Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Some optical properties of four-level media via coherent and incoherent pumping fields

Not Accessible

Your library or personal account may give you access

Abstract

The optical properties of a four-level atomic system via coherent and incoherent pumping fields are investigated. The giant Kerr nonlinearity with reduced linear and nonlinear absorption, which has a major role in decreasing the threshold of optical bistability (OB), can be obtained with subluminal light propagation via adjusting the intensities of coupling fields. An incoherent pumping field is noticed to be an extra parameter to reduce the threshold of OB and multistability, and it can be used as an effective parameter in producing lasing with or without population inversion. In this model, optical multistability is achieved simply by tuning the intensity of coupling laser fields. Furthermore, it is shown that the subluminal and the superluminal light propagation can be obtained by appropriate values of the incoherent pumping rate.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Switching from subluminal to superluminal light propagation via a coherent pump field in a four-level atomic system

Shang-qi Kuang, Ren-gang Wan, Jun Kou, Yun Jiang, and Jin-yue Gao
J. Opt. Soc. Am. B 26(12) 2256-2260 (2009)

Kerr effect in Y-configuration double-quantum-dot system

B. Al-Nashy, S. M. M. Amin, and Amin H. Al-Khursan
J. Opt. Soc. Am. B 31(8) 1991-1996 (2014)

Investigation of optical bistability in a double InxGa1−xN/GaN quantum-dot nanostructure via inter-dot tunneling effect

A. Soltani, R. Nasehi, S. H. Asadpour, M. Mahmoudi, and H. Rahimpour Soleimani
Appl. Opt. 54(10) 2606-2614 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.