Abstract

The upconversion quantum efficiency and power-conversion efficiency in Tb3+-Yb3+ codoped glass have been investigated theoretically by the cooperative sensitization rate equation model. Both efficiencies exhibited linear relations with pump-power density and decreased with Yb3+ concentration. It was found that the ratio of quantum efficiency to power-conversion efficiency is constant (0.56) and independent of pump-power density and Yb3+ concentration. The theoretical predictions were confirmed by the experimental results measured by an integrating sphere system. The absolute upconversion efficiency was estimated to be on the order of 104 in the pump-power density range of 4096W/cm2.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. Maciel, A. Biswas, R. Kapoor, and P. N. Prasad, “Blue cooperative upconversion in Yb3+-doped multicomponent sol-gel-processed silica glass for three-dimensional display,” Appl. Phys. Lett. 76, 1978–1980 (2000).
    [CrossRef]
  2. K. Hanaoka, K. Kikuchi, S. Kobayashi, and T. Nagano, “Time-resolved long-lives luminescence imaging method employing luminescent lanthanide probes with a new microscopy system,” J. Am. Chem. Soc. 129, 13502–13509 (2007).
    [CrossRef]
  3. M. A. Noginov, P. Venkateswarlu, and M. Mahdi, “Two-step upconversion luminescence in Yb: Tb: YSGG crystal,” J. Opt. Soc. Am. B 13, 735–741 (1996).
    [CrossRef]
  4. Y. Arai, T. Yamashidta, T. Suzuki, and Y. Ohishi, “Upconversion properties of Tb3+-Yb3+ codoped fluorophosphates glasses,” J. Appl. Phys. 105, 083105 (2009).
    [CrossRef]
  5. J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Upconverter solar cells: materials and applications,” Energ. Environ. Sci. 4, 4835–4848 (2011).
    [CrossRef]
  6. S. Ivanova and F. Pellé, “Strong 1.53 μm to NIR-VIS-UV upconversion in Er-doped fluoride glass for high-efficiency solar cells,” J. Opt. Soc. Am. B 26, 1930–1938 (2009).
    [CrossRef]
  7. L. Porrès, A. Holland, L. Pålsson, A. P. Monkman, C. Kemp, and A. Beeby, “Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere,” J. Fluoresc. 16, 267–273 (2006).
    [CrossRef]
  8. A. R. Johnson, S. Lee, J. Klein, and J. Kanicki, “Absolute photoluminescence quantum efficiency measurement of light-emitting thin films,” Rev. Sci. Instrum. 78, 096101 (2007).
    [CrossRef]
  9. G. S. Samal, A. K. Tripathi, A. K. Biswas, S. Singh, and Y. N. Mohapatra, “Photoluminescence quantum efficiency (PLQY) and PL decay characteristics of polymeric light emitting materials,” Synth. Met. 155, 344–348 (2005).
    [CrossRef]
  10. J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Adv. Mater. 9, 230–232 (1997).
    [CrossRef]
  11. B. Lai, J. Wang, and Q. Su, “Ultraviolet and visible upconversion emission in Tb3+/Yb3+ codoped fluorophosphates glasses,” Appl. Phys. B 98, 41–47 (2010).
    [CrossRef]
  12. S. Sivakumar and F. C. J. M. van Veggel, “Red, green, and blue light through cooperative upconversion in sol-gel thin films made with Yb0.8La0.05Tb0.05F3 and Yb0.8La0.05Eu0.05F3 nanoparticles,” J. Disp. Technol. 3, 176–183 (2007).
    [CrossRef]
  13. T. Yamashita and Y. Ohishi, “Cooperative energy transfer between Tb3+ and Yb3+ ions co-doped in borosilicate glass,” J. Non-Cryst. Solids 354, 1883–1890 (2008).
    [CrossRef]
  14. F. W. Ostermayer and L. G. Van Uitert, “Cooperative energy transfer from Yb3+ to Tb3+ in YF3,” Phys. Rev. B 1, 4208–4212 (1970).
    [CrossRef]
  15. G. M. Salley, R. Valiente, and H. U. Güdel, “Phonon-assisted cooperative sensitization of Tb3+ in SrCl2: Yb, Tb,” J. Phys. Condens. Matter 14, 5461–5475 (2002).
    [CrossRef]
  16. T. Kusida, “Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. I. Transition probability calculation,” J. Phys. Soc. Jpn. 34, 1318–1326 (1973).
    [CrossRef]
  17. F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004).
    [CrossRef]

2011

J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Upconverter solar cells: materials and applications,” Energ. Environ. Sci. 4, 4835–4848 (2011).
[CrossRef]

2010

B. Lai, J. Wang, and Q. Su, “Ultraviolet and visible upconversion emission in Tb3+/Yb3+ codoped fluorophosphates glasses,” Appl. Phys. B 98, 41–47 (2010).
[CrossRef]

2009

S. Ivanova and F. Pellé, “Strong 1.53 μm to NIR-VIS-UV upconversion in Er-doped fluoride glass for high-efficiency solar cells,” J. Opt. Soc. Am. B 26, 1930–1938 (2009).
[CrossRef]

Y. Arai, T. Yamashidta, T. Suzuki, and Y. Ohishi, “Upconversion properties of Tb3+-Yb3+ codoped fluorophosphates glasses,” J. Appl. Phys. 105, 083105 (2009).
[CrossRef]

2008

T. Yamashita and Y. Ohishi, “Cooperative energy transfer between Tb3+ and Yb3+ ions co-doped in borosilicate glass,” J. Non-Cryst. Solids 354, 1883–1890 (2008).
[CrossRef]

2007

S. Sivakumar and F. C. J. M. van Veggel, “Red, green, and blue light through cooperative upconversion in sol-gel thin films made with Yb0.8La0.05Tb0.05F3 and Yb0.8La0.05Eu0.05F3 nanoparticles,” J. Disp. Technol. 3, 176–183 (2007).
[CrossRef]

K. Hanaoka, K. Kikuchi, S. Kobayashi, and T. Nagano, “Time-resolved long-lives luminescence imaging method employing luminescent lanthanide probes with a new microscopy system,” J. Am. Chem. Soc. 129, 13502–13509 (2007).
[CrossRef]

A. R. Johnson, S. Lee, J. Klein, and J. Kanicki, “Absolute photoluminescence quantum efficiency measurement of light-emitting thin films,” Rev. Sci. Instrum. 78, 096101 (2007).
[CrossRef]

2006

L. Porrès, A. Holland, L. Pålsson, A. P. Monkman, C. Kemp, and A. Beeby, “Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere,” J. Fluoresc. 16, 267–273 (2006).
[CrossRef]

2005

G. S. Samal, A. K. Tripathi, A. K. Biswas, S. Singh, and Y. N. Mohapatra, “Photoluminescence quantum efficiency (PLQY) and PL decay characteristics of polymeric light emitting materials,” Synth. Met. 155, 344–348 (2005).
[CrossRef]

2004

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004).
[CrossRef]

2002

G. M. Salley, R. Valiente, and H. U. Güdel, “Phonon-assisted cooperative sensitization of Tb3+ in SrCl2: Yb, Tb,” J. Phys. Condens. Matter 14, 5461–5475 (2002).
[CrossRef]

2000

G. S. Maciel, A. Biswas, R. Kapoor, and P. N. Prasad, “Blue cooperative upconversion in Yb3+-doped multicomponent sol-gel-processed silica glass for three-dimensional display,” Appl. Phys. Lett. 76, 1978–1980 (2000).
[CrossRef]

1997

J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Adv. Mater. 9, 230–232 (1997).
[CrossRef]

1996

1973

T. Kusida, “Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. I. Transition probability calculation,” J. Phys. Soc. Jpn. 34, 1318–1326 (1973).
[CrossRef]

1970

F. W. Ostermayer and L. G. Van Uitert, “Cooperative energy transfer from Yb3+ to Tb3+ in YF3,” Phys. Rev. B 1, 4208–4212 (1970).
[CrossRef]

Arai, Y.

Y. Arai, T. Yamashidta, T. Suzuki, and Y. Ohishi, “Upconversion properties of Tb3+-Yb3+ codoped fluorophosphates glasses,” J. Appl. Phys. 105, 083105 (2009).
[CrossRef]

Auzel, F.

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004).
[CrossRef]

Beeby, A.

L. Porrès, A. Holland, L. Pålsson, A. P. Monkman, C. Kemp, and A. Beeby, “Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere,” J. Fluoresc. 16, 267–273 (2006).
[CrossRef]

Biswas, A.

G. S. Maciel, A. Biswas, R. Kapoor, and P. N. Prasad, “Blue cooperative upconversion in Yb3+-doped multicomponent sol-gel-processed silica glass for three-dimensional display,” Appl. Phys. Lett. 76, 1978–1980 (2000).
[CrossRef]

Biswas, A. K.

G. S. Samal, A. K. Tripathi, A. K. Biswas, S. Singh, and Y. N. Mohapatra, “Photoluminescence quantum efficiency (PLQY) and PL decay characteristics of polymeric light emitting materials,” Synth. Met. 155, 344–348 (2005).
[CrossRef]

de Mello, J. C.

J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Adv. Mater. 9, 230–232 (1997).
[CrossRef]

de Wild, J.

J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Upconverter solar cells: materials and applications,” Energ. Environ. Sci. 4, 4835–4848 (2011).
[CrossRef]

Friend, R. H.

J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Adv. Mater. 9, 230–232 (1997).
[CrossRef]

Güdel, H. U.

G. M. Salley, R. Valiente, and H. U. Güdel, “Phonon-assisted cooperative sensitization of Tb3+ in SrCl2: Yb, Tb,” J. Phys. Condens. Matter 14, 5461–5475 (2002).
[CrossRef]

Hanaoka, K.

K. Hanaoka, K. Kikuchi, S. Kobayashi, and T. Nagano, “Time-resolved long-lives luminescence imaging method employing luminescent lanthanide probes with a new microscopy system,” J. Am. Chem. Soc. 129, 13502–13509 (2007).
[CrossRef]

Holland, A.

L. Porrès, A. Holland, L. Pålsson, A. P. Monkman, C. Kemp, and A. Beeby, “Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere,” J. Fluoresc. 16, 267–273 (2006).
[CrossRef]

Ivanova, S.

Johnson, A. R.

A. R. Johnson, S. Lee, J. Klein, and J. Kanicki, “Absolute photoluminescence quantum efficiency measurement of light-emitting thin films,” Rev. Sci. Instrum. 78, 096101 (2007).
[CrossRef]

Kanicki, J.

A. R. Johnson, S. Lee, J. Klein, and J. Kanicki, “Absolute photoluminescence quantum efficiency measurement of light-emitting thin films,” Rev. Sci. Instrum. 78, 096101 (2007).
[CrossRef]

Kapoor, R.

G. S. Maciel, A. Biswas, R. Kapoor, and P. N. Prasad, “Blue cooperative upconversion in Yb3+-doped multicomponent sol-gel-processed silica glass for three-dimensional display,” Appl. Phys. Lett. 76, 1978–1980 (2000).
[CrossRef]

Kemp, C.

L. Porrès, A. Holland, L. Pålsson, A. P. Monkman, C. Kemp, and A. Beeby, “Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere,” J. Fluoresc. 16, 267–273 (2006).
[CrossRef]

Kikuchi, K.

K. Hanaoka, K. Kikuchi, S. Kobayashi, and T. Nagano, “Time-resolved long-lives luminescence imaging method employing luminescent lanthanide probes with a new microscopy system,” J. Am. Chem. Soc. 129, 13502–13509 (2007).
[CrossRef]

Klein, J.

A. R. Johnson, S. Lee, J. Klein, and J. Kanicki, “Absolute photoluminescence quantum efficiency measurement of light-emitting thin films,” Rev. Sci. Instrum. 78, 096101 (2007).
[CrossRef]

Kobayashi, S.

K. Hanaoka, K. Kikuchi, S. Kobayashi, and T. Nagano, “Time-resolved long-lives luminescence imaging method employing luminescent lanthanide probes with a new microscopy system,” J. Am. Chem. Soc. 129, 13502–13509 (2007).
[CrossRef]

Kusida, T.

T. Kusida, “Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. I. Transition probability calculation,” J. Phys. Soc. Jpn. 34, 1318–1326 (1973).
[CrossRef]

Lai, B.

B. Lai, J. Wang, and Q. Su, “Ultraviolet and visible upconversion emission in Tb3+/Yb3+ codoped fluorophosphates glasses,” Appl. Phys. B 98, 41–47 (2010).
[CrossRef]

Lee, S.

A. R. Johnson, S. Lee, J. Klein, and J. Kanicki, “Absolute photoluminescence quantum efficiency measurement of light-emitting thin films,” Rev. Sci. Instrum. 78, 096101 (2007).
[CrossRef]

Maciel, G. S.

G. S. Maciel, A. Biswas, R. Kapoor, and P. N. Prasad, “Blue cooperative upconversion in Yb3+-doped multicomponent sol-gel-processed silica glass for three-dimensional display,” Appl. Phys. Lett. 76, 1978–1980 (2000).
[CrossRef]

Mahdi, M.

Meijerink, A.

J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Upconverter solar cells: materials and applications,” Energ. Environ. Sci. 4, 4835–4848 (2011).
[CrossRef]

Mohapatra, Y. N.

G. S. Samal, A. K. Tripathi, A. K. Biswas, S. Singh, and Y. N. Mohapatra, “Photoluminescence quantum efficiency (PLQY) and PL decay characteristics of polymeric light emitting materials,” Synth. Met. 155, 344–348 (2005).
[CrossRef]

Monkman, A. P.

L. Porrès, A. Holland, L. Pålsson, A. P. Monkman, C. Kemp, and A. Beeby, “Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere,” J. Fluoresc. 16, 267–273 (2006).
[CrossRef]

Nagano, T.

K. Hanaoka, K. Kikuchi, S. Kobayashi, and T. Nagano, “Time-resolved long-lives luminescence imaging method employing luminescent lanthanide probes with a new microscopy system,” J. Am. Chem. Soc. 129, 13502–13509 (2007).
[CrossRef]

Noginov, M. A.

Ohishi, Y.

Y. Arai, T. Yamashidta, T. Suzuki, and Y. Ohishi, “Upconversion properties of Tb3+-Yb3+ codoped fluorophosphates glasses,” J. Appl. Phys. 105, 083105 (2009).
[CrossRef]

T. Yamashita and Y. Ohishi, “Cooperative energy transfer between Tb3+ and Yb3+ ions co-doped in borosilicate glass,” J. Non-Cryst. Solids 354, 1883–1890 (2008).
[CrossRef]

Ostermayer, F. W.

F. W. Ostermayer and L. G. Van Uitert, “Cooperative energy transfer from Yb3+ to Tb3+ in YF3,” Phys. Rev. B 1, 4208–4212 (1970).
[CrossRef]

Pålsson, L.

L. Porrès, A. Holland, L. Pålsson, A. P. Monkman, C. Kemp, and A. Beeby, “Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere,” J. Fluoresc. 16, 267–273 (2006).
[CrossRef]

Pellé, F.

Porrès, L.

L. Porrès, A. Holland, L. Pålsson, A. P. Monkman, C. Kemp, and A. Beeby, “Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere,” J. Fluoresc. 16, 267–273 (2006).
[CrossRef]

Prasad, P. N.

G. S. Maciel, A. Biswas, R. Kapoor, and P. N. Prasad, “Blue cooperative upconversion in Yb3+-doped multicomponent sol-gel-processed silica glass for three-dimensional display,” Appl. Phys. Lett. 76, 1978–1980 (2000).
[CrossRef]

Rath, J. K.

J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Upconverter solar cells: materials and applications,” Energ. Environ. Sci. 4, 4835–4848 (2011).
[CrossRef]

Salley, G. M.

G. M. Salley, R. Valiente, and H. U. Güdel, “Phonon-assisted cooperative sensitization of Tb3+ in SrCl2: Yb, Tb,” J. Phys. Condens. Matter 14, 5461–5475 (2002).
[CrossRef]

Samal, G. S.

G. S. Samal, A. K. Tripathi, A. K. Biswas, S. Singh, and Y. N. Mohapatra, “Photoluminescence quantum efficiency (PLQY) and PL decay characteristics of polymeric light emitting materials,” Synth. Met. 155, 344–348 (2005).
[CrossRef]

Schropp, R. E. I.

J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Upconverter solar cells: materials and applications,” Energ. Environ. Sci. 4, 4835–4848 (2011).
[CrossRef]

Singh, S.

G. S. Samal, A. K. Tripathi, A. K. Biswas, S. Singh, and Y. N. Mohapatra, “Photoluminescence quantum efficiency (PLQY) and PL decay characteristics of polymeric light emitting materials,” Synth. Met. 155, 344–348 (2005).
[CrossRef]

Sivakumar, S.

S. Sivakumar and F. C. J. M. van Veggel, “Red, green, and blue light through cooperative upconversion in sol-gel thin films made with Yb0.8La0.05Tb0.05F3 and Yb0.8La0.05Eu0.05F3 nanoparticles,” J. Disp. Technol. 3, 176–183 (2007).
[CrossRef]

Su, Q.

B. Lai, J. Wang, and Q. Su, “Ultraviolet and visible upconversion emission in Tb3+/Yb3+ codoped fluorophosphates glasses,” Appl. Phys. B 98, 41–47 (2010).
[CrossRef]

Suzuki, T.

Y. Arai, T. Yamashidta, T. Suzuki, and Y. Ohishi, “Upconversion properties of Tb3+-Yb3+ codoped fluorophosphates glasses,” J. Appl. Phys. 105, 083105 (2009).
[CrossRef]

Tripathi, A. K.

G. S. Samal, A. K. Tripathi, A. K. Biswas, S. Singh, and Y. N. Mohapatra, “Photoluminescence quantum efficiency (PLQY) and PL decay characteristics of polymeric light emitting materials,” Synth. Met. 155, 344–348 (2005).
[CrossRef]

Valiente, R.

G. M. Salley, R. Valiente, and H. U. Güdel, “Phonon-assisted cooperative sensitization of Tb3+ in SrCl2: Yb, Tb,” J. Phys. Condens. Matter 14, 5461–5475 (2002).
[CrossRef]

van Sark, W. G. J. H. M.

J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Upconverter solar cells: materials and applications,” Energ. Environ. Sci. 4, 4835–4848 (2011).
[CrossRef]

Van Uitert, L. G.

F. W. Ostermayer and L. G. Van Uitert, “Cooperative energy transfer from Yb3+ to Tb3+ in YF3,” Phys. Rev. B 1, 4208–4212 (1970).
[CrossRef]

van Veggel, F. C. J. M.

S. Sivakumar and F. C. J. M. van Veggel, “Red, green, and blue light through cooperative upconversion in sol-gel thin films made with Yb0.8La0.05Tb0.05F3 and Yb0.8La0.05Eu0.05F3 nanoparticles,” J. Disp. Technol. 3, 176–183 (2007).
[CrossRef]

Venkateswarlu, P.

Wang, J.

B. Lai, J. Wang, and Q. Su, “Ultraviolet and visible upconversion emission in Tb3+/Yb3+ codoped fluorophosphates glasses,” Appl. Phys. B 98, 41–47 (2010).
[CrossRef]

Wittmann, H. F.

J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Adv. Mater. 9, 230–232 (1997).
[CrossRef]

Yamashidta, T.

Y. Arai, T. Yamashidta, T. Suzuki, and Y. Ohishi, “Upconversion properties of Tb3+-Yb3+ codoped fluorophosphates glasses,” J. Appl. Phys. 105, 083105 (2009).
[CrossRef]

Yamashita, T.

T. Yamashita and Y. Ohishi, “Cooperative energy transfer between Tb3+ and Yb3+ ions co-doped in borosilicate glass,” J. Non-Cryst. Solids 354, 1883–1890 (2008).
[CrossRef]

Adv. Mater.

J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Adv. Mater. 9, 230–232 (1997).
[CrossRef]

Appl. Phys. B

B. Lai, J. Wang, and Q. Su, “Ultraviolet and visible upconversion emission in Tb3+/Yb3+ codoped fluorophosphates glasses,” Appl. Phys. B 98, 41–47 (2010).
[CrossRef]

Appl. Phys. Lett.

G. S. Maciel, A. Biswas, R. Kapoor, and P. N. Prasad, “Blue cooperative upconversion in Yb3+-doped multicomponent sol-gel-processed silica glass for three-dimensional display,” Appl. Phys. Lett. 76, 1978–1980 (2000).
[CrossRef]

Chem. Rev.

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004).
[CrossRef]

Energ. Environ. Sci.

J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Upconverter solar cells: materials and applications,” Energ. Environ. Sci. 4, 4835–4848 (2011).
[CrossRef]

J. Am. Chem. Soc.

K. Hanaoka, K. Kikuchi, S. Kobayashi, and T. Nagano, “Time-resolved long-lives luminescence imaging method employing luminescent lanthanide probes with a new microscopy system,” J. Am. Chem. Soc. 129, 13502–13509 (2007).
[CrossRef]

J. Appl. Phys.

Y. Arai, T. Yamashidta, T. Suzuki, and Y. Ohishi, “Upconversion properties of Tb3+-Yb3+ codoped fluorophosphates glasses,” J. Appl. Phys. 105, 083105 (2009).
[CrossRef]

J. Disp. Technol.

S. Sivakumar and F. C. J. M. van Veggel, “Red, green, and blue light through cooperative upconversion in sol-gel thin films made with Yb0.8La0.05Tb0.05F3 and Yb0.8La0.05Eu0.05F3 nanoparticles,” J. Disp. Technol. 3, 176–183 (2007).
[CrossRef]

J. Fluoresc.

L. Porrès, A. Holland, L. Pålsson, A. P. Monkman, C. Kemp, and A. Beeby, “Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere,” J. Fluoresc. 16, 267–273 (2006).
[CrossRef]

J. Non-Cryst. Solids

T. Yamashita and Y. Ohishi, “Cooperative energy transfer between Tb3+ and Yb3+ ions co-doped in borosilicate glass,” J. Non-Cryst. Solids 354, 1883–1890 (2008).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

G. M. Salley, R. Valiente, and H. U. Güdel, “Phonon-assisted cooperative sensitization of Tb3+ in SrCl2: Yb, Tb,” J. Phys. Condens. Matter 14, 5461–5475 (2002).
[CrossRef]

J. Phys. Soc. Jpn.

T. Kusida, “Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. I. Transition probability calculation,” J. Phys. Soc. Jpn. 34, 1318–1326 (1973).
[CrossRef]

Phys. Rev. B

F. W. Ostermayer and L. G. Van Uitert, “Cooperative energy transfer from Yb3+ to Tb3+ in YF3,” Phys. Rev. B 1, 4208–4212 (1970).
[CrossRef]

Rev. Sci. Instrum.

A. R. Johnson, S. Lee, J. Klein, and J. Kanicki, “Absolute photoluminescence quantum efficiency measurement of light-emitting thin films,” Rev. Sci. Instrum. 78, 096101 (2007).
[CrossRef]

Synth. Met.

G. S. Samal, A. K. Tripathi, A. K. Biswas, S. Singh, and Y. N. Mohapatra, “Photoluminescence quantum efficiency (PLQY) and PL decay characteristics of polymeric light emitting materials,” Synth. Met. 155, 344–348 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic energy-level diagram of Tb3+-Yb3+ codoped system showing cooperative sensitization upconversion mechanism under the excitation of Yb3+(F22/7F22/5).

Fig. 2.
Fig. 2.

Calibrated spectral power distribution (i) and photon number distribution (ii) of 1Tb3+-5Yb3+ codoped glass at the pump-power density of 96W/cm2. The curves marked by a, b, and c correspond to different experimental procedures described by de Mello et al. [10].

Fig. 3.
Fig. 3.

Pump-power density dependence of the absolute upconversion quantum efficiency ηQ and power-conversion efficiency ηP in 1Tb3+-5Yb3+ codoped glass.

Fig. 4.
Fig. 4.

Yb3+ concentration dependence of absolute upconversion quantum efficiency ηQ and power-conversion efficiency ηP in 1Tb3+xYb3+ (x=1, 5, 10, 15) codoped glass at the pump-power density of 96W/cm2. The inset is the calculated energy-transfer efficiency versus Yb3+ concentration.

Fig. 5.
Fig. 5.

Pump-power density dependence of ηQ/ηP in 1Tb3+-5Yb3+ codoped glass. The inset is the Yb3+ concentration dependence of ηQ/ηP.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

σρnYb0AYbnYb12wnYb12nTb0=0,
wnYb12nTb0nTb1ATb1=0,
ηQ=nTb1ATb1σρnYb0=wnTb0nYb0σρAYb2ρ,
ηP=nTb1ATb1JβJhνemit-JσρnYb0hνpumpηQ,
ηCET=1ττ0,
ηCET=2wnYb12nTb0σρnYb0.
ηP=ATb1nTb1JβJhνemit-JσρnYb0hνpump=wnYb12nTb0JβJhνemit-JσρnYb0hνpumpηCET.
ηQηP=νpumpJβJνemit-J.

Metrics