Abstract

We show that scattering of a surface plasmon by lump-like defects on the walls of a metal/dielectric/metal slot waveguide may be accompanied by 3D nanofocusing of light. Such nanofocusing results in the emergence of “hot spots” of nanometer size with a field intensity several orders higher than in the incident plasmon. This effect takes place only if the lump size is smaller than some critical value. We also demonstrate that a so-called plasmonic “black hole” can concentrate electromagnetic energy as well. We believe that the effect of plasmon nanofocusing may be used for plasmonic nanosensing or subwavelength microscopy.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. P. Kaminov, W. L. Mammel, and H. P. Weber, “Metal-clad waveguides: analytical and experimental study,” Appl. Opt. 13, 396–405 (1974).
    [CrossRef]
  2. M. L. Brongersma and P. G. Kik, eds., Surface Plasmon Nanophotonics (Springer-Verlag, 2007).
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).
  4. L. Cao and M. L. Brongersma, “Active plasmonics: ultrafast developments,” Nat. Photonics 3, 12–13 (2009).
    [CrossRef]
  5. A. M. Gobin, M. H. Lee, N. G. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
    [CrossRef]
  6. S. Vedantam, H. Lee, J. Tang, J. Coway, M. Staffaroni, and E. Yablonovich, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9, 3447–3452 (2009).
    [CrossRef]
  7. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
    [CrossRef]
  8. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolsky, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
    [CrossRef]
  9. V. M. Menon, L. I. Deych, and A. A. Lisyansky, “Nonlinear optics: towards polaritonic logic circuits,” Nat. Photonics 4, 345–346 (2010).
    [CrossRef]
  10. D. A. B. Miller, “Are optical transistors the next logical step?,” Nat. Photonics 4, 3–5 (2010).
    [CrossRef]
  11. D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmon by a tapered gap,” Phys. Rev. B 75, 035431 (2007).
    [CrossRef]
  12. D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98, 104302 (2005).
    [CrossRef]
  13. W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011).
    [CrossRef]
  14. D. A. Smirnova, A. I. Smirnov, and A. A. Zharov, “Two-dimensional plasmonic eigenmode nanolocalization in an inhomogeneous metal-dielectric-metal slot waveguide,” JETP Lett. 96, 245–250 (2012).
    [CrossRef]
  15. W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Manipulating energy flow in variable-gap plasmonic waveguides,” Opt. Lett. 37, 5151–5153 (2012).
    [CrossRef]
  16. A. R. Davoyan, I. V. Shadrivov, Y. S. Kivshar, and D. K. Gramotnev, “Optimal tapers for compensating losses in plasmonic waveguides,” Phys. Status Solidi RRL 4, 277–279 (2010).
    [CrossRef]
  17. A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).
    [CrossRef]
  18. A. E. Klein, A. Minovich, M. Steinert, N. Janunts, A. Tunnermann, D. Neshev, Y. S. Kivshar, and T. Pertsch, “Controlling plasmonic hot spots by interfering Airy beams,” Opt. Lett. 37, 3402–3404 (2012).
    [CrossRef]
  19. G. B. Hocker and W. K. Burns, “Mode dispersion in diffused channel waveguides by the effective index method,” Appl. Opt. 16, 113–118 (1977).
    [CrossRef]
  20. S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14, 9467–9476 (2006).
    [CrossRef]
  21. S. I. Bozhevolnyi and K. V. Nerkararyan, “Channel plasmon polaritons guided by graded gaps: closed-form solutions,” Opt. Express 17, 10327 (2009).
    [CrossRef]
  22. K. V. Nerkararyan, S. K. Nerkararyan, and S. I. Bozhevolnyi, “Plasmonic black hole: broadband omnidirectional absorber of the gap surface plasmons,” Opt. Lett. 36, 4311–4313 (2011).
    [CrossRef]
  23. In the calculations, the other set of parameters was used to implement the condition (10): εD=11 (GaAs), aL=15  nm, ν/ω=0.14. For these parameters, the critical value of the radius is Lc=2  μm.

2012 (3)

2011 (2)

W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011).
[CrossRef]

K. V. Nerkararyan, S. K. Nerkararyan, and S. I. Bozhevolnyi, “Plasmonic black hole: broadband omnidirectional absorber of the gap surface plasmons,” Opt. Lett. 36, 4311–4313 (2011).
[CrossRef]

2010 (4)

A. R. Davoyan, I. V. Shadrivov, Y. S. Kivshar, and D. K. Gramotnev, “Optimal tapers for compensating losses in plasmonic waveguides,” Phys. Status Solidi RRL 4, 277–279 (2010).
[CrossRef]

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).
[CrossRef]

V. M. Menon, L. I. Deych, and A. A. Lisyansky, “Nonlinear optics: towards polaritonic logic circuits,” Nat. Photonics 4, 345–346 (2010).
[CrossRef]

D. A. B. Miller, “Are optical transistors the next logical step?,” Nat. Photonics 4, 3–5 (2010).
[CrossRef]

2009 (3)

L. Cao and M. L. Brongersma, “Active plasmonics: ultrafast developments,” Nat. Photonics 3, 12–13 (2009).
[CrossRef]

S. Vedantam, H. Lee, J. Tang, J. Coway, M. Staffaroni, and E. Yablonovich, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9, 3447–3452 (2009).
[CrossRef]

S. I. Bozhevolnyi and K. V. Nerkararyan, “Channel plasmon polaritons guided by graded gaps: closed-form solutions,” Opt. Express 17, 10327 (2009).
[CrossRef]

2008 (1)

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolsky, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef]

2007 (2)

A. M. Gobin, M. H. Lee, N. G. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef]

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmon by a tapered gap,” Phys. Rev. B 75, 035431 (2007).
[CrossRef]

2006 (1)

2005 (1)

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98, 104302 (2005).
[CrossRef]

2003 (1)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef]

1977 (1)

1974 (1)

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef]

Bozhevolnyi, S. I.

Brongersma, M. L.

L. Cao and M. L. Brongersma, “Active plasmonics: ultrafast developments,” Nat. Photonics 3, 12–13 (2009).
[CrossRef]

Burns, W. K.

Cao, L.

L. Cao and M. L. Brongersma, “Active plasmonics: ultrafast developments,” Nat. Photonics 3, 12–13 (2009).
[CrossRef]

Coway, J.

S. Vedantam, H. Lee, J. Tang, J. Coway, M. Staffaroni, and E. Yablonovich, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9, 3447–3452 (2009).
[CrossRef]

Davoyan, A. R.

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).
[CrossRef]

A. R. Davoyan, I. V. Shadrivov, Y. S. Kivshar, and D. K. Gramotnev, “Optimal tapers for compensating losses in plasmonic waveguides,” Phys. Status Solidi RRL 4, 277–279 (2010).
[CrossRef]

Deych, L. I.

V. M. Menon, L. I. Deych, and A. A. Lisyansky, “Nonlinear optics: towards polaritonic logic circuits,” Nat. Photonics 4, 345–346 (2010).
[CrossRef]

Drezek, R. A.

A. M. Gobin, M. H. Lee, N. G. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef]

Gobin, A. M.

A. M. Gobin, M. H. Lee, N. G. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef]

Gramotnev, D. K.

A. R. Davoyan, I. V. Shadrivov, Y. S. Kivshar, and D. K. Gramotnev, “Optimal tapers for compensating losses in plasmonic waveguides,” Phys. Status Solidi RRL 4, 277–279 (2010).
[CrossRef]

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).
[CrossRef]

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmon by a tapered gap,” Phys. Rev. B 75, 035431 (2007).
[CrossRef]

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98, 104302 (2005).
[CrossRef]

Halas, N. G.

A. M. Gobin, M. H. Lee, N. G. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef]

Hocker, G. B.

James, W. D.

A. M. Gobin, M. H. Lee, N. G. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef]

Janunts, N.

Kaminov, I. P.

Kivshar, Y. S.

A. E. Klein, A. Minovich, M. Steinert, N. Janunts, A. Tunnermann, D. Neshev, Y. S. Kivshar, and T. Pertsch, “Controlling plasmonic hot spots by interfering Airy beams,” Opt. Lett. 37, 3402–3404 (2012).
[CrossRef]

W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011).
[CrossRef]

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).
[CrossRef]

A. R. Davoyan, I. V. Shadrivov, Y. S. Kivshar, and D. K. Gramotnev, “Optimal tapers for compensating losses in plasmonic waveguides,” Phys. Status Solidi RRL 4, 277–279 (2010).
[CrossRef]

Klein, A. E.

Lee, H.

S. Vedantam, H. Lee, J. Tang, J. Coway, M. Staffaroni, and E. Yablonovich, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9, 3447–3452 (2009).
[CrossRef]

Lee, M. H.

A. M. Gobin, M. H. Lee, N. G. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef]

Lisyansky, A. A.

V. M. Menon, L. I. Deych, and A. A. Lisyansky, “Nonlinear optics: towards polaritonic logic circuits,” Nat. Photonics 4, 345–346 (2010).
[CrossRef]

Liu, W.

W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).

Mammel, W. L.

Mayy, M.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolsky, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef]

Menon, V. M.

V. M. Menon, L. I. Deych, and A. A. Lisyansky, “Nonlinear optics: towards polaritonic logic circuits,” Nat. Photonics 4, 345–346 (2010).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Are optical transistors the next logical step?,” Nat. Photonics 4, 3–5 (2010).
[CrossRef]

Minovich, A.

Miroshnichenko, A. E.

W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011).
[CrossRef]

Nerkararyan, K. V.

Nerkararyan, S. K.

Neshev, D.

Neshev, D. N.

W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011).
[CrossRef]

Noginov, M. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolsky, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef]

Noginova, N.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolsky, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef]

Pertsch, T.

Pile, D. F. P.

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmon by a tapered gap,” Phys. Rev. B 75, 035431 (2007).
[CrossRef]

Podolsky, V. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolsky, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef]

Premaratne, M.

Ritzo, B. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolsky, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef]

Rukhlenko, I. D.

Shadrivov, I. V.

W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011).
[CrossRef]

A. R. Davoyan, I. V. Shadrivov, Y. S. Kivshar, and D. K. Gramotnev, “Optimal tapers for compensating losses in plasmonic waveguides,” Phys. Status Solidi RRL 4, 277–279 (2010).
[CrossRef]

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).
[CrossRef]

Smirnov, A. I.

D. A. Smirnova, A. I. Smirnov, and A. A. Zharov, “Two-dimensional plasmonic eigenmode nanolocalization in an inhomogeneous metal-dielectric-metal slot waveguide,” JETP Lett. 96, 245–250 (2012).
[CrossRef]

Smirnova, D. A.

D. A. Smirnova, A. I. Smirnov, and A. A. Zharov, “Two-dimensional plasmonic eigenmode nanolocalization in an inhomogeneous metal-dielectric-metal slot waveguide,” JETP Lett. 96, 245–250 (2012).
[CrossRef]

Staffaroni, M.

S. Vedantam, H. Lee, J. Tang, J. Coway, M. Staffaroni, and E. Yablonovich, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9, 3447–3452 (2009).
[CrossRef]

Steinert, M.

Stockman, M. I.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef]

Tang, J.

S. Vedantam, H. Lee, J. Tang, J. Coway, M. Staffaroni, and E. Yablonovich, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9, 3447–3452 (2009).
[CrossRef]

Tunnermann, A.

Vedantam, S.

S. Vedantam, H. Lee, J. Tang, J. Coway, M. Staffaroni, and E. Yablonovich, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9, 3447–3452 (2009).
[CrossRef]

Vogel, M. W.

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmon by a tapered gap,” Phys. Rev. B 75, 035431 (2007).
[CrossRef]

Weber, H. P.

West, J. L.

A. M. Gobin, M. H. Lee, N. G. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef]

Yablonovich, E.

S. Vedantam, H. Lee, J. Tang, J. Coway, M. Staffaroni, and E. Yablonovich, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9, 3447–3452 (2009).
[CrossRef]

Zhang, X.

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmon by a tapered gap,” Phys. Rev. B 75, 035431 (2007).
[CrossRef]

Zharov, A. A.

D. A. Smirnova, A. I. Smirnov, and A. A. Zharov, “Two-dimensional plasmonic eigenmode nanolocalization in an inhomogeneous metal-dielectric-metal slot waveguide,” JETP Lett. 96, 245–250 (2012).
[CrossRef]

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).
[CrossRef]

Zhu, G.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolsky, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef]

Zhu, W.

Appl. Opt. (2)

J. Appl. Phys. (1)

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98, 104302 (2005).
[CrossRef]

JETP Lett. (1)

D. A. Smirnova, A. I. Smirnov, and A. A. Zharov, “Two-dimensional plasmonic eigenmode nanolocalization in an inhomogeneous metal-dielectric-metal slot waveguide,” JETP Lett. 96, 245–250 (2012).
[CrossRef]

Nano Lett. (2)

A. M. Gobin, M. H. Lee, N. G. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef]

S. Vedantam, H. Lee, J. Tang, J. Coway, M. Staffaroni, and E. Yablonovich, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9, 3447–3452 (2009).
[CrossRef]

Nat. Photonics (3)

V. M. Menon, L. I. Deych, and A. A. Lisyansky, “Nonlinear optics: towards polaritonic logic circuits,” Nat. Photonics 4, 345–346 (2010).
[CrossRef]

D. A. B. Miller, “Are optical transistors the next logical step?,” Nat. Photonics 4, 3–5 (2010).
[CrossRef]

L. Cao and M. L. Brongersma, “Active plasmonics: ultrafast developments,” Nat. Photonics 3, 12–13 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (2)

W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011).
[CrossRef]

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmon by a tapered gap,” Phys. Rev. B 75, 035431 (2007).
[CrossRef]

Phys. Rev. Lett. (3)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolsky, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef]

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).
[CrossRef]

Phys. Status Solidi RRL (1)

A. R. Davoyan, I. V. Shadrivov, Y. S. Kivshar, and D. K. Gramotnev, “Optimal tapers for compensating losses in plasmonic waveguides,” Phys. Status Solidi RRL 4, 277–279 (2010).
[CrossRef]

Other (3)

In the calculations, the other set of parameters was used to implement the condition (10): εD=11 (GaAs), aL=15  nm, ν/ω=0.14. For these parameters, the critical value of the radius is Lc=2  μm.

M. L. Brongersma and P. G. Kik, eds., Surface Plasmon Nanophotonics (Springer-Verlag, 2007).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Geometry of the problem: the plasmon propagates along the x axis in the MDM slot waveguide and scatters on the lump-like structure.

Fig. 2.
Fig. 2.

(a) Radial structure of lump and (b) real (solid curves) and imaginary (dashed curves) parts of the corresponding effective dielectric permittivity. Note that the scales for real and imaginary parts are different. The dependences are shown for L=120nm, S=5 (curves 1, 1’) and L=425nm, S=10 (curves 2, 2’).

Fig. 3.
Fig. 3.

Electric field intensity pattern in the vicinity of the lump with size of D=2L=240nm (panels a and b), 500 nm (panels c and d), and 850 nm (panels e and f) ; the narrowing is characterized by parameter S=3 (panels a, c, and e) and 10 (panels b, d, and f). The intensity distribution is presented on a logarithmic color scale, log10I.

Fig. 4.
Fig. 4.

(a) Differential cross section as a function of the scattering angle for the plane wave scattering on the lump with a size of D=2L=850nm and the narrowing characterized by parameter S=3 (black dashed curves) and 10 (red solid curves) that correspond to the case shown in Figs. 3(e) and 3(f). The inset shows the amplitudes of the azimuthal harmonics of the scattered field as a function of the azimuthal number. (b) Dependence of the scattering cross section on the radius of the lump and parameter S.

Fig. 5.
Fig. 5.

Field intensity pattern presented on a logarithmic color scale, log10I, for the case of plane wave scattering on the lump with a radius of (a) L=1μm and (b) L=2μm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ΔU+k02εeff(x,y)U=0,
εeff=εD{1+2Λpa(x,y)(1iν2ω)}.
d2U(m)(ρ)dρ2+1ρdU(m)(ρ)dρ+(β02S(1iν2ω)L2+(S1)ρ2m2ρ2)U(m)(ρ)=0,atρ<L
d2U(m)(ρ)dρ2+1ρdU(m)(ρ)dρ+(β02(1iν2ω)L2m2ρ2)U(m)(ρ)=0,atρL,
Uex(ρ,ϕ)=m={U0Jm(β0ρ/L)+FmHm(2)(β0ρ1iν/2ω/L)}im.
d2U(m)(ρ)dρ2+1ρdU(m)(ρ)dρ+[β02(1iν2ω)m2]U(m)ρ2=0.
U(m)(ρ)=C1(m)ρκm+C2(m)ρκm;κm=m2β02(1iν2ω),
Re(κ0)=β0ν4ω<2,
L<Lc=λ0ων2aLπ2εDΛp.
L>Lc/2.

Metrics