Abstract

We study the electro-optic (E-O) properties of a BaTiO3 thin layer placed in a stack of dielectric layers, including a subwavelength diffraction grating with a two-dimensional periodicity, aiming to tune spectrally the position of the resonant reflection peak that is used for narrowband optical filtering. BaTiO3 is chosen due to its strong E-O properties. When an external electric field is applied to the E-O layer, it leads to a spectral shift of the resonant peak. We study numerically different configurations with either weak or strong spectral tunability, presenting some arguments to explain these different behaviors. Taking into account only the linear part of the E-O effect (Pockels effect), the tuning of the peak that has 0.1 nm spectral width is approximately 33 nm for a 1.5×107V/m applied field. The shift is multiplied by three (97 nm) when also taking into account the quadratic E-O effect.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).
    [CrossRef]
  2. E. Popov and E. Bozhkov, “Corrugated waveguides as resonance optical filters advantages and limitations,” J. Opt. Soc. Am. A 18, 1758–1764 (2001).
    [CrossRef]
  3. A.-L. Fehrembach, D. Maystre, and A. Sentenac, “Phenomenological theory of filtering by resonant dielectric gratings,” J. Opt. Soc. Am. A 19, 1136–1145 (2002).
    [CrossRef]
  4. R. Magnusson, D. Shin, and Z. S. Liu, “Guided-mode resonance Brewster filter,” Opt. Lett. 23, 612–614 (1998).
    [CrossRef]
  5. A. Mizutani, H. Kikuta, and K. Iwata, “Wave localization of doubly periodic guided-mode resonant grating filters,” Opt. Rev. 10, 13–18 (2003).
    [CrossRef]
  6. H. Ichikawa and H. Kikuta, “Dynamic guided-mode resonant grating filter with quadratic electro-optic effect,” J. Opt. Soc. Am. A 22, 1311–1318 (2005).
    [CrossRef]
  7. A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, and R. Steingueber, “Light modulation with resonant grating waveguide structures,” Opt. Lett. 21, 1564–1566(1996).
    [CrossRef]
  8. T. Katchalski, G. Levy-Yurista, A. A. Friesem, G. Martin, R. Hierle, and J. Zyss, “Light modulation with electro-optic polymer-based resonant grating waveguide structures,” Opt. Express 13, 4645–4650 (2005).
    [CrossRef]
  9. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
    [CrossRef]
  10. M. Melnichuk, “Method for measuring off-diagonal Kerr coefficients by using polarized light transmission,” J. Opt. Soc. Am. A 22, 377–384 (2005).
    [CrossRef]
  11. A. Petraru, J. Schubert, M. Schmid, and Ch. Buchal, “Ferroelectric BaTiO3 thin-film optical waveguide modulators,” Appl. Phys. Lett. 81, 1375–1377 (2002).
    [CrossRef]
  12. P. Tang, D. J. Towner, T. Hamano, and A. L. Meier, “Electro-optic modulation up to 40 GHz in a barium titanate thin film waveguide modulator,” Opt. Express 12, 5962–5967 (2004).
    [CrossRef]
  13. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  14. S. Laux, N. Kaiser, A. Zöller, R. Gützelmann, H. Lauth, and H. Bernitzki, “Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation,” Thin Solid Films 335, 1–5 (1998); see also http://www.luxpop.com .
    [CrossRef]
  15. L.-J. Meng and F. Placido, “Annealing effect on ITO thin films prepared by microwave-enhanced dc reactive magnetron sputtering for telecommunication applications,” Surf. Coat. Technol. 166, 44–50 (2003).
    [CrossRef]
  16. S. A. Kemme, R. R. Boye, D. W. Peters, and R. O. Nellums, “Active resonant subwavelength grating for scannerless range imaging sensors,” Proc. SPIE 6469, 646906 (2007).
    [CrossRef]
  17. A.-L. Fehrembach, A. Talneau, O. Boyko, F. Lemarchand, and A. Sentenac, “Experimental demonstration of a narrowband, angular tolerant, polarization independent, doubly periodic resonant grating filter,” Opt. Lett. 32, 2269–2271 (2007).
    [CrossRef]
  18. A.-L. Fehrembach, F. Lemarchand, and A. Talneau, “High Qpolarization independent guided-mode resonance filter with ‘doubly periodic’ etaced Ta2O5 bidimensional grating,” J. Lightwave Technol. 28, 2037–2044 (2010).
    [CrossRef]
  19. F. Lemarchand and A. Sentenac, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23, 1149–1151 (1998).
    [CrossRef]
  20. P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85, 4603 (2004).
    [CrossRef]
  21. K. Sreenivas, A. Mansingh, and M. Sayer, “Structural and electrical properties of rf-sputtered amorphous barium titanate thin films,” J. Appl. Phys. 62, 4475–4481 (1987).
    [CrossRef]

2010

2007

2005

2004

P. Tang, D. J. Towner, T. Hamano, and A. L. Meier, “Electro-optic modulation up to 40 GHz in a barium titanate thin film waveguide modulator,” Opt. Express 12, 5962–5967 (2004).
[CrossRef]

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85, 4603 (2004).
[CrossRef]

2003

A. Mizutani, H. Kikuta, and K. Iwata, “Wave localization of doubly periodic guided-mode resonant grating filters,” Opt. Rev. 10, 13–18 (2003).
[CrossRef]

L.-J. Meng and F. Placido, “Annealing effect on ITO thin films prepared by microwave-enhanced dc reactive magnetron sputtering for telecommunication applications,” Surf. Coat. Technol. 166, 44–50 (2003).
[CrossRef]

2002

A. Petraru, J. Schubert, M. Schmid, and Ch. Buchal, “Ferroelectric BaTiO3 thin-film optical waveguide modulators,” Appl. Phys. Lett. 81, 1375–1377 (2002).
[CrossRef]

A.-L. Fehrembach, D. Maystre, and A. Sentenac, “Phenomenological theory of filtering by resonant dielectric gratings,” J. Opt. Soc. Am. A 19, 1136–1145 (2002).
[CrossRef]

2001

1998

R. Magnusson, D. Shin, and Z. S. Liu, “Guided-mode resonance Brewster filter,” Opt. Lett. 23, 612–614 (1998).
[CrossRef]

F. Lemarchand and A. Sentenac, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23, 1149–1151 (1998).
[CrossRef]

S. Laux, N. Kaiser, A. Zöller, R. Gützelmann, H. Lauth, and H. Bernitzki, “Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation,” Thin Solid Films 335, 1–5 (1998); see also http://www.luxpop.com .
[CrossRef]

1997

1996

1987

K. Sreenivas, A. Mansingh, and M. Sayer, “Structural and electrical properties of rf-sputtered amorphous barium titanate thin films,” J. Appl. Phys. 62, 4475–4481 (1987).
[CrossRef]

1985

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).
[CrossRef]

Bernitzki, H.

S. Laux, N. Kaiser, A. Zöller, R. Gützelmann, H. Lauth, and H. Bernitzki, “Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation,” Thin Solid Films 335, 1–5 (1998); see also http://www.luxpop.com .
[CrossRef]

Boye, R. R.

S. A. Kemme, R. R. Boye, D. W. Peters, and R. O. Nellums, “Active resonant subwavelength grating for scannerless range imaging sensors,” Proc. SPIE 6469, 646906 (2007).
[CrossRef]

Boyko, O.

Bozhkov, E.

Buchal, Ch.

A. Petraru, J. Schubert, M. Schmid, and Ch. Buchal, “Ferroelectric BaTiO3 thin-film optical waveguide modulators,” Appl. Phys. Lett. 81, 1375–1377 (2002).
[CrossRef]

Engel, H.

Fehrembach, A.-L.

Friesem, A. A.

Gunter, P.

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85, 4603 (2004).
[CrossRef]

Gützelmann, R.

S. Laux, N. Kaiser, A. Zöller, R. Gützelmann, H. Lauth, and H. Bernitzki, “Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation,” Thin Solid Films 335, 1–5 (1998); see also http://www.luxpop.com .
[CrossRef]

Hamano, T.

Hierle, R.

Ichikawa, H.

Iwata, K.

A. Mizutani, H. Kikuta, and K. Iwata, “Wave localization of doubly periodic guided-mode resonant grating filters,” Opt. Rev. 10, 13–18 (2003).
[CrossRef]

Kaiser, N.

S. Laux, N. Kaiser, A. Zöller, R. Gützelmann, H. Lauth, and H. Bernitzki, “Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation,” Thin Solid Films 335, 1–5 (1998); see also http://www.luxpop.com .
[CrossRef]

Katchalski, T.

Kemme, S. A.

S. A. Kemme, R. R. Boye, D. W. Peters, and R. O. Nellums, “Active resonant subwavelength grating for scannerless range imaging sensors,” Proc. SPIE 6469, 646906 (2007).
[CrossRef]

Kikuta, H.

H. Ichikawa and H. Kikuta, “Dynamic guided-mode resonant grating filter with quadratic electro-optic effect,” J. Opt. Soc. Am. A 22, 1311–1318 (2005).
[CrossRef]

A. Mizutani, H. Kikuta, and K. Iwata, “Wave localization of doubly periodic guided-mode resonant grating filters,” Opt. Rev. 10, 13–18 (2003).
[CrossRef]

Lauth, H.

S. Laux, N. Kaiser, A. Zöller, R. Gützelmann, H. Lauth, and H. Bernitzki, “Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation,” Thin Solid Films 335, 1–5 (1998); see also http://www.luxpop.com .
[CrossRef]

Laux, S.

S. Laux, N. Kaiser, A. Zöller, R. Gützelmann, H. Lauth, and H. Bernitzki, “Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation,” Thin Solid Films 335, 1–5 (1998); see also http://www.luxpop.com .
[CrossRef]

Lemarchand, F.

Levy-Yurista, G.

Li, L.

Liu, Z. S.

Magnusson, R.

Mansingh, A.

K. Sreenivas, A. Mansingh, and M. Sayer, “Structural and electrical properties of rf-sputtered amorphous barium titanate thin films,” J. Appl. Phys. 62, 4475–4481 (1987).
[CrossRef]

Martin, G.

Mashev, L.

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).
[CrossRef]

Maystre, D.

Meier, A. L.

Melnichuk, M.

Meng, L.-J.

L.-J. Meng and F. Placido, “Annealing effect on ITO thin films prepared by microwave-enhanced dc reactive magnetron sputtering for telecommunication applications,” Surf. Coat. Technol. 166, 44–50 (2003).
[CrossRef]

Mizutani, A.

A. Mizutani, H. Kikuta, and K. Iwata, “Wave localization of doubly periodic guided-mode resonant grating filters,” Opt. Rev. 10, 13–18 (2003).
[CrossRef]

Nellums, R. O.

S. A. Kemme, R. R. Boye, D. W. Peters, and R. O. Nellums, “Active resonant subwavelength grating for scannerless range imaging sensors,” Proc. SPIE 6469, 646906 (2007).
[CrossRef]

Peters, D. W.

S. A. Kemme, R. R. Boye, D. W. Peters, and R. O. Nellums, “Active resonant subwavelength grating for scannerless range imaging sensors,” Proc. SPIE 6469, 646906 (2007).
[CrossRef]

Petraru, A.

A. Petraru, J. Schubert, M. Schmid, and Ch. Buchal, “Ferroelectric BaTiO3 thin-film optical waveguide modulators,” Appl. Phys. Lett. 81, 1375–1377 (2002).
[CrossRef]

Placido, F.

L.-J. Meng and F. Placido, “Annealing effect on ITO thin films prepared by microwave-enhanced dc reactive magnetron sputtering for telecommunication applications,” Surf. Coat. Technol. 166, 44–50 (2003).
[CrossRef]

Popov, E.

E. Popov and E. Bozhkov, “Corrugated waveguides as resonance optical filters advantages and limitations,” J. Opt. Soc. Am. A 18, 1758–1764 (2001).
[CrossRef]

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).
[CrossRef]

Rabiei, P.

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85, 4603 (2004).
[CrossRef]

Rosenblatt, D.

Sayer, M.

K. Sreenivas, A. Mansingh, and M. Sayer, “Structural and electrical properties of rf-sputtered amorphous barium titanate thin films,” J. Appl. Phys. 62, 4475–4481 (1987).
[CrossRef]

Schmid, M.

A. Petraru, J. Schubert, M. Schmid, and Ch. Buchal, “Ferroelectric BaTiO3 thin-film optical waveguide modulators,” Appl. Phys. Lett. 81, 1375–1377 (2002).
[CrossRef]

Schubert, J.

A. Petraru, J. Schubert, M. Schmid, and Ch. Buchal, “Ferroelectric BaTiO3 thin-film optical waveguide modulators,” Appl. Phys. Lett. 81, 1375–1377 (2002).
[CrossRef]

Sentenac, A.

Sharon, A.

Shin, D.

Sreenivas, K.

K. Sreenivas, A. Mansingh, and M. Sayer, “Structural and electrical properties of rf-sputtered amorphous barium titanate thin films,” J. Appl. Phys. 62, 4475–4481 (1987).
[CrossRef]

Steingueber, R.

Talneau, A.

Tang, P.

Towner, D. J.

Weber, H. G.

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Zöller, A.

S. Laux, N. Kaiser, A. Zöller, R. Gützelmann, H. Lauth, and H. Bernitzki, “Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation,” Thin Solid Films 335, 1–5 (1998); see also http://www.luxpop.com .
[CrossRef]

Zyss, J.

Appl. Phys. Lett.

A. Petraru, J. Schubert, M. Schmid, and Ch. Buchal, “Ferroelectric BaTiO3 thin-film optical waveguide modulators,” Appl. Phys. Lett. 81, 1375–1377 (2002).
[CrossRef]

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85, 4603 (2004).
[CrossRef]

J. Appl. Phys.

K. Sreenivas, A. Mansingh, and M. Sayer, “Structural and electrical properties of rf-sputtered amorphous barium titanate thin films,” J. Appl. Phys. 62, 4475–4481 (1987).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

Opt. Commun.

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Rev.

A. Mizutani, H. Kikuta, and K. Iwata, “Wave localization of doubly periodic guided-mode resonant grating filters,” Opt. Rev. 10, 13–18 (2003).
[CrossRef]

Proc. SPIE

S. A. Kemme, R. R. Boye, D. W. Peters, and R. O. Nellums, “Active resonant subwavelength grating for scannerless range imaging sensors,” Proc. SPIE 6469, 646906 (2007).
[CrossRef]

Surf. Coat. Technol.

L.-J. Meng and F. Placido, “Annealing effect on ITO thin films prepared by microwave-enhanced dc reactive magnetron sputtering for telecommunication applications,” Surf. Coat. Technol. 166, 44–50 (2003).
[CrossRef]

Thin Solid Films

S. Laux, N. Kaiser, A. Zöller, R. Gützelmann, H. Lauth, and H. Bernitzki, “Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation,” Thin Solid Films 335, 1–5 (1998); see also http://www.luxpop.com .
[CrossRef]

Other

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Three different choices of the configuration: (a) configuration 1 with two ITO electrodes deposited directly on the E-O layer, (b) configuration 2 with a buffer layer of SiO2 below, and (c) configuration 3 with SiO2 buffer layer below and the grating structure acting as a buffer layer above.

Fig. 2.
Fig. 2.

Resonant peak of the configuration 1 in two different cases: dashed curve, ITO without absorption; straight line, ITO with absorption.

Fig. 3.
Fig. 3.

Description of the structure: (a) Stack of layers with indexes: HfO2-air grating n1=1.9, n0=1.0; ITO n2=1.62 at 1550 nm; BaTiO3 no=2.43, ne=2.36 at 1550 nm; and SiO2 with n3=1.473. (b) Top view of the component (one cell).

Fig. 4.
Fig. 4.

Variation of the permittivity tensor with the applied voltage taking into account either only the linear (a) or both the linear and the quadratic effects (b). εxx, εyy, εzz correspond, respectively to blue dash, green square, and red circle marks in the upper figures. εyz, εzy are presented as circles and stars in the lower figures.

Fig. 5.
Fig. 5.

Simulated reflection spectra of TE mode along x direction versus the applied voltages due to the linear E-O effect.

Fig. 6.
Fig. 6.

(a) Resonance peak wavelength position versus the external static voltage for TE and TM modes in configuration 3. (b) Violet and yellow curves ε2,2 and ε3,3 from Eq. (4), multiplied by the grating period D; the other curves show the mode effective index multiplied by D versus the external static voltage in the equivalent planar structure. Situations a, b, c, and d correspond to the resonances 1, 2, 3, and 4 in the Table 3.

Fig. 7.
Fig. 7.

Resonant peak wavelength versus the external static voltage in configuration 3 for two different cases. Case L corresponds to the linear E-O effect only, in case L+Q both linear and quadratic E-O effect are involved. (a) TE mode and (b) TM mode.

Fig. 8.
Fig. 8.

Simulated reflection spectra of TE mode along x direction versus the applied voltages due to the linear and quadratic E-O effect.

Fig. 9.
Fig. 9.

Permittivity tensor elements of BaTiO3 in the case of second orientation with three different values of the quadratic coefficient s33.

Fig. 10.
Fig. 10.

Resonant peak for the second orientation with ITO layer absorption taken into account. The maximum of reflective efficiency reaches 97.3%. (a) Without external electric field and (b) with 1.5×107V/m electric field.

Fig. 11.
Fig. 11.

Angular tolerance of the second orientation under the condition of no external electric field and with 1.5×107V/m intensity. The incident plane wave varies in the xz plane.

Tables (4)

Tables Icon

Table 1. Reduced Notation for the Permittivity Tensor

Tables Icon

Table 2. Influence of the ITO Absorption

Tables Icon

Table 3. Numerical Results for Configuration 3 in Case L

Tables Icon

Table 4. Numerically Computed Results of the Second Orientation in Three Cases

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k⃗inc+K⃗kg,
(1ε˜)i=(1ε)i+k=13rikEk+p=16sipEp(2),
ε˜=(εxx000εyyεyz0εzyεzz).
ε2,2/3,3=εyy+εzz2±εyz2+(εyyεzz2)2.

Metrics