Abstract

We studied numerically and experimentally the possibility of the development of a probe based on the fiber Fabry–Perot interferometer with an evanescent light source protruding directly toward the sample. It was shown that such a probe provides a spatial resolution λ/40 for λ=1550nm. The fabrication process of such a probe is described in detail.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Pohl and W. D. M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
    [CrossRef]
  2. U. Duerig, D. W. Pohl, and F. Rohner, “Near-field optical scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986).
    [CrossRef]
  3. E. Betzig, M. Isaacson, and A. Lewis, “Collection mode near field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987).
    [CrossRef]
  4. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  5. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).
    [CrossRef]
  6. R. M. Stockle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, “Brighter near-field optical probes by means of improving the optical destruction threshold,” J. Microsc. 194, 378–382 (1999).
    [CrossRef]
  7. Y. N. Kulchin, O. B. Vitrik, E. V. Pustovalov, A. A. Kuchmizhak, and A. V. Nepomnyashchiy, “Fiber-optic Fabry–Perot microresonator for near-field optical microscopy systems,” Crystallogr. Rep. 56, 866–870 (2011).
    [CrossRef]
  8. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  9. P. B. Johnson and R. W. Christy, “Optical constants of the noble metal,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  10. T. Pangaribuan, K. Yamada, and S. Jiang, “Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, 1302–1304 (1992).
    [CrossRef]
  11. R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
    [CrossRef]

2011 (1)

Y. N. Kulchin, O. B. Vitrik, E. V. Pustovalov, A. A. Kuchmizhak, and A. V. Nepomnyashchiy, “Fiber-optic Fabry–Perot microresonator for near-field optical microscopy systems,” Crystallogr. Rep. 56, 866–870 (2011).
[CrossRef]

2000 (1)

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).
[CrossRef]

1999 (2)

R. M. Stockle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, “Brighter near-field optical probes by means of improving the optical destruction threshold,” J. Microsc. 194, 378–382 (1999).
[CrossRef]

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

1992 (1)

T. Pangaribuan, K. Yamada, and S. Jiang, “Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, 1302–1304 (1992).
[CrossRef]

1987 (1)

E. Betzig, M. Isaacson, and A. Lewis, “Collection mode near field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987).
[CrossRef]

1986 (1)

U. Duerig, D. W. Pohl, and F. Rohner, “Near-field optical scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986).
[CrossRef]

1984 (1)

D. W. Pohl and W. D. M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metal,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Betzig, E.

E. Betzig, M. Isaacson, and A. Lewis, “Collection mode near field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metal,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Deckert, V.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).
[CrossRef]

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

R. M. Stockle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, “Brighter near-field optical probes by means of improving the optical destruction threshold,” J. Microsc. 194, 378–382 (1999).
[CrossRef]

Duerig, U.

U. Duerig, D. W. Pohl, and F. Rohner, “Near-field optical scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986).
[CrossRef]

Fokas, C.

R. M. Stockle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, “Brighter near-field optical probes by means of improving the optical destruction threshold,” J. Microsc. 194, 378–382 (1999).
[CrossRef]

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

Hecht, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).
[CrossRef]

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Isaacson, M.

E. Betzig, M. Isaacson, and A. Lewis, “Collection mode near field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987).
[CrossRef]

Jiang, S.

T. Pangaribuan, K. Yamada, and S. Jiang, “Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, 1302–1304 (1992).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metal,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kuchmizhak, A. A.

Y. N. Kulchin, O. B. Vitrik, E. V. Pustovalov, A. A. Kuchmizhak, and A. V. Nepomnyashchiy, “Fiber-optic Fabry–Perot microresonator for near-field optical microscopy systems,” Crystallogr. Rep. 56, 866–870 (2011).
[CrossRef]

Kulchin, Y. N.

Y. N. Kulchin, O. B. Vitrik, E. V. Pustovalov, A. A. Kuchmizhak, and A. V. Nepomnyashchiy, “Fiber-optic Fabry–Perot microresonator for near-field optical microscopy systems,” Crystallogr. Rep. 56, 866–870 (2011).
[CrossRef]

Lanz, W. D. M.

D. W. Pohl and W. D. M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Lewis, A.

E. Betzig, M. Isaacson, and A. Lewis, “Collection mode near field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987).
[CrossRef]

Martin, O. J. F.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).
[CrossRef]

Nepomnyashchiy, A. V.

Y. N. Kulchin, O. B. Vitrik, E. V. Pustovalov, A. A. Kuchmizhak, and A. V. Nepomnyashchiy, “Fiber-optic Fabry–Perot microresonator for near-field optical microscopy systems,” Crystallogr. Rep. 56, 866–870 (2011).
[CrossRef]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Pangaribuan, T.

T. Pangaribuan, K. Yamada, and S. Jiang, “Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, 1302–1304 (1992).
[CrossRef]

Pohl, D. W.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).
[CrossRef]

U. Duerig, D. W. Pohl, and F. Rohner, “Near-field optical scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986).
[CrossRef]

D. W. Pohl and W. D. M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Pustovalov, E. V.

Y. N. Kulchin, O. B. Vitrik, E. V. Pustovalov, A. A. Kuchmizhak, and A. V. Nepomnyashchiy, “Fiber-optic Fabry–Perot microresonator for near-field optical microscopy systems,” Crystallogr. Rep. 56, 866–870 (2011).
[CrossRef]

Rohner, F.

U. Duerig, D. W. Pohl, and F. Rohner, “Near-field optical scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986).
[CrossRef]

Schaller, N.

R. M. Stockle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, “Brighter near-field optical probes by means of improving the optical destruction threshold,” J. Microsc. 194, 378–382 (1999).
[CrossRef]

Sick, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).
[CrossRef]

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

Stockle, R. M.

R. M. Stockle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, “Brighter near-field optical probes by means of improving the optical destruction threshold,” J. Microsc. 194, 378–382 (1999).
[CrossRef]

Stöckle, R.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

Vitrik, O. B.

Y. N. Kulchin, O. B. Vitrik, E. V. Pustovalov, A. A. Kuchmizhak, and A. V. Nepomnyashchiy, “Fiber-optic Fabry–Perot microresonator for near-field optical microscopy systems,” Crystallogr. Rep. 56, 866–870 (2011).
[CrossRef]

Wild, U. P.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).
[CrossRef]

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

Yamada, K.

T. Pangaribuan, K. Yamada, and S. Jiang, “Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, 1302–1304 (1992).
[CrossRef]

Zenobi, R.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).
[CrossRef]

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

R. M. Stockle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, “Brighter near-field optical probes by means of improving the optical destruction threshold,” J. Microsc. 194, 378–382 (1999).
[CrossRef]

Appl. Phys. Lett. (3)

D. W. Pohl and W. D. M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

E. Betzig, M. Isaacson, and A. Lewis, “Collection mode near field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987).
[CrossRef]

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

Crystallogr. Rep. (1)

Y. N. Kulchin, O. B. Vitrik, E. V. Pustovalov, A. A. Kuchmizhak, and A. V. Nepomnyashchiy, “Fiber-optic Fabry–Perot microresonator for near-field optical microscopy systems,” Crystallogr. Rep. 56, 866–870 (2011).
[CrossRef]

J. Appl. Phys. (1)

U. Duerig, D. W. Pohl, and F. Rohner, “Near-field optical scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986).
[CrossRef]

J. Chem. Phys. (1)

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).
[CrossRef]

J. Microsc. (1)

R. M. Stockle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, “Brighter near-field optical probes by means of improving the optical destruction threshold,” J. Microsc. 194, 378–382 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Pangaribuan, K. Yamada, and S. Jiang, “Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, 1302–1304 (1992).
[CrossRef]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metal,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Other (2)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Probe based on the FFPI with the prodruding evanescent light source. (a). Schematic of the FFPI probe: 1, tapered protrusion; 2, subwavelength aperture; 3, optic fiber core; 4, mirror coatings. (b). Normalized full width at half-maximum (FWHM) R=Δλ1/2/λc as a function of protrusion height hcone obtained for numerical (curve 1) and experimental cases (curve 2).

Fig. 2.
Fig. 2.

Properties of the FFPI with the protruding evanescent light source. (a) Distribution of a TE-field component Ez in FFPI for a resonant wavelength λ=1554nm. The Ez distribution near the outside aperture with the diameter D=100nm is shown in logarithmic scale. (b) Relative resonant wavelength shift ε as a function of relative displacement of the test object hs/Lr obtained for different aperture diameters D=100nm (curve 1) and D=50nm (curve 2).

Fig. 3.
Fig. 3.

Fabrication of the FFPI with the protruding evanescent light source. (a) Electron images of the end face of the Ge-doped optical fiber obtained by use of the method from [10]. (b) Scheme of the fabrication process and (c)–(e) electron image illustrated at each fabrication stage.

Fig. 4.
Fig. 4.

Electron image of the tapered protrusion with the height hcone=800nm obtained on the fiber end face. (The diameter of the protrusion base Dcone=8μm is shown by the dotted circle.) Insets (a) and (b) show the electron images of apertures with diameters D=100nm and D=50nm, respectively. (The length of the scale bar is 100 nm.)

Fig. 5.
Fig. 5.

Schematic of the experimental setup: 1, broadband light source; 2, polarizer; 3, 2×1-coupler; 4, scanning stages; 5, control system; 6, PC; 7, FFPI; 8, optical spectrum analyzer Yokogawa 6370B; 9, PC; 10, cantilever; 11, He-Ne laser; 12, four-compartment photodetector; 13, AFM scanner; 14, feedback control.

Fig. 6.
Fig. 6.

Electron image of the tapered optical fiber (a) with a flat tip and (b) (tip diameter is Dtip810nm) used to study the vertical resolution of the developed probe. (The length of the scale bar is 5 μm.)

Fig. 7.
Fig. 7.

Relative shift of the resonant wavelength of an FFPI, Δλs/λc, as a function of hs/Lr for the aperture diameters (1) D=λ/15 (100nm) and (2) D=λ/40 (50nm).

Fig. 8.
Fig. 8.

Cantilever profile retrieved by resonant wavelength shift in the probe (curve 2) compared to the real AFM profile (curve 1).

Metrics