Abstract

We demonstrate a Kerr lens mode-locked folded cavity using a planar (non-Brewster) Ti:sapphire crystal as a gain and Kerr medium, thus cancelling the nonlinear astigmatism caused by a Brewster cut Kerr medium. Our method uses a novel cavity folding in which the intracavity laser beam propagates in two perpendicular planes, such that the astigmatism of one mirror is compensated by the other mirror, enabling the introduction of an astigmatic free, planar-cut gain medium. We demonstrate that this configuration is inherently free of nonlinear astigmatism, which in standard cavity folding needs a special power-specific compensation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hecht, Optics (Addison Wesley, 1987).
  2. H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for cw dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
    [CrossRef]
  3. K. Lin, Y. Lai, and W. Hsieh, “Simple analytical method of cavity design for astigmatism-compensated Kerr-lens mode-locked ring lasers and its applications,” J. Opt. Soc. Am. B 12, 468–475 (1995).
    [CrossRef]
  4. V. Magni, G. Cerullo, and S. D. Silvestri, “Closed form Gaussian beam analysis of resonators containing a Kerr medium for femtosecond lasers,” Opt. Commun. 101, 365–370 (1993).
    [CrossRef]
  5. G. Fibich and A. L. Gaeta, “Critical power for self-focusing in bulk media and in hollow waveguides,” Opt. Lett. 25, 335–337 (2000).
    [CrossRef]
  6. A. Major, F. Yoshino, I. Nikolakakos, J. S. Aitchison, and P. W. E. Smith, “Dispersion of the nonlinear refractive index in sapphire,” Opt. Lett. 29, 602–604 (2004).
    [CrossRef]
  7. T. Brabec, C. Spielmann, P. F. Curley, and F. Krausz, “Kerr lens mode locking,” Opt. Lett. 17, 1292–1294 (1992).
    [CrossRef]
  8. V. Magni, G. Cerullo, S. D. Silvestri, and A. Monguzzi, “Astigmatism in Gaussian-beam self-focusing and in resonators for Kerr-lens mode locking,” J. Opt. Soc. Am. B 12, 476–485 (1995).
    [CrossRef]
  9. G. Cerullo, S. D. Silvestri, V. Magni, and L. Pallaro, “Resonators for Kerr-lens mode-locked femtosecond Ti:sapphire lasers,” Opt. Lett. 19, 807–809 (1994).
    [CrossRef]
  10. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28, 2086–2096 (1992).
    [CrossRef]
  11. J. P. Tache, “Ray matrices for tilted interfaces in laser resonators,” Appl. Opt. 26, 427–429 (1987).
    [CrossRef]

2004 (1)

2000 (1)

1995 (2)

1994 (1)

1993 (1)

V. Magni, G. Cerullo, and S. D. Silvestri, “Closed form Gaussian beam analysis of resonators containing a Kerr medium for femtosecond lasers,” Opt. Commun. 101, 365–370 (1993).
[CrossRef]

1992 (2)

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28, 2086–2096 (1992).
[CrossRef]

T. Brabec, C. Spielmann, P. F. Curley, and F. Krausz, “Kerr lens mode locking,” Opt. Lett. 17, 1292–1294 (1992).
[CrossRef]

1987 (1)

1972 (1)

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for cw dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
[CrossRef]

Aitchison, J. S.

Brabec, T.

Cerullo, G.

Curley, P. F.

Dienes, A.

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for cw dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
[CrossRef]

Fibich, G.

Fujimoto, J. G.

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28, 2086–2096 (1992).
[CrossRef]

Gaeta, A. L.

Haus, H. A.

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28, 2086–2096 (1992).
[CrossRef]

Hecht, E.

E. Hecht, Optics (Addison Wesley, 1987).

Hsieh, W.

Ippen, E. P.

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28, 2086–2096 (1992).
[CrossRef]

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for cw dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
[CrossRef]

Kogelnik, H.

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for cw dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
[CrossRef]

Krausz, F.

Lai, Y.

Lin, K.

Magni, V.

Major, A.

Monguzzi, A.

Nikolakakos, I.

Pallaro, L.

Shank, C. V.

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for cw dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
[CrossRef]

Silvestri, S. D.

Smith, P. W. E.

Spielmann, C.

Tache, J. P.

Yoshino, F.

Appl. Opt. (1)

IEEE J. Quantum Electron. (2)

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28, 2086–2096 (1992).
[CrossRef]

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for cw dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

V. Magni, G. Cerullo, and S. D. Silvestri, “Closed form Gaussian beam analysis of resonators containing a Kerr medium for femtosecond lasers,” Opt. Commun. 101, 365–370 (1993).
[CrossRef]

Opt. Lett. (4)

Other (1)

E. Hecht, Optics (Addison Wesley, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Standard X-fold configuration of a Ti:sapphire cavity. In this configuration, through the entire cavity the sagittal/tangential component of the laser mode is perpendicular/parallel to the optical table.

Fig. 2.
Fig. 2.

Normalized Kerr lens strength |γ| in X-fold configuration as a function of the crystal position Z for the sagittal (circles) and tangential (squares) planes. At Z=0, the center of the crystal is separated by R/2 from M2. This calculation was performed for the cavity of Fig. 1, including a L=5mm long Brewster-cut crystal bounded between two focusing mirrors with R=15cm. The short arm between M2 and the OC is 30 cm and the long arm between M1 and the high reflector (HR) is 90 cm.

Fig. 3.
Fig. 3.

Novel configuration of the Ti:sapphire cavity in (a) top view, (b) side view, and (c) 3D view of the optical table. The long arm remains parallel to the optical table, while the short arm is raised above the optical table. The illustrated sagittal and tangential components corresponds to the long arm with respect to M1, while they switch in the short arm with respect to M2.

Fig. 4.
Fig. 4.

Normalized Kerr lens strength in novel configuration as a function of the crystal position for the sagittal (circles) and tangential (squares) planes.

Fig. 5.
Fig. 5.

Intensity profiles of: (a) CW near-field, (b) ML near-field, (c) ML far-field. The near-field profile was taken at the OC and the far-field profile was taken at the focus of a 100 cm positive lens.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ=Pcω(dωdP)P=0,

Metrics