
[CrossRef]

Ye, Y. Q.

Yuan, L. H.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[CrossRef]

Yun, S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[CrossRef]

Zhang, B.

Zhang, H.

Zhang, H. W.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

Zhang, N.

Zhang, X.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef]

Zhao, J.

X. Shen, T. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19, 9401–9407 (2011).
[CrossRef]

B. Zhu, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Dual band switchable metamaterial electromagnetic absorber,” Progress Electromagn. Res. B 24, 121–129 (2010).
[CrossRef]

Zhao, Y.

Zhao, Z.

Zhou, B.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[CrossRef]

Zhou, J.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
[CrossRef]

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Zhu, B.

B. Zhu, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Dual band switchable metamaterial electromagnetic absorber,” Progress Electromagn. Res. B 24, 121–129 (2010).
[CrossRef]

ACS Nano (1)

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. A (1)

Q. Ye, Y. Liu, H. Lin, M. Li, and H. Yang, “Multi-band metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys. A 107, 155–160 (2012).
[CrossRef]

Appl. Phys. Lett. (4)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarization independent microwave absorption,” Appl. Phys. Lett. 94, 041913 (2009).
[CrossRef]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[CrossRef]

J. Appl. Phys. (1)

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[CrossRef]

J. Mod. Opt. (1)

E. Popov, L. Tsonev, and D. Maystre, “Losses of plasmon surface wave on metallic grating,” J. Mod. Opt. 37, 379–387 (1990).
[CrossRef]

J. Opt. (1)

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14, 085102 (2012).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. D (2)

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[CrossRef]

H. M. Lee and J. C. Wu, “A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array,” J. Phys. D 45, 205101 (2012).
[CrossRef]

J. Phys. F (1)

O. Hunderi and H. P. Myers, “The optical absorption in partially disordered silver films,” J. Phys. F 3, 683–690 (1973).
[CrossRef]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Nat. Photonics (1)

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

Opt. Commun. (1)

M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19, 431–436 (1976).
[CrossRef]

Opt. Express (9)

E. Popov, D. Maystre, R. C. McPhedran, M. Neviere, M. C. Huthley, and G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16, 6146–6155 (2008).
[CrossRef]

C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17, 11039–11044 (2009).
[CrossRef]

C. Hu, L. Liu, Z. Zhao, X. Chen, and X. Luo, “Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies,” Opt. Express 17, 16745–16749 (2009).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef]

Y. Cui, K. H. Fung, J. Xu, S. He, and N. X. Fang, “Multiband plasmonic absorber based on transverse phase resonances,” Opt. Express 20, 17552–17559 (2012).
[CrossRef]

X. Shen, T. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19, 9401–9407 (2011).
[CrossRef]

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.-C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal–dielectric–metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
[CrossRef]

C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y.-C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20, 10376–10381 (2012).
[CrossRef]

H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20, 7165–7172 (2012).
[CrossRef]

Opt. Lett. (4)

Philos. Mag. (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
[CrossRef]

Phys. Rev. B (2)

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on negative index plasmonic metamaterial,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Phys. Rev. Lett. (3)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
[CrossRef]

Progress Electromagn. Res. (2)

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Progress Electromagn. Res. 115, 381–397 (2011).
[CrossRef]

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Progress Electromagn. Res. 113, 103–110 (2011).
[CrossRef]

Progress Electromagn. Res. B (1)

B. Zhu, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Dual band switchable metamaterial electromagnetic absorber,” Progress Electromagn. Res. B 24, 121–129 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Dual spectral-band perfect light absorber structure and (b) triple spectral-band perfect light absorber structure.

Fig. 2.
Fig. 2.

Calculated optical power reflectivity from dual spectral-band absorbers with (a) 0.90 and 1.30 μm gold square sizes and 77 nm gold film thickness, (b) 0.90 and 1.30 μm gold square sizes and 100 nm film thickness, (c) 0.95 and 1.35 μm gold square sizes and 77 nm film thickness, (d) 0.95 and 1.35 μm gold square sizes and 100 nm gold film thickness.

Fig. 3.
Fig. 3.

Calculated optical power reflectivity from triple-band metamaterial absorbers with (a) 0.70, 1.00, and 1.38 μm gold squares of 77 nm gold film thickness, (b) 0.70, 1.00, and 1.38 μm gold squares of 100 nm gold film thickness, (c) 0.75, 1.05, and 1.43 μm squares of 77 nm gold film thickness, (d) 0.75, 1.05, and 1.43 μm gold squares of 100 nm gold film thickness.

Fig. 4.
Fig. 4.

AFM images of (a) a dual spectral-band metamaterial absorber surface structure with two different size gold squares of 0.95 and 1.35 μm in the unit cell and (b) a triple spectral-band metamaterial absorber surface structure with four gold squares of three different sizes of 1.43, 1.05, and 0.75 μm multiplexed in the unit cell.

Fig. 5.
Fig. 5.

Measured optical reflectivity from dual spectral-band metamaterial absorbers with (a) 0.90 and 1.30 μm gold squares of 77 nm gold film thickness, (b) 0.90 and 1.30 μm gold squares of 100 nm gold film thickness, (c) 0.95 and 1.35 μm gold squares of 77 nm gold film thickness, (d) 0.95 and 1.35 μm gold squares of 100 nm gold film thickness.

Fig. 6.
Fig. 6.

Measured optical reflectivity from triple-band metamaterial absorbers with (a) 0.70, 1.00, and 1.38 μm gold squares of 77 nm gold film thickness, (b) 0.70, 1.00, and 1.38 μm gold squares of 100 nm film thickness, (c) 0.75, 1.05, and 1.43 μm squares of 77 nm film thickness, (d) 0.75, 1.05, and 1.43 μm gold squares of 100 nm film thickness.

Fig. 7.
Fig. 7.

Simulated electric field distributions in the middle of the dielectric spacer layer of a dual-band perfect absorber at 3.49 μm wavelength: (a) the real part of the x component of the electric field, (b) the imaginary part of the x component of the electric field, (c) the real part of the z component of the electric field, (d) the imaginary part of the z component of the electric field.

Fig. 8.
Fig. 8.

Calculated electric field distributions in the middle of the dielectric spacer layer of a dual-band perfect absorber at 4.87 μm wavelength: (a) the real part of the x component of the electric field, (b) the imaginary part of the x component of the electric field, (c) the real part of the z component of the electric field, (d) the imaginary part of the z component of the electric field.

Fig. 9.
Fig. 9.

Simulated electric field distributions in the middle of the dielectric spacer layer of a triple-band perfect absorber at 2.88 μm wavelength: (a) the real part of Ex component, (b) the imaginary part of Ex component, (c) the real part of Ez component, (d) the imaginary part of Ez component.

Metrics