Abstract

Increasing the light absorption in the weakly absorbing near-bandgap region is of great significance for improving efficiency in a thin-film silicon solar cell. In this study, light absorption enhancement near the infrared domain was realized by coating Ag nanoshells on the front side of amorphous silicon film. Detailed investigations prove that the enhancement can be related to the excitation of localized surface plasmons (LSPs). LSP scattering-induced light coupling in the guided mode, intense in-phase interference between the scattering field and the transmitted field, and the Floquet mode were observed in the simulated E-field profile, and the significant absorption enhancement was accounted for by these effects.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11, 174–175 (2012).
    [CrossRef]
  2. Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3, 664 (2012).
    [CrossRef]
  3. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998).
    [CrossRef]
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–208 (2010).
    [CrossRef]
  5. W. E. I. Sha, W. C. H. Choy, Y. P. Chen, and W. C. Chew, “Optical design of organic solar cell with hybrid plasmonic system,” Opt. Express 19, 15908–15918 (2011).
    [CrossRef]
  6. D. Qu, F. Liu, J. Yu, W. Xie, Q. Xu, X. Li, and Y. Huang, “Plasmonic core-shell gold nanoparticles enhanced optical absorption in photovoltaic devices,” Appl. Phys. Lett. 98, 113–119 (2011).
    [CrossRef]
  7. I. Diukman, L. Tzabari, N. Berkovitch, N. Tessler, and M. Orenstein, “Controlling absorption enhancement in organic photovoltaic cells by patterning Au nano disks within the active layer,” Opt. Express 19, A64–A71 (2011).
    [CrossRef]
  8. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
    [CrossRef]
  9. M. Yang, Z. Fu, F. Lin, and X. Zhu, “Incident angle dependence of absorption enhancement in plasmonic solar cells,” Opt. Express 19, A763–A771 (2011).
    [CrossRef]
  10. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11, 2195–2201(2011).
    [CrossRef]
  11. I. Diukman and M. Orenstein, “How front side plasmonic nanostructures enhance solar cell efficiency,” Sol. Energy Mater. Sol. Cells 95, 2628–2631 (2011).
    [CrossRef]
  12. C. Rokstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94, 213102 (2009).
    [CrossRef]
  13. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
    [CrossRef]
  14. T. Liu, D. Li, D. Yang, and M. Jiang, “An improved seed-mediated growth method to coat complete silver shells onto silica spheres for surface-enhanced Raman scattering,” Colloids Surf. A 387, 17–22 (2011).
    [CrossRef]
  15. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
    [CrossRef]
  16. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309(2007).
    [CrossRef]
  17. S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett. 8, 624–630 (2008).
    [CrossRef]
  18. W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “A comprehensive study for the plasmonic thin-film solar cell with periodic structure,” Opt. Express 18, 5993–6007 (2010).
    [CrossRef]
  19. C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51, 4494–4500(1980).
    [CrossRef]
  20. X. Sheng, J. Liu, N. Coronel, and A. M. Agarwal, “Integration of self-assembled porous alumina and distributed Bragg reflector for light trapping in Si photovoltaic devices,” IEEE Photon. Technol. Lett. 22, 1394–1396 (2010).
    [CrossRef]

2012

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11, 174–175 (2012).
[CrossRef]

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3, 664 (2012).
[CrossRef]

2011

D. Qu, F. Liu, J. Yu, W. Xie, Q. Xu, X. Li, and Y. Huang, “Plasmonic core-shell gold nanoparticles enhanced optical absorption in photovoltaic devices,” Appl. Phys. Lett. 98, 113–119 (2011).
[CrossRef]

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11, 2195–2201(2011).
[CrossRef]

I. Diukman and M. Orenstein, “How front side plasmonic nanostructures enhance solar cell efficiency,” Sol. Energy Mater. Sol. Cells 95, 2628–2631 (2011).
[CrossRef]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[CrossRef]

T. Liu, D. Li, D. Yang, and M. Jiang, “An improved seed-mediated growth method to coat complete silver shells onto silica spheres for surface-enhanced Raman scattering,” Colloids Surf. A 387, 17–22 (2011).
[CrossRef]

I. Diukman, L. Tzabari, N. Berkovitch, N. Tessler, and M. Orenstein, “Controlling absorption enhancement in organic photovoltaic cells by patterning Au nano disks within the active layer,” Opt. Express 19, A64–A71 (2011).
[CrossRef]

M. Yang, Z. Fu, F. Lin, and X. Zhu, “Incident angle dependence of absorption enhancement in plasmonic solar cells,” Opt. Express 19, A763–A771 (2011).
[CrossRef]

W. E. I. Sha, W. C. H. Choy, Y. P. Chen, and W. C. Chew, “Optical design of organic solar cell with hybrid plasmonic system,” Opt. Express 19, 15908–15918 (2011).
[CrossRef]

2010

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–208 (2010).
[CrossRef]

W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “A comprehensive study for the plasmonic thin-film solar cell with periodic structure,” Opt. Express 18, 5993–6007 (2010).
[CrossRef]

X. Sheng, J. Liu, N. Coronel, and A. M. Agarwal, “Integration of self-assembled porous alumina and distributed Bragg reflector for light trapping in Si photovoltaic devices,” IEEE Photon. Technol. Lett. 22, 1394–1396 (2010).
[CrossRef]

2009

C. Rokstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94, 213102 (2009).
[CrossRef]

2008

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
[CrossRef]

S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett. 8, 624–630 (2008).
[CrossRef]

2007

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309(2007).
[CrossRef]

1998

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998).
[CrossRef]

1980

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51, 4494–4500(1980).
[CrossRef]

Agarwal, A. M.

X. Sheng, J. Liu, N. Coronel, and A. M. Agarwal, “Integration of self-assembled porous alumina and distributed Bragg reflector for light trapping in Si photovoltaic devices,” IEEE Photon. Technol. Lett. 22, 1394–1396 (2010).
[CrossRef]

Atwater, H. A.

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11, 174–175 (2012).
[CrossRef]

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11, 2195–2201(2011).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–208 (2010).
[CrossRef]

Beck, F. J.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[CrossRef]

Berkovitch, N.

Catchpole, K. R.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
[CrossRef]

Chen, Y. P.

Chew, W. C.

Choy, W. C. H.

Coronel, N.

X. Sheng, J. Liu, N. Coronel, and A. M. Agarwal, “Integration of self-assembled porous alumina and distributed Bragg reflector for light trapping in Si photovoltaic devices,” IEEE Photon. Technol. Lett. 22, 1394–1396 (2010).
[CrossRef]

Cui, Y.

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3, 664 (2012).
[CrossRef]

Derkacs, D.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309(2007).
[CrossRef]

Diukman, I.

Fan, S.

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3, 664 (2012).
[CrossRef]

Fu, Z.

Grady, N. K.

S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett. 8, 624–630 (2008).
[CrossRef]

Green, M. A.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[CrossRef]

Halas, N. J.

S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett. 8, 624–630 (2008).
[CrossRef]

Hall, D. G.

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998).
[CrossRef]

Henry, C. H.

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51, 4494–4500(1980).
[CrossRef]

Huang, Y.

D. Qu, F. Liu, J. Yu, W. Xie, Q. Xu, X. Li, and Y. Huang, “Plasmonic core-shell gold nanoparticles enhanced optical absorption in photovoltaic devices,” Appl. Phys. Lett. 98, 113–119 (2011).
[CrossRef]

Jiang, M.

T. Liu, D. Li, D. Yang, and M. Jiang, “An improved seed-mediated growth method to coat complete silver shells onto silica spheres for surface-enhanced Raman scattering,” Colloids Surf. A 387, 17–22 (2011).
[CrossRef]

Lederer, F.

C. Rokstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94, 213102 (2009).
[CrossRef]

Li, D.

T. Liu, D. Li, D. Yang, and M. Jiang, “An improved seed-mediated growth method to coat complete silver shells onto silica spheres for surface-enhanced Raman scattering,” Colloids Surf. A 387, 17–22 (2011).
[CrossRef]

Li, X.

D. Qu, F. Liu, J. Yu, W. Xie, Q. Xu, X. Li, and Y. Huang, “Plasmonic core-shell gold nanoparticles enhanced optical absorption in photovoltaic devices,” Appl. Phys. Lett. 98, 113–119 (2011).
[CrossRef]

Lim, S. H.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309(2007).
[CrossRef]

Lin, F.

Liu, F.

D. Qu, F. Liu, J. Yu, W. Xie, Q. Xu, X. Li, and Y. Huang, “Plasmonic core-shell gold nanoparticles enhanced optical absorption in photovoltaic devices,” Appl. Phys. Lett. 98, 113–119 (2011).
[CrossRef]

Liu, J.

X. Sheng, J. Liu, N. Coronel, and A. M. Agarwal, “Integration of self-assembled porous alumina and distributed Bragg reflector for light trapping in Si photovoltaic devices,” IEEE Photon. Technol. Lett. 22, 1394–1396 (2010).
[CrossRef]

Liu, T.

T. Liu, D. Li, D. Yang, and M. Jiang, “An improved seed-mediated growth method to coat complete silver shells onto silica spheres for surface-enhanced Raman scattering,” Colloids Surf. A 387, 17–22 (2011).
[CrossRef]

Mar, W.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309(2007).
[CrossRef]

Matheu, P.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309(2007).
[CrossRef]

Mirin, N.

S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett. 8, 624–630 (2008).
[CrossRef]

Munday, J. N.

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11, 2195–2201(2011).
[CrossRef]

Narasimhan, V. K.

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3, 664 (2012).
[CrossRef]

Orenstein, M.

Ouyang, Z.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[CrossRef]

Pillai, S.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[CrossRef]

Polman, A.

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11, 174–175 (2012).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–208 (2010).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
[CrossRef]

Qu, D.

D. Qu, F. Liu, J. Yu, W. Xie, Q. Xu, X. Li, and Y. Huang, “Plasmonic core-shell gold nanoparticles enhanced optical absorption in photovoltaic devices,” Appl. Phys. Lett. 98, 113–119 (2011).
[CrossRef]

Rokstuhl, C.

C. Rokstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94, 213102 (2009).
[CrossRef]

Ruan, Z.

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3, 664 (2012).
[CrossRef]

Sha, W. E. I.

Sheng, X.

X. Sheng, J. Liu, N. Coronel, and A. M. Agarwal, “Integration of self-assembled porous alumina and distributed Bragg reflector for light trapping in Si photovoltaic devices,” IEEE Photon. Technol. Lett. 22, 1394–1396 (2010).
[CrossRef]

Stuart, H. R.

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998).
[CrossRef]

Sundararajan, S. P.

S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett. 8, 624–630 (2008).
[CrossRef]

Tessler, N.

Tzabari, L.

Xie, C.

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3, 664 (2012).
[CrossRef]

Xie, W.

D. Qu, F. Liu, J. Yu, W. Xie, Q. Xu, X. Li, and Y. Huang, “Plasmonic core-shell gold nanoparticles enhanced optical absorption in photovoltaic devices,” Appl. Phys. Lett. 98, 113–119 (2011).
[CrossRef]

Xu, Q.

D. Qu, F. Liu, J. Yu, W. Xie, Q. Xu, X. Li, and Y. Huang, “Plasmonic core-shell gold nanoparticles enhanced optical absorption in photovoltaic devices,” Appl. Phys. Lett. 98, 113–119 (2011).
[CrossRef]

Yang, D.

T. Liu, D. Li, D. Yang, and M. Jiang, “An improved seed-mediated growth method to coat complete silver shells onto silica spheres for surface-enhanced Raman scattering,” Colloids Surf. A 387, 17–22 (2011).
[CrossRef]

Yang, M.

Yao, J.

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3, 664 (2012).
[CrossRef]

Yao, Y.

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3, 664 (2012).
[CrossRef]

Yu, E. T.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309(2007).
[CrossRef]

Yu, J.

D. Qu, F. Liu, J. Yu, W. Xie, Q. Xu, X. Li, and Y. Huang, “Plasmonic core-shell gold nanoparticles enhanced optical absorption in photovoltaic devices,” Appl. Phys. Lett. 98, 113–119 (2011).
[CrossRef]

Zhu, X.

Appl. Phys. Lett.

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998).
[CrossRef]

D. Qu, F. Liu, J. Yu, W. Xie, Q. Xu, X. Li, and Y. Huang, “Plasmonic core-shell gold nanoparticles enhanced optical absorption in photovoltaic devices,” Appl. Phys. Lett. 98, 113–119 (2011).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
[CrossRef]

C. Rokstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94, 213102 (2009).
[CrossRef]

Colloids Surf. A

T. Liu, D. Li, D. Yang, and M. Jiang, “An improved seed-mediated growth method to coat complete silver shells onto silica spheres for surface-enhanced Raman scattering,” Colloids Surf. A 387, 17–22 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

X. Sheng, J. Liu, N. Coronel, and A. M. Agarwal, “Integration of self-assembled porous alumina and distributed Bragg reflector for light trapping in Si photovoltaic devices,” IEEE Photon. Technol. Lett. 22, 1394–1396 (2010).
[CrossRef]

J. Appl. Phys.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309(2007).
[CrossRef]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[CrossRef]

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51, 4494–4500(1980).
[CrossRef]

Nano Lett.

S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett. 8, 624–630 (2008).
[CrossRef]

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11, 2195–2201(2011).
[CrossRef]

Nat. Commun.

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3, 664 (2012).
[CrossRef]

Nat. Mater.

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11, 174–175 (2012).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–208 (2010).
[CrossRef]

Opt. Express

Sol. Energy Mater. Sol. Cells

I. Diukman and M. Orenstein, “How front side plasmonic nanostructures enhance solar cell efficiency,” Sol. Energy Mater. Sol. Cells 95, 2628–2631 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

SEM microscopy images of Ag nanoshells on a-Si films with different coverage (a) 0.2, (b) 0.8. Inset in (b): SEM images of one Ag nanoshell with a high magnification.

Fig. 2.
Fig. 2.

(a) Measured reflection spectra of silicon films with and without Ag nanoshell coating. (b) Measured absorption spectra of a-Si films with and without Ag nanoshell coating. The absorption is defined by lgT with T as transmission.

Fig. 3.
Fig. 3.

Calculated extinction, scattering, and absorption spectra of the Ag nanshell (left scale); photonic absorption enhancement of Ag nanoshell coated sample over 400–1000 nm spectra domain (right scale).

Fig. 4.
Fig. 4.

Simulated absorption spectra of Ag nanoshell coated Si film and uncoated Si film.

Fig. 5.
Fig. 5.

Cross section of electric field profile over the plane perpendicular to the sample interface for normal TE incidence.

Fig. 6.
Fig. 6.

Cross section of electric field profile over the plane perpendicular to the sample interface for normal TM incidence.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J=eS(λ)·A(λ)dλ2πe(n2+1)Eg2KTh3c2exp(eVEgkT),

Metrics