Abstract

Surface second harmonic generation (s-SHG) spectroscopy is a powerful tool to investigate layers or adsorbates on surfaces with high sensitivity. For this nonlinear technique, sophisticated reference methods are needed to properly treat the measured raw data. We present an easy-to-implement reference measurement method for s-SHG spectroscopy for surface layers or adsorbates. It directly allows for extracting reference-corrected s-SHG spectra from raw data. SHG from thin slabs of BK7 and MgO in the spectral range from 450 to 900 nm (fundamental beam) is used to obtain the reference spectrum. The method includes the experimental determination of the dispersive properties of the optical setup over the relevant spectral range. The accuracy of the presented procedure is demonstrated by applying the method to the study of a thin molecular film of 1, 1′-Bi-2-naphthol (Binol) supported on a BK7 substrate.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Mason, “Electronic-structure of supported small metal-clusters,” Phys. Rev. B 27, 748–762 (1983).
    [CrossRef]
  2. H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances—bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
    [CrossRef]
  3. G. Jacobs, T. K. Das, Y. Q. Zhang, J. L. Li, G. Racoillet, and B. H. Davis, “Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts,” Appl. Catal. A 233, 263–281 (2002).
    [CrossRef]
  4. C. Harding, V. Habibpour, S. Kunz, A. N.-S. Farnbacher, U. Heiz, B. Yoon, and U. Landman, “Control and manipulation of gold nanocatalysis: effects of metal oxide support thickness and composition,” J. Am. Chem. Soc. 131, 538–548 (2009).
    [CrossRef]
  5. M. E. Vaida, T. M. Bernhardt, C. Barth, F. Esch, U. Heiz, and U. Landman, “Ultrathin magnesia films as support for molecules and metal clusters: tuning reactivity by thickness and composition,” Phys. Stat. Sol. B 247, 1001–1015 (2010).
    [CrossRef]
  6. J. Lu, P. Serna, C. Aydin, N. D. Browning, and B. C. Gates, “Supported molecular iridium catalysts: resolving effects of metal nuclearity and supports as ligands,” J. Am. Chem. Soc. 133, 16186–16195 (2011).
    [CrossRef]
  7. S. V. Ong and S. N. Khanna, “Origin of oxidation and support-induced structural changes in Pd(4) clusters supported on TiO(2),” J. Phys. Chem. C 115, 20217–20224 (2011).
    [CrossRef]
  8. Y. R. Shen, “Surface 2nd harmonic-generation—a new technique for surface studies,” Ann. Rev. Mater. Sci. 16, 69–86 (1986).
    [CrossRef]
  9. M. Asscher and Z. Rosenzweig, “Adsorbate interaction—an optical 2nd harminic-generation study,” J. Vac. Sci. Technol. A 9, 1913–1918 (1991).
    [CrossRef]
  10. M. Buck, F. Eisert, J. Fischer, M. Grunze, and F. Trager, “Investigation of self-organizing thiol films by optical 2nd-harmonic generation and x-ray photoelectron-spectroscopy,” Appl. Phys. A 53, 552–556 (1991).
    [CrossRef]
  11. A. Galeckas, M. Petrauskas, M. Willander, and Q. Wahab, “Optical 2nd harmonic-generation in reflection from silicon-carbide films” Surf. Interface Anal. 18, 71–72 (1992).
    [CrossRef]
  12. T. Petrallimallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular-dichroism spectroscopy at interfaces—a surface 2nd harmonic-generation study,” J. Phys. Chem. 97, 1383–1388 (1993).
    [CrossRef]
  13. R. M. Corn and D. A. Higgins, “Optical 2nd-harmonic generation as S probe of surface-chemistry,” Chem. Rev. 94, 107–125 (1994).
    [CrossRef]
  14. Y. R. Shen, “Nonlinear-optical studies of polymer interfaces,” Int. J. Nonlinear Opt. Phys. 3, 459–468 (1994).
    [CrossRef]
  15. J. F. McGilp, “Optical characterization of semiconductor surfaces and interfaces,” Prog. Surf. Sci. 49, 1–106 (1995).
    [CrossRef]
  16. X. Zhuang and Y. R. Shen, “The application of nonlinear optics to the study of polymers at interfaces,” Trends Polym. Sci. 4, 258–264 (1996).
  17. T. Bornemann, A. Otto, W. Heuer, and H. Zacharias, “Second harmonic generation by cold-deposited silver films,” Surf. Sci. 420, 224–232 (1999).
    [CrossRef]
  18. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
    [CrossRef]
  19. G. Dong, H. Tao, X. Xiao, C. Lin, X. Zhao, and S. Mao, “Mechanism of electron beam poled SHG in 0.95GeS2·0.05In2S3 chalcogenide glasses,” J. Phys. Chem. Solids 68, 158–161(2007).
    [CrossRef]
  20. Y. Takahashi, Y. Benino, T. Fujiwara, and T. Komatsu, “Second harmonic generation in transparent surface crystallized glasses with stillwellite-type LaBGeO5,” J. Appl. Phys. 89, 5282–5287 (2001).
    [CrossRef]
  21. H. Lotem, G. Koren, and Y. Yacoby, “Dispersion of nonlinear optical susceptibility in GAAS and GASB” Phys. Rev. B 9, 3532–3540 (1974).
    [CrossRef]
  22. K. Pedersen, M. Schiek, J. Rafaelsen, and H. G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B 96, 821–826 (2009).
    [CrossRef]
  23. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical-crystal—a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
    [CrossRef]
  24. C. Bosshard, U. Gubler, P. Kaatz, W. Mazerant, and U. Meier, “Non-phase-matched optical third-harmonic generation in noncentrosymmetric media: cascaded second-order contributions for the calibration of third-order nonlinearities,” Phys. Rev. B 61, 10688–10701 (2000).
    [CrossRef]
  25. J. M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. Del Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94, 213402 (2005).
    [CrossRef]
  26. A. Del Vitto, G. Pacchioni, K. H. Lim, N. Rösch, J. M. Antonietti, M. Michalski, U. Heiz, and H. Jones, “Gold atoms and dimers on amorphous SiO2: calculation of optical properties and cavity ringdown spectroscopy measurements,” J. Phys. Chem. B 109, 19876–19884 (2005).
    [CrossRef]
  27. A. Kartouzian, M. Thämer, T. Soini, J. Peter, P. Pitschi, S. Gilb, and U. Heiz, “Cavity ring-down spectrometer for measuring the optical response of supported size-selected clusters and surface defects in ultrahigh vacuum,” J. Appl. Phys. 104, 124313 (2008).
    [CrossRef]
  28. F. J. Rodriguez, F. X. Wang, B. K. Canfield, S. Cattaneo, and M. Kauranen, “Multipolar tensor analysis of second-order nonlinear optical response of surface and bulk of glass,” Opt. Express 15, 8695–8701 (2007).
    [CrossRef]
  29. F. J. Rodriguez, F. X. Wang, and M. Kauranen, “Calibration of the second-order nonlinear optical susceptibility of surface and bulk of glass,” Opt. Express 16, 8704–8710 (2008).
    [CrossRef]
  30. P.-F. Brevet, Surface Second Harmonic Generation (PPUR, 1997).
  31. M. Thämer, A. Kartouzian, P. Heister, S. Gerlach, M. Tschurl, U. Boesl, and U. Heiz, “Linear and nonlinear laser spectroscopy of surface adsorbates with sub-monolayer sensitivity,” J. Phys. Chem. C 116, 8642–8648 (2012).
    [CrossRef]

2012 (1)

M. Thämer, A. Kartouzian, P. Heister, S. Gerlach, M. Tschurl, U. Boesl, and U. Heiz, “Linear and nonlinear laser spectroscopy of surface adsorbates with sub-monolayer sensitivity,” J. Phys. Chem. C 116, 8642–8648 (2012).
[CrossRef]

2011 (2)

J. Lu, P. Serna, C. Aydin, N. D. Browning, and B. C. Gates, “Supported molecular iridium catalysts: resolving effects of metal nuclearity and supports as ligands,” J. Am. Chem. Soc. 133, 16186–16195 (2011).
[CrossRef]

S. V. Ong and S. N. Khanna, “Origin of oxidation and support-induced structural changes in Pd(4) clusters supported on TiO(2),” J. Phys. Chem. C 115, 20217–20224 (2011).
[CrossRef]

2010 (1)

M. E. Vaida, T. M. Bernhardt, C. Barth, F. Esch, U. Heiz, and U. Landman, “Ultrathin magnesia films as support for molecules and metal clusters: tuning reactivity by thickness and composition,” Phys. Stat. Sol. B 247, 1001–1015 (2010).
[CrossRef]

2009 (2)

C. Harding, V. Habibpour, S. Kunz, A. N.-S. Farnbacher, U. Heiz, B. Yoon, and U. Landman, “Control and manipulation of gold nanocatalysis: effects of metal oxide support thickness and composition,” J. Am. Chem. Soc. 131, 538–548 (2009).
[CrossRef]

K. Pedersen, M. Schiek, J. Rafaelsen, and H. G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B 96, 821–826 (2009).
[CrossRef]

2008 (2)

A. Kartouzian, M. Thämer, T. Soini, J. Peter, P. Pitschi, S. Gilb, and U. Heiz, “Cavity ring-down spectrometer for measuring the optical response of supported size-selected clusters and surface defects in ultrahigh vacuum,” J. Appl. Phys. 104, 124313 (2008).
[CrossRef]

F. J. Rodriguez, F. X. Wang, and M. Kauranen, “Calibration of the second-order nonlinear optical susceptibility of surface and bulk of glass,” Opt. Express 16, 8704–8710 (2008).
[CrossRef]

2007 (2)

F. J. Rodriguez, F. X. Wang, B. K. Canfield, S. Cattaneo, and M. Kauranen, “Multipolar tensor analysis of second-order nonlinear optical response of surface and bulk of glass,” Opt. Express 15, 8695–8701 (2007).
[CrossRef]

G. Dong, H. Tao, X. Xiao, C. Lin, X. Zhao, and S. Mao, “Mechanism of electron beam poled SHG in 0.95GeS2·0.05In2S3 chalcogenide glasses,” J. Phys. Chem. Solids 68, 158–161(2007).
[CrossRef]

2005 (2)

J. M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. Del Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94, 213402 (2005).
[CrossRef]

A. Del Vitto, G. Pacchioni, K. H. Lim, N. Rösch, J. M. Antonietti, M. Michalski, U. Heiz, and H. Jones, “Gold atoms and dimers on amorphous SiO2: calculation of optical properties and cavity ringdown spectroscopy measurements,” J. Phys. Chem. B 109, 19876–19884 (2005).
[CrossRef]

2002 (1)

G. Jacobs, T. K. Das, Y. Q. Zhang, J. L. Li, G. Racoillet, and B. H. Davis, “Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts,” Appl. Catal. A 233, 263–281 (2002).
[CrossRef]

2001 (1)

Y. Takahashi, Y. Benino, T. Fujiwara, and T. Komatsu, “Second harmonic generation in transparent surface crystallized glasses with stillwellite-type LaBGeO5,” J. Appl. Phys. 89, 5282–5287 (2001).
[CrossRef]

2000 (1)

C. Bosshard, U. Gubler, P. Kaatz, W. Mazerant, and U. Meier, “Non-phase-matched optical third-harmonic generation in noncentrosymmetric media: cascaded second-order contributions for the calibration of third-order nonlinearities,” Phys. Rev. B 61, 10688–10701 (2000).
[CrossRef]

1999 (1)

T. Bornemann, A. Otto, W. Heuer, and H. Zacharias, “Second harmonic generation by cold-deposited silver films,” Surf. Sci. 420, 224–232 (1999).
[CrossRef]

1997 (1)

1996 (1)

X. Zhuang and Y. R. Shen, “The application of nonlinear optics to the study of polymers at interfaces,” Trends Polym. Sci. 4, 258–264 (1996).

1995 (1)

J. F. McGilp, “Optical characterization of semiconductor surfaces and interfaces,” Prog. Surf. Sci. 49, 1–106 (1995).
[CrossRef]

1994 (2)

R. M. Corn and D. A. Higgins, “Optical 2nd-harmonic generation as S probe of surface-chemistry,” Chem. Rev. 94, 107–125 (1994).
[CrossRef]

Y. R. Shen, “Nonlinear-optical studies of polymer interfaces,” Int. J. Nonlinear Opt. Phys. 3, 459–468 (1994).
[CrossRef]

1993 (2)

T. Petrallimallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular-dichroism spectroscopy at interfaces—a surface 2nd harmonic-generation study,” J. Phys. Chem. 97, 1383–1388 (1993).
[CrossRef]

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances—bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

1992 (2)

A. Galeckas, M. Petrauskas, M. Willander, and Q. Wahab, “Optical 2nd harmonic-generation in reflection from silicon-carbide films” Surf. Interface Anal. 18, 71–72 (1992).
[CrossRef]

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical-crystal—a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

1991 (2)

M. Asscher and Z. Rosenzweig, “Adsorbate interaction—an optical 2nd harminic-generation study,” J. Vac. Sci. Technol. A 9, 1913–1918 (1991).
[CrossRef]

M. Buck, F. Eisert, J. Fischer, M. Grunze, and F. Trager, “Investigation of self-organizing thiol films by optical 2nd-harmonic generation and x-ray photoelectron-spectroscopy,” Appl. Phys. A 53, 552–556 (1991).
[CrossRef]

1986 (1)

Y. R. Shen, “Surface 2nd harmonic-generation—a new technique for surface studies,” Ann. Rev. Mater. Sci. 16, 69–86 (1986).
[CrossRef]

1983 (1)

M. G. Mason, “Electronic-structure of supported small metal-clusters,” Phys. Rev. B 27, 748–762 (1983).
[CrossRef]

1974 (1)

H. Lotem, G. Koren, and Y. Yacoby, “Dispersion of nonlinear optical susceptibility in GAAS and GASB” Phys. Rev. B 9, 3532–3540 (1974).
[CrossRef]

Antonietti, J. M.

J. M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. Del Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94, 213402 (2005).
[CrossRef]

A. Del Vitto, G. Pacchioni, K. H. Lim, N. Rösch, J. M. Antonietti, M. Michalski, U. Heiz, and H. Jones, “Gold atoms and dimers on amorphous SiO2: calculation of optical properties and cavity ringdown spectroscopy measurements,” J. Phys. Chem. B 109, 19876–19884 (2005).
[CrossRef]

Asscher, M.

M. Asscher and Z. Rosenzweig, “Adsorbate interaction—an optical 2nd harminic-generation study,” J. Vac. Sci. Technol. A 9, 1913–1918 (1991).
[CrossRef]

Aydin, C.

J. Lu, P. Serna, C. Aydin, N. D. Browning, and B. C. Gates, “Supported molecular iridium catalysts: resolving effects of metal nuclearity and supports as ligands,” J. Am. Chem. Soc. 133, 16186–16195 (2011).
[CrossRef]

Barth, C.

M. E. Vaida, T. M. Bernhardt, C. Barth, F. Esch, U. Heiz, and U. Landman, “Ultrathin magnesia films as support for molecules and metal clusters: tuning reactivity by thickness and composition,” Phys. Stat. Sol. B 247, 1001–1015 (2010).
[CrossRef]

Benino, Y.

Y. Takahashi, Y. Benino, T. Fujiwara, and T. Komatsu, “Second harmonic generation in transparent surface crystallized glasses with stillwellite-type LaBGeO5,” J. Appl. Phys. 89, 5282–5287 (2001).
[CrossRef]

Bernhardt, T. M.

M. E. Vaida, T. M. Bernhardt, C. Barth, F. Esch, U. Heiz, and U. Landman, “Ultrathin magnesia films as support for molecules and metal clusters: tuning reactivity by thickness and composition,” Phys. Stat. Sol. B 247, 1001–1015 (2010).
[CrossRef]

Boesl, U.

M. Thämer, A. Kartouzian, P. Heister, S. Gerlach, M. Tschurl, U. Boesl, and U. Heiz, “Linear and nonlinear laser spectroscopy of surface adsorbates with sub-monolayer sensitivity,” J. Phys. Chem. C 116, 8642–8648 (2012).
[CrossRef]

Bornemann, T.

T. Bornemann, A. Otto, W. Heuer, and H. Zacharias, “Second harmonic generation by cold-deposited silver films,” Surf. Sci. 420, 224–232 (1999).
[CrossRef]

Bosshard, C.

C. Bosshard, U. Gubler, P. Kaatz, W. Mazerant, and U. Meier, “Non-phase-matched optical third-harmonic generation in noncentrosymmetric media: cascaded second-order contributions for the calibration of third-order nonlinearities,” Phys. Rev. B 61, 10688–10701 (2000).
[CrossRef]

Brevet, P.-F.

P.-F. Brevet, Surface Second Harmonic Generation (PPUR, 1997).

Browning, N. D.

J. Lu, P. Serna, C. Aydin, N. D. Browning, and B. C. Gates, “Supported molecular iridium catalysts: resolving effects of metal nuclearity and supports as ligands,” J. Am. Chem. Soc. 133, 16186–16195 (2011).
[CrossRef]

Buck, M.

M. Buck, F. Eisert, J. Fischer, M. Grunze, and F. Trager, “Investigation of self-organizing thiol films by optical 2nd-harmonic generation and x-ray photoelectron-spectroscopy,” Appl. Phys. A 53, 552–556 (1991).
[CrossRef]

Byers, J. D.

T. Petrallimallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular-dichroism spectroscopy at interfaces—a surface 2nd harmonic-generation study,” J. Phys. Chem. 97, 1383–1388 (1993).
[CrossRef]

Canfield, B. K.

Cattaneo, S.

Corn, R. M.

R. M. Corn and D. A. Higgins, “Optical 2nd-harmonic generation as S probe of surface-chemistry,” Chem. Rev. 94, 107–125 (1994).
[CrossRef]

Das, T. K.

G. Jacobs, T. K. Das, Y. Q. Zhang, J. L. Li, G. Racoillet, and B. H. Davis, “Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts,” Appl. Catal. A 233, 263–281 (2002).
[CrossRef]

Davis, B. H.

G. Jacobs, T. K. Das, Y. Q. Zhang, J. L. Li, G. Racoillet, and B. H. Davis, “Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts,” Appl. Catal. A 233, 263–281 (2002).
[CrossRef]

Del Vitto, A.

J. M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. Del Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94, 213402 (2005).
[CrossRef]

A. Del Vitto, G. Pacchioni, K. H. Lim, N. Rösch, J. M. Antonietti, M. Michalski, U. Heiz, and H. Jones, “Gold atoms and dimers on amorphous SiO2: calculation of optical properties and cavity ringdown spectroscopy measurements,” J. Phys. Chem. B 109, 19876–19884 (2005).
[CrossRef]

Dong, G.

G. Dong, H. Tao, X. Xiao, C. Lin, X. Zhao, and S. Mao, “Mechanism of electron beam poled SHG in 0.95GeS2·0.05In2S3 chalcogenide glasses,” J. Phys. Chem. Solids 68, 158–161(2007).
[CrossRef]

Eisert, F.

M. Buck, F. Eisert, J. Fischer, M. Grunze, and F. Trager, “Investigation of self-organizing thiol films by optical 2nd-harmonic generation and x-ray photoelectron-spectroscopy,” Appl. Phys. A 53, 552–556 (1991).
[CrossRef]

Esch, F.

M. E. Vaida, T. M. Bernhardt, C. Barth, F. Esch, U. Heiz, and U. Landman, “Ultrathin magnesia films as support for molecules and metal clusters: tuning reactivity by thickness and composition,” Phys. Stat. Sol. B 247, 1001–1015 (2010).
[CrossRef]

Farnbacher, A. N.-S.

C. Harding, V. Habibpour, S. Kunz, A. N.-S. Farnbacher, U. Heiz, B. Yoon, and U. Landman, “Control and manipulation of gold nanocatalysis: effects of metal oxide support thickness and composition,” J. Am. Chem. Soc. 131, 538–548 (2009).
[CrossRef]

Fischer, J.

M. Buck, F. Eisert, J. Fischer, M. Grunze, and F. Trager, “Investigation of self-organizing thiol films by optical 2nd-harmonic generation and x-ray photoelectron-spectroscopy,” Appl. Phys. A 53, 552–556 (1991).
[CrossRef]

Fritz, S.

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances—bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

Fujiwara, T.

Y. Takahashi, Y. Benino, T. Fujiwara, and T. Komatsu, “Second harmonic generation in transparent surface crystallized glasses with stillwellite-type LaBGeO5,” J. Appl. Phys. 89, 5282–5287 (2001).
[CrossRef]

Galeckas, A.

A. Galeckas, M. Petrauskas, M. Willander, and Q. Wahab, “Optical 2nd harmonic-generation in reflection from silicon-carbide films” Surf. Interface Anal. 18, 71–72 (1992).
[CrossRef]

Gates, B. C.

J. Lu, P. Serna, C. Aydin, N. D. Browning, and B. C. Gates, “Supported molecular iridium catalysts: resolving effects of metal nuclearity and supports as ligands,” J. Am. Chem. Soc. 133, 16186–16195 (2011).
[CrossRef]

Gerlach, S.

M. Thämer, A. Kartouzian, P. Heister, S. Gerlach, M. Tschurl, U. Boesl, and U. Heiz, “Linear and nonlinear laser spectroscopy of surface adsorbates with sub-monolayer sensitivity,” J. Phys. Chem. C 116, 8642–8648 (2012).
[CrossRef]

Gilb, S.

A. Kartouzian, M. Thämer, T. Soini, J. Peter, P. Pitschi, S. Gilb, and U. Heiz, “Cavity ring-down spectrometer for measuring the optical response of supported size-selected clusters and surface defects in ultrahigh vacuum,” J. Appl. Phys. 104, 124313 (2008).
[CrossRef]

Grunze, M.

M. Buck, F. Eisert, J. Fischer, M. Grunze, and F. Trager, “Investigation of self-organizing thiol films by optical 2nd-harmonic generation and x-ray photoelectron-spectroscopy,” Appl. Phys. A 53, 552–556 (1991).
[CrossRef]

Gubler, U.

C. Bosshard, U. Gubler, P. Kaatz, W. Mazerant, and U. Meier, “Non-phase-matched optical third-harmonic generation in noncentrosymmetric media: cascaded second-order contributions for the calibration of third-order nonlinearities,” Phys. Rev. B 61, 10688–10701 (2000).
[CrossRef]

Habibpour, V.

C. Harding, V. Habibpour, S. Kunz, A. N.-S. Farnbacher, U. Heiz, B. Yoon, and U. Landman, “Control and manipulation of gold nanocatalysis: effects of metal oxide support thickness and composition,” J. Am. Chem. Soc. 131, 538–548 (2009).
[CrossRef]

Harding, C.

C. Harding, V. Habibpour, S. Kunz, A. N.-S. Farnbacher, U. Heiz, B. Yoon, and U. Landman, “Control and manipulation of gold nanocatalysis: effects of metal oxide support thickness and composition,” J. Am. Chem. Soc. 131, 538–548 (2009).
[CrossRef]

Heister, P.

M. Thämer, A. Kartouzian, P. Heister, S. Gerlach, M. Tschurl, U. Boesl, and U. Heiz, “Linear and nonlinear laser spectroscopy of surface adsorbates with sub-monolayer sensitivity,” J. Phys. Chem. C 116, 8642–8648 (2012).
[CrossRef]

Heiz, U.

M. Thämer, A. Kartouzian, P. Heister, S. Gerlach, M. Tschurl, U. Boesl, and U. Heiz, “Linear and nonlinear laser spectroscopy of surface adsorbates with sub-monolayer sensitivity,” J. Phys. Chem. C 116, 8642–8648 (2012).
[CrossRef]

M. E. Vaida, T. M. Bernhardt, C. Barth, F. Esch, U. Heiz, and U. Landman, “Ultrathin magnesia films as support for molecules and metal clusters: tuning reactivity by thickness and composition,” Phys. Stat. Sol. B 247, 1001–1015 (2010).
[CrossRef]

C. Harding, V. Habibpour, S. Kunz, A. N.-S. Farnbacher, U. Heiz, B. Yoon, and U. Landman, “Control and manipulation of gold nanocatalysis: effects of metal oxide support thickness and composition,” J. Am. Chem. Soc. 131, 538–548 (2009).
[CrossRef]

A. Kartouzian, M. Thämer, T. Soini, J. Peter, P. Pitschi, S. Gilb, and U. Heiz, “Cavity ring-down spectrometer for measuring the optical response of supported size-selected clusters and surface defects in ultrahigh vacuum,” J. Appl. Phys. 104, 124313 (2008).
[CrossRef]

A. Del Vitto, G. Pacchioni, K. H. Lim, N. Rösch, J. M. Antonietti, M. Michalski, U. Heiz, and H. Jones, “Gold atoms and dimers on amorphous SiO2: calculation of optical properties and cavity ringdown spectroscopy measurements,” J. Phys. Chem. B 109, 19876–19884 (2005).
[CrossRef]

J. M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. Del Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94, 213402 (2005).
[CrossRef]

Heuer, W.

T. Bornemann, A. Otto, W. Heuer, and H. Zacharias, “Second harmonic generation by cold-deposited silver films,” Surf. Sci. 420, 224–232 (1999).
[CrossRef]

Hicks, J. M.

T. Petrallimallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular-dichroism spectroscopy at interfaces—a surface 2nd harmonic-generation study,” J. Phys. Chem. 97, 1383–1388 (1993).
[CrossRef]

Higgins, D. A.

R. M. Corn and D. A. Higgins, “Optical 2nd-harmonic generation as S probe of surface-chemistry,” Chem. Rev. 94, 107–125 (1994).
[CrossRef]

Hilger, A.

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances—bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

Hovel, H.

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances—bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

Ito, R.

Jacobs, G.

G. Jacobs, T. K. Das, Y. Q. Zhang, J. L. Li, G. Racoillet, and B. H. Davis, “Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts,” Appl. Catal. A 233, 263–281 (2002).
[CrossRef]

Jones, H.

J. M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. Del Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94, 213402 (2005).
[CrossRef]

A. Del Vitto, G. Pacchioni, K. H. Lim, N. Rösch, J. M. Antonietti, M. Michalski, U. Heiz, and H. Jones, “Gold atoms and dimers on amorphous SiO2: calculation of optical properties and cavity ringdown spectroscopy measurements,” J. Phys. Chem. B 109, 19876–19884 (2005).
[CrossRef]

Kaatz, P.

C. Bosshard, U. Gubler, P. Kaatz, W. Mazerant, and U. Meier, “Non-phase-matched optical third-harmonic generation in noncentrosymmetric media: cascaded second-order contributions for the calibration of third-order nonlinearities,” Phys. Rev. B 61, 10688–10701 (2000).
[CrossRef]

Kartouzian, A.

M. Thämer, A. Kartouzian, P. Heister, S. Gerlach, M. Tschurl, U. Boesl, and U. Heiz, “Linear and nonlinear laser spectroscopy of surface adsorbates with sub-monolayer sensitivity,” J. Phys. Chem. C 116, 8642–8648 (2012).
[CrossRef]

A. Kartouzian, M. Thämer, T. Soini, J. Peter, P. Pitschi, S. Gilb, and U. Heiz, “Cavity ring-down spectrometer for measuring the optical response of supported size-selected clusters and surface defects in ultrahigh vacuum,” J. Appl. Phys. 104, 124313 (2008).
[CrossRef]

Kauranen, M.

Khanna, S. N.

S. V. Ong and S. N. Khanna, “Origin of oxidation and support-induced structural changes in Pd(4) clusters supported on TiO(2),” J. Phys. Chem. C 115, 20217–20224 (2011).
[CrossRef]

Kitamoto, A.

Komatsu, T.

Y. Takahashi, Y. Benino, T. Fujiwara, and T. Komatsu, “Second harmonic generation in transparent surface crystallized glasses with stillwellite-type LaBGeO5,” J. Appl. Phys. 89, 5282–5287 (2001).
[CrossRef]

Kondo, T.

Koren, G.

H. Lotem, G. Koren, and Y. Yacoby, “Dispersion of nonlinear optical susceptibility in GAAS and GASB” Phys. Rev. B 9, 3532–3540 (1974).
[CrossRef]

Kreibig, U.

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances—bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

Kunz, S.

C. Harding, V. Habibpour, S. Kunz, A. N.-S. Farnbacher, U. Heiz, B. Yoon, and U. Landman, “Control and manipulation of gold nanocatalysis: effects of metal oxide support thickness and composition,” J. Am. Chem. Soc. 131, 538–548 (2009).
[CrossRef]

Landman, U.

M. E. Vaida, T. M. Bernhardt, C. Barth, F. Esch, U. Heiz, and U. Landman, “Ultrathin magnesia films as support for molecules and metal clusters: tuning reactivity by thickness and composition,” Phys. Stat. Sol. B 247, 1001–1015 (2010).
[CrossRef]

C. Harding, V. Habibpour, S. Kunz, A. N.-S. Farnbacher, U. Heiz, B. Yoon, and U. Landman, “Control and manipulation of gold nanocatalysis: effects of metal oxide support thickness and composition,” J. Am. Chem. Soc. 131, 538–548 (2009).
[CrossRef]

Li, J. L.

G. Jacobs, T. K. Das, Y. Q. Zhang, J. L. Li, G. Racoillet, and B. H. Davis, “Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts,” Appl. Catal. A 233, 263–281 (2002).
[CrossRef]

Lim, K. H.

A. Del Vitto, G. Pacchioni, K. H. Lim, N. Rösch, J. M. Antonietti, M. Michalski, U. Heiz, and H. Jones, “Gold atoms and dimers on amorphous SiO2: calculation of optical properties and cavity ringdown spectroscopy measurements,” J. Phys. Chem. B 109, 19876–19884 (2005).
[CrossRef]

J. M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. Del Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94, 213402 (2005).
[CrossRef]

Lin, C.

G. Dong, H. Tao, X. Xiao, C. Lin, X. Zhao, and S. Mao, “Mechanism of electron beam poled SHG in 0.95GeS2·0.05In2S3 chalcogenide glasses,” J. Phys. Chem. Solids 68, 158–161(2007).
[CrossRef]

Lotem, H.

H. Lotem, G. Koren, and Y. Yacoby, “Dispersion of nonlinear optical susceptibility in GAAS and GASB” Phys. Rev. B 9, 3532–3540 (1974).
[CrossRef]

Lu, J.

J. Lu, P. Serna, C. Aydin, N. D. Browning, and B. C. Gates, “Supported molecular iridium catalysts: resolving effects of metal nuclearity and supports as ligands,” J. Am. Chem. Soc. 133, 16186–16195 (2011).
[CrossRef]

Mao, S.

G. Dong, H. Tao, X. Xiao, C. Lin, X. Zhao, and S. Mao, “Mechanism of electron beam poled SHG in 0.95GeS2·0.05In2S3 chalcogenide glasses,” J. Phys. Chem. Solids 68, 158–161(2007).
[CrossRef]

Mason, M. G.

M. G. Mason, “Electronic-structure of supported small metal-clusters,” Phys. Rev. B 27, 748–762 (1983).
[CrossRef]

Mazerant, W.

C. Bosshard, U. Gubler, P. Kaatz, W. Mazerant, and U. Meier, “Non-phase-matched optical third-harmonic generation in noncentrosymmetric media: cascaded second-order contributions for the calibration of third-order nonlinearities,” Phys. Rev. B 61, 10688–10701 (2000).
[CrossRef]

McGilp, J. F.

J. F. McGilp, “Optical characterization of semiconductor surfaces and interfaces,” Prog. Surf. Sci. 49, 1–106 (1995).
[CrossRef]

Meier, U.

C. Bosshard, U. Gubler, P. Kaatz, W. Mazerant, and U. Meier, “Non-phase-matched optical third-harmonic generation in noncentrosymmetric media: cascaded second-order contributions for the calibration of third-order nonlinearities,” Phys. Rev. B 61, 10688–10701 (2000).
[CrossRef]

Michalski, M.

J. M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. Del Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94, 213402 (2005).
[CrossRef]

A. Del Vitto, G. Pacchioni, K. H. Lim, N. Rösch, J. M. Antonietti, M. Michalski, U. Heiz, and H. Jones, “Gold atoms and dimers on amorphous SiO2: calculation of optical properties and cavity ringdown spectroscopy measurements,” J. Phys. Chem. B 109, 19876–19884 (2005).
[CrossRef]

Ong, S. V.

S. V. Ong and S. N. Khanna, “Origin of oxidation and support-induced structural changes in Pd(4) clusters supported on TiO(2),” J. Phys. Chem. C 115, 20217–20224 (2011).
[CrossRef]

Otto, A.

T. Bornemann, A. Otto, W. Heuer, and H. Zacharias, “Second harmonic generation by cold-deposited silver films,” Surf. Sci. 420, 224–232 (1999).
[CrossRef]

Pacchioni, G.

A. Del Vitto, G. Pacchioni, K. H. Lim, N. Rösch, J. M. Antonietti, M. Michalski, U. Heiz, and H. Jones, “Gold atoms and dimers on amorphous SiO2: calculation of optical properties and cavity ringdown spectroscopy measurements,” J. Phys. Chem. B 109, 19876–19884 (2005).
[CrossRef]

J. M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. Del Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94, 213402 (2005).
[CrossRef]

Pedersen, K.

K. Pedersen, M. Schiek, J. Rafaelsen, and H. G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B 96, 821–826 (2009).
[CrossRef]

Peter, J.

A. Kartouzian, M. Thämer, T. Soini, J. Peter, P. Pitschi, S. Gilb, and U. Heiz, “Cavity ring-down spectrometer for measuring the optical response of supported size-selected clusters and surface defects in ultrahigh vacuum,” J. Appl. Phys. 104, 124313 (2008).
[CrossRef]

Petrallimallow, T.

T. Petrallimallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular-dichroism spectroscopy at interfaces—a surface 2nd harmonic-generation study,” J. Phys. Chem. 97, 1383–1388 (1993).
[CrossRef]

Petrauskas, M.

A. Galeckas, M. Petrauskas, M. Willander, and Q. Wahab, “Optical 2nd harmonic-generation in reflection from silicon-carbide films” Surf. Interface Anal. 18, 71–72 (1992).
[CrossRef]

Pitschi, P.

A. Kartouzian, M. Thämer, T. Soini, J. Peter, P. Pitschi, S. Gilb, and U. Heiz, “Cavity ring-down spectrometer for measuring the optical response of supported size-selected clusters and surface defects in ultrahigh vacuum,” J. Appl. Phys. 104, 124313 (2008).
[CrossRef]

Racoillet, G.

G. Jacobs, T. K. Das, Y. Q. Zhang, J. L. Li, G. Racoillet, and B. H. Davis, “Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts,” Appl. Catal. A 233, 263–281 (2002).
[CrossRef]

Rafaelsen, J.

K. Pedersen, M. Schiek, J. Rafaelsen, and H. G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B 96, 821–826 (2009).
[CrossRef]

Roberts, D. A.

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical-crystal—a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

Rodriguez, F. J.

Rösch, N.

J. M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. Del Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94, 213402 (2005).
[CrossRef]

A. Del Vitto, G. Pacchioni, K. H. Lim, N. Rösch, J. M. Antonietti, M. Michalski, U. Heiz, and H. Jones, “Gold atoms and dimers on amorphous SiO2: calculation of optical properties and cavity ringdown spectroscopy measurements,” J. Phys. Chem. B 109, 19876–19884 (2005).
[CrossRef]

Rosenzweig, Z.

M. Asscher and Z. Rosenzweig, “Adsorbate interaction—an optical 2nd harminic-generation study,” J. Vac. Sci. Technol. A 9, 1913–1918 (1991).
[CrossRef]

Rubahn, H. G.

K. Pedersen, M. Schiek, J. Rafaelsen, and H. G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B 96, 821–826 (2009).
[CrossRef]

Schiek, M.

K. Pedersen, M. Schiek, J. Rafaelsen, and H. G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B 96, 821–826 (2009).
[CrossRef]

Serna, P.

J. Lu, P. Serna, C. Aydin, N. D. Browning, and B. C. Gates, “Supported molecular iridium catalysts: resolving effects of metal nuclearity and supports as ligands,” J. Am. Chem. Soc. 133, 16186–16195 (2011).
[CrossRef]

Shen, Y. R.

X. Zhuang and Y. R. Shen, “The application of nonlinear optics to the study of polymers at interfaces,” Trends Polym. Sci. 4, 258–264 (1996).

Y. R. Shen, “Nonlinear-optical studies of polymer interfaces,” Int. J. Nonlinear Opt. Phys. 3, 459–468 (1994).
[CrossRef]

Y. R. Shen, “Surface 2nd harmonic-generation—a new technique for surface studies,” Ann. Rev. Mater. Sci. 16, 69–86 (1986).
[CrossRef]

Shirane, M.

Shoji, I.

Soini, T.

A. Kartouzian, M. Thämer, T. Soini, J. Peter, P. Pitschi, S. Gilb, and U. Heiz, “Cavity ring-down spectrometer for measuring the optical response of supported size-selected clusters and surface defects in ultrahigh vacuum,” J. Appl. Phys. 104, 124313 (2008).
[CrossRef]

Takahashi, Y.

Y. Takahashi, Y. Benino, T. Fujiwara, and T. Komatsu, “Second harmonic generation in transparent surface crystallized glasses with stillwellite-type LaBGeO5,” J. Appl. Phys. 89, 5282–5287 (2001).
[CrossRef]

Tao, H.

G. Dong, H. Tao, X. Xiao, C. Lin, X. Zhao, and S. Mao, “Mechanism of electron beam poled SHG in 0.95GeS2·0.05In2S3 chalcogenide glasses,” J. Phys. Chem. Solids 68, 158–161(2007).
[CrossRef]

Thämer, M.

M. Thämer, A. Kartouzian, P. Heister, S. Gerlach, M. Tschurl, U. Boesl, and U. Heiz, “Linear and nonlinear laser spectroscopy of surface adsorbates with sub-monolayer sensitivity,” J. Phys. Chem. C 116, 8642–8648 (2012).
[CrossRef]

A. Kartouzian, M. Thämer, T. Soini, J. Peter, P. Pitschi, S. Gilb, and U. Heiz, “Cavity ring-down spectrometer for measuring the optical response of supported size-selected clusters and surface defects in ultrahigh vacuum,” J. Appl. Phys. 104, 124313 (2008).
[CrossRef]

Trager, F.

M. Buck, F. Eisert, J. Fischer, M. Grunze, and F. Trager, “Investigation of self-organizing thiol films by optical 2nd-harmonic generation and x-ray photoelectron-spectroscopy,” Appl. Phys. A 53, 552–556 (1991).
[CrossRef]

Tschurl, M.

M. Thämer, A. Kartouzian, P. Heister, S. Gerlach, M. Tschurl, U. Boesl, and U. Heiz, “Linear and nonlinear laser spectroscopy of surface adsorbates with sub-monolayer sensitivity,” J. Phys. Chem. C 116, 8642–8648 (2012).
[CrossRef]

Vaida, M. E.

M. E. Vaida, T. M. Bernhardt, C. Barth, F. Esch, U. Heiz, and U. Landman, “Ultrathin magnesia films as support for molecules and metal clusters: tuning reactivity by thickness and composition,” Phys. Stat. Sol. B 247, 1001–1015 (2010).
[CrossRef]

Vollmer, M.

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances—bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

Wahab, Q.

A. Galeckas, M. Petrauskas, M. Willander, and Q. Wahab, “Optical 2nd harmonic-generation in reflection from silicon-carbide films” Surf. Interface Anal. 18, 71–72 (1992).
[CrossRef]

Wang, F. X.

Willander, M.

A. Galeckas, M. Petrauskas, M. Willander, and Q. Wahab, “Optical 2nd harmonic-generation in reflection from silicon-carbide films” Surf. Interface Anal. 18, 71–72 (1992).
[CrossRef]

Wong, T. M.

T. Petrallimallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular-dichroism spectroscopy at interfaces—a surface 2nd harmonic-generation study,” J. Phys. Chem. 97, 1383–1388 (1993).
[CrossRef]

Xiao, X.

G. Dong, H. Tao, X. Xiao, C. Lin, X. Zhao, and S. Mao, “Mechanism of electron beam poled SHG in 0.95GeS2·0.05In2S3 chalcogenide glasses,” J. Phys. Chem. Solids 68, 158–161(2007).
[CrossRef]

Yacoby, Y.

H. Lotem, G. Koren, and Y. Yacoby, “Dispersion of nonlinear optical susceptibility in GAAS and GASB” Phys. Rev. B 9, 3532–3540 (1974).
[CrossRef]

Yee, H. I.

T. Petrallimallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular-dichroism spectroscopy at interfaces—a surface 2nd harmonic-generation study,” J. Phys. Chem. 97, 1383–1388 (1993).
[CrossRef]

Yoon, B.

C. Harding, V. Habibpour, S. Kunz, A. N.-S. Farnbacher, U. Heiz, B. Yoon, and U. Landman, “Control and manipulation of gold nanocatalysis: effects of metal oxide support thickness and composition,” J. Am. Chem. Soc. 131, 538–548 (2009).
[CrossRef]

Zacharias, H.

T. Bornemann, A. Otto, W. Heuer, and H. Zacharias, “Second harmonic generation by cold-deposited silver films,” Surf. Sci. 420, 224–232 (1999).
[CrossRef]

Zhang, Y. Q.

G. Jacobs, T. K. Das, Y. Q. Zhang, J. L. Li, G. Racoillet, and B. H. Davis, “Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts,” Appl. Catal. A 233, 263–281 (2002).
[CrossRef]

Zhao, X.

G. Dong, H. Tao, X. Xiao, C. Lin, X. Zhao, and S. Mao, “Mechanism of electron beam poled SHG in 0.95GeS2·0.05In2S3 chalcogenide glasses,” J. Phys. Chem. Solids 68, 158–161(2007).
[CrossRef]

Zhuang, X.

X. Zhuang and Y. R. Shen, “The application of nonlinear optics to the study of polymers at interfaces,” Trends Polym. Sci. 4, 258–264 (1996).

Ann. Rev. Mater. Sci. (1)

Y. R. Shen, “Surface 2nd harmonic-generation—a new technique for surface studies,” Ann. Rev. Mater. Sci. 16, 69–86 (1986).
[CrossRef]

Appl. Catal. A (1)

G. Jacobs, T. K. Das, Y. Q. Zhang, J. L. Li, G. Racoillet, and B. H. Davis, “Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts,” Appl. Catal. A 233, 263–281 (2002).
[CrossRef]

Appl. Phys. A (1)

M. Buck, F. Eisert, J. Fischer, M. Grunze, and F. Trager, “Investigation of self-organizing thiol films by optical 2nd-harmonic generation and x-ray photoelectron-spectroscopy,” Appl. Phys. A 53, 552–556 (1991).
[CrossRef]

Appl. Phys. B (1)

K. Pedersen, M. Schiek, J. Rafaelsen, and H. G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B 96, 821–826 (2009).
[CrossRef]

Chem. Rev. (1)

R. M. Corn and D. A. Higgins, “Optical 2nd-harmonic generation as S probe of surface-chemistry,” Chem. Rev. 94, 107–125 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical-crystal—a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

Int. J. Nonlinear Opt. Phys. (1)

Y. R. Shen, “Nonlinear-optical studies of polymer interfaces,” Int. J. Nonlinear Opt. Phys. 3, 459–468 (1994).
[CrossRef]

J. Am. Chem. Soc. (2)

C. Harding, V. Habibpour, S. Kunz, A. N.-S. Farnbacher, U. Heiz, B. Yoon, and U. Landman, “Control and manipulation of gold nanocatalysis: effects of metal oxide support thickness and composition,” J. Am. Chem. Soc. 131, 538–548 (2009).
[CrossRef]

J. Lu, P. Serna, C. Aydin, N. D. Browning, and B. C. Gates, “Supported molecular iridium catalysts: resolving effects of metal nuclearity and supports as ligands,” J. Am. Chem. Soc. 133, 16186–16195 (2011).
[CrossRef]

J. Appl. Phys. (2)

Y. Takahashi, Y. Benino, T. Fujiwara, and T. Komatsu, “Second harmonic generation in transparent surface crystallized glasses with stillwellite-type LaBGeO5,” J. Appl. Phys. 89, 5282–5287 (2001).
[CrossRef]

A. Kartouzian, M. Thämer, T. Soini, J. Peter, P. Pitschi, S. Gilb, and U. Heiz, “Cavity ring-down spectrometer for measuring the optical response of supported size-selected clusters and surface defects in ultrahigh vacuum,” J. Appl. Phys. 104, 124313 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

T. Petrallimallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular-dichroism spectroscopy at interfaces—a surface 2nd harmonic-generation study,” J. Phys. Chem. 97, 1383–1388 (1993).
[CrossRef]

J. Phys. Chem. B (1)

A. Del Vitto, G. Pacchioni, K. H. Lim, N. Rösch, J. M. Antonietti, M. Michalski, U. Heiz, and H. Jones, “Gold atoms and dimers on amorphous SiO2: calculation of optical properties and cavity ringdown spectroscopy measurements,” J. Phys. Chem. B 109, 19876–19884 (2005).
[CrossRef]

J. Phys. Chem. C (2)

M. Thämer, A. Kartouzian, P. Heister, S. Gerlach, M. Tschurl, U. Boesl, and U. Heiz, “Linear and nonlinear laser spectroscopy of surface adsorbates with sub-monolayer sensitivity,” J. Phys. Chem. C 116, 8642–8648 (2012).
[CrossRef]

S. V. Ong and S. N. Khanna, “Origin of oxidation and support-induced structural changes in Pd(4) clusters supported on TiO(2),” J. Phys. Chem. C 115, 20217–20224 (2011).
[CrossRef]

J. Phys. Chem. Solids (1)

G. Dong, H. Tao, X. Xiao, C. Lin, X. Zhao, and S. Mao, “Mechanism of electron beam poled SHG in 0.95GeS2·0.05In2S3 chalcogenide glasses,” J. Phys. Chem. Solids 68, 158–161(2007).
[CrossRef]

J. Vac. Sci. Technol. A (1)

M. Asscher and Z. Rosenzweig, “Adsorbate interaction—an optical 2nd harminic-generation study,” J. Vac. Sci. Technol. A 9, 1913–1918 (1991).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (4)

H. Lotem, G. Koren, and Y. Yacoby, “Dispersion of nonlinear optical susceptibility in GAAS and GASB” Phys. Rev. B 9, 3532–3540 (1974).
[CrossRef]

C. Bosshard, U. Gubler, P. Kaatz, W. Mazerant, and U. Meier, “Non-phase-matched optical third-harmonic generation in noncentrosymmetric media: cascaded second-order contributions for the calibration of third-order nonlinearities,” Phys. Rev. B 61, 10688–10701 (2000).
[CrossRef]

M. G. Mason, “Electronic-structure of supported small metal-clusters,” Phys. Rev. B 27, 748–762 (1983).
[CrossRef]

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances—bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

Phys. Rev. Lett. (1)

J. M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. Del Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94, 213402 (2005).
[CrossRef]

Phys. Stat. Sol. B (1)

M. E. Vaida, T. M. Bernhardt, C. Barth, F. Esch, U. Heiz, and U. Landman, “Ultrathin magnesia films as support for molecules and metal clusters: tuning reactivity by thickness and composition,” Phys. Stat. Sol. B 247, 1001–1015 (2010).
[CrossRef]

Prog. Surf. Sci. (1)

J. F. McGilp, “Optical characterization of semiconductor surfaces and interfaces,” Prog. Surf. Sci. 49, 1–106 (1995).
[CrossRef]

Surf. Interface Anal. (1)

A. Galeckas, M. Petrauskas, M. Willander, and Q. Wahab, “Optical 2nd harmonic-generation in reflection from silicon-carbide films” Surf. Interface Anal. 18, 71–72 (1992).
[CrossRef]

Surf. Sci. (1)

T. Bornemann, A. Otto, W. Heuer, and H. Zacharias, “Second harmonic generation by cold-deposited silver films,” Surf. Sci. 420, 224–232 (1999).
[CrossRef]

Trends Polym. Sci. (1)

X. Zhuang and Y. R. Shen, “The application of nonlinear optics to the study of polymers at interfaces,” Trends Polym. Sci. 4, 258–264 (1996).

Other (1)

P.-F. Brevet, Surface Second Harmonic Generation (PPUR, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

llustration of second harmonic generation from a thin plan-parallel slab. Solid curves represent the fundamental laser beam and dashed curves represent the SHG beam. (a) Both the fundamental and the SHG beam leave the substrate at the same angle. (b) For wavelengths where the substrate is transparent to the SHG beam, SH generated at the first interface contributes to the total observed SHG signal. (c) For wavelengths where the substrate is opaque to the SHG beam, THE SHG beam from the first interface is absorbed by the substrate and does not contribute to the total observed SHG signal.

Fig. 2.
Fig. 2.

Schematic view of the optical arrangement. BS, beam splitter; L1,2,3 lenses; PBP, Pellin–Broca prism; BD, beam dump; PD, photodiode; MC, monochromator; and PMT, photomultiplier tube.

Fig. 3.
Fig. 3.

Angular dependence of s-SHG intensity from a BK7 substrate at 520 and 640 nm. Gray curves show measured data and black curves show the simulated data using Eqs. (1)–(3). In both panels the arrow indicates the corresponding Brewster’s angle. Insets are included to demonstrate the good agreement between measurement and simulation.

Fig. 4.
Fig. 4.

Laser power-corrected wavelength-dependent s-SHG intensity spectrum of a thin BK7 substrate is represented by a gray solid curve. The solid black curve is the result of the smoothing procedure. The dashed black curve shows the transmission curve of the same substrate at SH wavelengths (top axis).

Fig. 5.
Fig. 5.

Laser power-corrected wavelength-dependent s-SHG intensity spectrum of a MgO thin substrate is shown in solid gray. As expected, interference modulation is observed throughout the measured range, since MgO is transparent to all SHG wavelength covered in this measurement. The s-SHG intensity spectrum of BK7 is also shown for comparison in solid black. The dashed black curve represents the result of the smoothing procedure on MgO data.

Fig. 6.
Fig. 6.

Data treatment procedure is demonstrated using Binol coated BK7 as a test system. The upper panel shows the raw data before any data treatment. The middle panel shows the same data after laser power correction. In the lower panel the black solid curve shows the data after full data treatment including spectrometer function correction. Gray circles indicate single data points. The dashed black curve represents the linear absorption spectrum of Binol on quartz glass measured by a commercial UV–Vis spectrometer.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I(2ω)=Y(2ω)I(ω)2A(2ω)2[1+T(2ω)2+2T(2ω)cos(2ωζ)],
ζ=dc[n(2ω)2sin2αn(ω)2sin2α].
A(2ω)2ϵ02[χ(2)]2(1R(2ω))sin4α,
I(2ω)Y(2ω)I02C(α)[χ(2)]2[1+T(2ω)2+2T(2ω)cos(2ωζ)].
I(2ω)I02Y(2ω)C(α)[χ(2)]2[1+T(2ω)2+2T(2ω)cos(2ωζ)].
[I(2ω)I02]smoothY(2ω)C(α)[χ(2)]2[1+T(2ω)2].
χ(2)B[ω02ω2]2[ω024ω2],
[I(2ω)MgOI02]smooth2Y(2ω)C(α)MgO[χMgO(2)]2.
[I(2ω)BK7I02]smoothY(2ω)C(α)BK7[χBK7(2)]2.
I(2ω)SI02Y(2ω)C(α)[χBK7(2)]2[1+T(2ω)2+2T(2ω)cos(2ωζ)]+Y(2ω)C(α){[χS(2)]2+2T(2ω)χBK7(2)χS(2)cos(2ωζφ)+2χBK7(2)χS(2)cos(φ)},
[I(2ω)SI(2ω)BK7I02]smoothY(2ω)C(α){[χS(2)]2+2χBK7(2)χS(2)cos(φ)}.
[I(2ω)SI(2ω)BK7I02]smooth[I(2ω)BK7I02(1+T2(2ω))]smooth[χS(2)]2[χBK7(2)]2+2χS(2)χBK7(2)cos(φ).
[I(2ω)SI(2ω)BK7I02]smooth[I(2ω)BK7I02(1+T2(2ω))]smooth[χS(2)]2[χBK7(2)]2.

Metrics