Abstract

Nonlinear imaging in the propagation of a flat-topped circular Gaussian beam under the coeffect of two parallel wirelike opaque scatterers is investigated through computer simulation. The formation of hot images of each scatterer is proved. Moreover, the formations of two other kinds of intense images are found; one is called interference hot image and the other is called pseudo-second-order hot image. The former corresponds to one intense image fringe whose in-beam position is at the middle point between those of the two scatterers. This image fringe is in the plane a quarter of an object distance away from the exit surface of the Kerr medium slab, and its intensity is found comparable to that of the hot image. The latter corresponds to two intense image fringes in a plane near the second-order hot-image plane predicted for single phase-typed scatterer cases. The respective in-beam positions of these image fringes are close to the respective in-beam positions of the scatterers. Interestingly, the intensities of both kinds of images are found primarily determined by the copresence rather than the in-beam positions of the scatterers. Besides, though the hot-image intensity can be lower than the corresponding single opaque scatterer case, the maximum intensity inside the Kerr medium slab increases more quickly and thus is much higher at the exit surface. This is another threat to the safe running of the Kerr media for high-power laser systems.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Hunt, K. R. Manes, and P. A. Renard, “Hot images from obscurations,” Appl. Opt. 32, 5973–5982 (1993).
    [CrossRef]
  2. C. C. Widmayer, D. Milam, and S. P. DeSzoeke, “Nonlinear formation of holographic images of obscurations in laser beams,” Appl. Opt. 36, 9342–9347 (1997).
    [CrossRef]
  3. C. C. Widmayer, M. R. Nickels, and D. Milam, “Nonlinear holographic imaging of phase errors,” Appl. Opt. 37, 4801–4805 (1998).
    [CrossRef]
  4. T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
    [CrossRef]
  5. R. W. Boyd, S. G. Lukishova, and Y. R. Shen, Self-Focusing: Past and Present (Springer, 2009).
  6. O. Kosareva, J.-F. Daigle, N. Panov, T. Wang, S. Hosseini, S. Yuan, G. Roy, V. Makarov, and S. L. Chin, “Arrest of self-focusing collapse in femtosecond air filaments: higher order Kerr or plasma defocusing?,” Opt. Lett. 36, 1035–1037 (2011).
    [CrossRef]
  7. M. D. Feit and J. A. Fleck, “Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams,” J. Opt. Soc. Am. B 5, 633–640 (1988).
    [CrossRef]
  8. A. Goy and D. Psaltis, “Digital reverse propagation in focusing Kerr media,” Phys. Rev. A 83, 031802(R) (2011).
    [CrossRef]
  9. C. Barsi, W. Wan, and J. W. Fleischer, “Imaging through nonlinear media using digital holography,” Nat. Photonics 3, 211–215 (2009).
    [CrossRef]
  10. L. Xie, J. Zhao, J. Su, F. Jing, W. Wang, and H. Peng, “Theoretical analysis of hot image effect from phase scatterer,” Acta Phys. Sin. 53, 2175–2179 (2004).
  11. W. H. Williams, K. R. Manes, J. T. Hunt, P. A. Renard, D. Eimerl, and D. Milam, “Modeling of self-focusing experiments by beam propagation codes,” ICF Quart. Rep. 6, 7–14 (1996).
  12. L. Xie, F. Jing, J. Zhao, J. Su, W. Wang, and H. Peng, “Nonlinear hot-image formation of an intense laser beam in media with gain and loss,” Opt. Commun. 236, 343–348 (2004).
    [CrossRef]
  13. Y. Hu, Y. Wang, S. Wen, J. Deng, and D. Fan, “Hot images from phase defects in high-power broadband laser beams,” Opt. Lasers Eng. 47, 194–198 (2009).
    [CrossRef]
  14. Y. Hu, Y. Wang, S. Wen, and D. Fan, “Nonlinear images of scatterers in chirped pulsed laser beams,” Chin. Phys. B 19, 114207 (2010).
    [CrossRef]
  15. Y. Wang, S. Wen, L. Zhang, Y. Hu, and D. Fan, “Obscuration size dependence of hot image in laser beam through a Kerr medium slab with gain and loss,” Appl. Opt. 47, 1152–1163 (2008).
    [CrossRef]
  16. L. Xie, J. Zhao, and F. Jing, “Second-order hot image from a scatterer in high-power laser systems,” Appl. Opt. 44, 2553–2557 (2005).
    [CrossRef]
  17. Y. Hu, Y. Wang, and S. Wen, “Formation of the second-order hot image in broadband laser systems,” Proc. SPIE 6823, 682310 (2007).
    [CrossRef]
  18. Y. Wang, Y. Hu, S. Wen, K. You, and X. Fu, “Study of nonlinear hot image effect of Gaussian optical beams,” Acta Phys. Sin. 56, 5855–5861 (2007).
  19. Y. Wang, J. Deng, L. Chen, S. Wen, and K. You, “Formation of hot images in laser beams through a self-defocusing Kerr medium slab,” Chin. Phys. Lett. 26, 024205 (2009).
    [CrossRef]
  20. T. Peng, J. Zhao, and D. Li, “Theoretical analysis of hot-image effect in a high-power laser system with cascaded nonlinear medium,” Opt. Lasers Eng. 49, 972–978 (2011).
    [CrossRef]
  21. Y. Wang, S. Wen, K. You, Z. Tang, J. Deng, L. Zhang, and D. Fan, “Multiple hot images from an obscuration in an intense laser beam through cascaded Kerr medium disks,” Appl. Opt. 47, 5668–5681 (2008).
    [CrossRef]
  22. Z. Ye, J. Zhao, T. Peng, and D. Li, “Evolution of the hot image effect in high-power laser system with cascaded Kerr medium,” Opt. Lasers Eng. 47, 1199–1204 (2009).
    [CrossRef]
  23. T. Peng, J. Zhao, L. Xie, Z. Ye, H. Wei, J. Su, and J. Zhao, “Simulation analysis of the restraining effect of a spatial filter on a hot image,” Appl. Opt. 46, 3205–3209 (2007).
    [CrossRef]
  24. D. Li, J. Zhao, T. Peng, and Z. Ye, “Hot images induced by arrayed mechanical defects in high-power laser system with cascaded medium,” Opt. Eng. 47, 114202 (2008).
    [CrossRef]
  25. J. Xu, Y. Hu, and H. Zhuo, “Computer simulation study of nonlinear imaging properties for two phase-typed scatterers,” J. Opt. Soc. Am. A 28, 2459–2464 (2011).
    [CrossRef]
  26. G. G. Luther, J. V. Moloney, A. C. Newell, and E. M. Wright, “Self-focusing threshold in normally dispersive media,” Opt. Lett. 19, 862–864 (1994).
    [CrossRef]
  27. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

2011

2010

Y. Hu, Y. Wang, S. Wen, and D. Fan, “Nonlinear images of scatterers in chirped pulsed laser beams,” Chin. Phys. B 19, 114207 (2010).
[CrossRef]

2009

Y. Hu, Y. Wang, S. Wen, J. Deng, and D. Fan, “Hot images from phase defects in high-power broadband laser beams,” Opt. Lasers Eng. 47, 194–198 (2009).
[CrossRef]

C. Barsi, W. Wan, and J. W. Fleischer, “Imaging through nonlinear media using digital holography,” Nat. Photonics 3, 211–215 (2009).
[CrossRef]

Z. Ye, J. Zhao, T. Peng, and D. Li, “Evolution of the hot image effect in high-power laser system with cascaded Kerr medium,” Opt. Lasers Eng. 47, 1199–1204 (2009).
[CrossRef]

Y. Wang, J. Deng, L. Chen, S. Wen, and K. You, “Formation of hot images in laser beams through a self-defocusing Kerr medium slab,” Chin. Phys. Lett. 26, 024205 (2009).
[CrossRef]

2008

2007

Y. Hu, Y. Wang, and S. Wen, “Formation of the second-order hot image in broadband laser systems,” Proc. SPIE 6823, 682310 (2007).
[CrossRef]

Y. Wang, Y. Hu, S. Wen, K. You, and X. Fu, “Study of nonlinear hot image effect of Gaussian optical beams,” Acta Phys. Sin. 56, 5855–5861 (2007).

T. Peng, J. Zhao, L. Xie, Z. Ye, H. Wei, J. Su, and J. Zhao, “Simulation analysis of the restraining effect of a spatial filter on a hot image,” Appl. Opt. 46, 3205–3209 (2007).
[CrossRef]

2005

2004

L. Xie, J. Zhao, J. Su, F. Jing, W. Wang, and H. Peng, “Theoretical analysis of hot image effect from phase scatterer,” Acta Phys. Sin. 53, 2175–2179 (2004).

L. Xie, F. Jing, J. Zhao, J. Su, W. Wang, and H. Peng, “Nonlinear hot-image formation of an intense laser beam in media with gain and loss,” Opt. Commun. 236, 343–348 (2004).
[CrossRef]

2000

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[CrossRef]

1998

1997

1996

W. H. Williams, K. R. Manes, J. T. Hunt, P. A. Renard, D. Eimerl, and D. Milam, “Modeling of self-focusing experiments by beam propagation codes,” ICF Quart. Rep. 6, 7–14 (1996).

1994

1993

1988

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Barsi, C.

C. Barsi, W. Wan, and J. W. Fleischer, “Imaging through nonlinear media using digital holography,” Nat. Photonics 3, 211–215 (2009).
[CrossRef]

Boyd, R. W.

R. W. Boyd, S. G. Lukishova, and Y. R. Shen, Self-Focusing: Past and Present (Springer, 2009).

Brabec, T.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[CrossRef]

Chen, L.

Y. Wang, J. Deng, L. Chen, S. Wen, and K. You, “Formation of hot images in laser beams through a self-defocusing Kerr medium slab,” Chin. Phys. Lett. 26, 024205 (2009).
[CrossRef]

Chin, S. L.

Daigle, J.-F.

Deng, J.

Y. Hu, Y. Wang, S. Wen, J. Deng, and D. Fan, “Hot images from phase defects in high-power broadband laser beams,” Opt. Lasers Eng. 47, 194–198 (2009).
[CrossRef]

Y. Wang, J. Deng, L. Chen, S. Wen, and K. You, “Formation of hot images in laser beams through a self-defocusing Kerr medium slab,” Chin. Phys. Lett. 26, 024205 (2009).
[CrossRef]

Y. Wang, S. Wen, K. You, Z. Tang, J. Deng, L. Zhang, and D. Fan, “Multiple hot images from an obscuration in an intense laser beam through cascaded Kerr medium disks,” Appl. Opt. 47, 5668–5681 (2008).
[CrossRef]

DeSzoeke, S. P.

Eimerl, D.

W. H. Williams, K. R. Manes, J. T. Hunt, P. A. Renard, D. Eimerl, and D. Milam, “Modeling of self-focusing experiments by beam propagation codes,” ICF Quart. Rep. 6, 7–14 (1996).

Fan, D.

Y. Hu, Y. Wang, S. Wen, and D. Fan, “Nonlinear images of scatterers in chirped pulsed laser beams,” Chin. Phys. B 19, 114207 (2010).
[CrossRef]

Y. Hu, Y. Wang, S. Wen, J. Deng, and D. Fan, “Hot images from phase defects in high-power broadband laser beams,” Opt. Lasers Eng. 47, 194–198 (2009).
[CrossRef]

Y. Wang, S. Wen, L. Zhang, Y. Hu, and D. Fan, “Obscuration size dependence of hot image in laser beam through a Kerr medium slab with gain and loss,” Appl. Opt. 47, 1152–1163 (2008).
[CrossRef]

Y. Wang, S. Wen, K. You, Z. Tang, J. Deng, L. Zhang, and D. Fan, “Multiple hot images from an obscuration in an intense laser beam through cascaded Kerr medium disks,” Appl. Opt. 47, 5668–5681 (2008).
[CrossRef]

Feit, M. D.

Fleck, J. A.

Fleischer, J. W.

C. Barsi, W. Wan, and J. W. Fleischer, “Imaging through nonlinear media using digital holography,” Nat. Photonics 3, 211–215 (2009).
[CrossRef]

Fu, X.

Y. Wang, Y. Hu, S. Wen, K. You, and X. Fu, “Study of nonlinear hot image effect of Gaussian optical beams,” Acta Phys. Sin. 56, 5855–5861 (2007).

Goy, A.

A. Goy and D. Psaltis, “Digital reverse propagation in focusing Kerr media,” Phys. Rev. A 83, 031802(R) (2011).
[CrossRef]

Hosseini, S.

Hu, Y.

J. Xu, Y. Hu, and H. Zhuo, “Computer simulation study of nonlinear imaging properties for two phase-typed scatterers,” J. Opt. Soc. Am. A 28, 2459–2464 (2011).
[CrossRef]

Y. Hu, Y. Wang, S. Wen, and D. Fan, “Nonlinear images of scatterers in chirped pulsed laser beams,” Chin. Phys. B 19, 114207 (2010).
[CrossRef]

Y. Hu, Y. Wang, S. Wen, J. Deng, and D. Fan, “Hot images from phase defects in high-power broadband laser beams,” Opt. Lasers Eng. 47, 194–198 (2009).
[CrossRef]

Y. Wang, S. Wen, L. Zhang, Y. Hu, and D. Fan, “Obscuration size dependence of hot image in laser beam through a Kerr medium slab with gain and loss,” Appl. Opt. 47, 1152–1163 (2008).
[CrossRef]

Y. Hu, Y. Wang, and S. Wen, “Formation of the second-order hot image in broadband laser systems,” Proc. SPIE 6823, 682310 (2007).
[CrossRef]

Y. Wang, Y. Hu, S. Wen, K. You, and X. Fu, “Study of nonlinear hot image effect of Gaussian optical beams,” Acta Phys. Sin. 56, 5855–5861 (2007).

Hunt, J. T.

W. H. Williams, K. R. Manes, J. T. Hunt, P. A. Renard, D. Eimerl, and D. Milam, “Modeling of self-focusing experiments by beam propagation codes,” ICF Quart. Rep. 6, 7–14 (1996).

J. T. Hunt, K. R. Manes, and P. A. Renard, “Hot images from obscurations,” Appl. Opt. 32, 5973–5982 (1993).
[CrossRef]

Jing, F.

L. Xie, J. Zhao, and F. Jing, “Second-order hot image from a scatterer in high-power laser systems,” Appl. Opt. 44, 2553–2557 (2005).
[CrossRef]

L. Xie, F. Jing, J. Zhao, J. Su, W. Wang, and H. Peng, “Nonlinear hot-image formation of an intense laser beam in media with gain and loss,” Opt. Commun. 236, 343–348 (2004).
[CrossRef]

L. Xie, J. Zhao, J. Su, F. Jing, W. Wang, and H. Peng, “Theoretical analysis of hot image effect from phase scatterer,” Acta Phys. Sin. 53, 2175–2179 (2004).

Kosareva, O.

Krausz, F.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[CrossRef]

Li, D.

T. Peng, J. Zhao, and D. Li, “Theoretical analysis of hot-image effect in a high-power laser system with cascaded nonlinear medium,” Opt. Lasers Eng. 49, 972–978 (2011).
[CrossRef]

Z. Ye, J. Zhao, T. Peng, and D. Li, “Evolution of the hot image effect in high-power laser system with cascaded Kerr medium,” Opt. Lasers Eng. 47, 1199–1204 (2009).
[CrossRef]

D. Li, J. Zhao, T. Peng, and Z. Ye, “Hot images induced by arrayed mechanical defects in high-power laser system with cascaded medium,” Opt. Eng. 47, 114202 (2008).
[CrossRef]

Lukishova, S. G.

R. W. Boyd, S. G. Lukishova, and Y. R. Shen, Self-Focusing: Past and Present (Springer, 2009).

Luther, G. G.

Makarov, V.

Manes, K. R.

W. H. Williams, K. R. Manes, J. T. Hunt, P. A. Renard, D. Eimerl, and D. Milam, “Modeling of self-focusing experiments by beam propagation codes,” ICF Quart. Rep. 6, 7–14 (1996).

J. T. Hunt, K. R. Manes, and P. A. Renard, “Hot images from obscurations,” Appl. Opt. 32, 5973–5982 (1993).
[CrossRef]

Milam, D.

Moloney, J. V.

Newell, A. C.

Nickels, M. R.

Panov, N.

Peng, H.

L. Xie, J. Zhao, J. Su, F. Jing, W. Wang, and H. Peng, “Theoretical analysis of hot image effect from phase scatterer,” Acta Phys. Sin. 53, 2175–2179 (2004).

L. Xie, F. Jing, J. Zhao, J. Su, W. Wang, and H. Peng, “Nonlinear hot-image formation of an intense laser beam in media with gain and loss,” Opt. Commun. 236, 343–348 (2004).
[CrossRef]

Peng, T.

T. Peng, J. Zhao, and D. Li, “Theoretical analysis of hot-image effect in a high-power laser system with cascaded nonlinear medium,” Opt. Lasers Eng. 49, 972–978 (2011).
[CrossRef]

Z. Ye, J. Zhao, T. Peng, and D. Li, “Evolution of the hot image effect in high-power laser system with cascaded Kerr medium,” Opt. Lasers Eng. 47, 1199–1204 (2009).
[CrossRef]

D. Li, J. Zhao, T. Peng, and Z. Ye, “Hot images induced by arrayed mechanical defects in high-power laser system with cascaded medium,” Opt. Eng. 47, 114202 (2008).
[CrossRef]

T. Peng, J. Zhao, L. Xie, Z. Ye, H. Wei, J. Su, and J. Zhao, “Simulation analysis of the restraining effect of a spatial filter on a hot image,” Appl. Opt. 46, 3205–3209 (2007).
[CrossRef]

Psaltis, D.

A. Goy and D. Psaltis, “Digital reverse propagation in focusing Kerr media,” Phys. Rev. A 83, 031802(R) (2011).
[CrossRef]

Renard, P. A.

W. H. Williams, K. R. Manes, J. T. Hunt, P. A. Renard, D. Eimerl, and D. Milam, “Modeling of self-focusing experiments by beam propagation codes,” ICF Quart. Rep. 6, 7–14 (1996).

J. T. Hunt, K. R. Manes, and P. A. Renard, “Hot images from obscurations,” Appl. Opt. 32, 5973–5982 (1993).
[CrossRef]

Roy, G.

Shen, Y. R.

R. W. Boyd, S. G. Lukishova, and Y. R. Shen, Self-Focusing: Past and Present (Springer, 2009).

Su, J.

T. Peng, J. Zhao, L. Xie, Z. Ye, H. Wei, J. Su, and J. Zhao, “Simulation analysis of the restraining effect of a spatial filter on a hot image,” Appl. Opt. 46, 3205–3209 (2007).
[CrossRef]

L. Xie, F. Jing, J. Zhao, J. Su, W. Wang, and H. Peng, “Nonlinear hot-image formation of an intense laser beam in media with gain and loss,” Opt. Commun. 236, 343–348 (2004).
[CrossRef]

L. Xie, J. Zhao, J. Su, F. Jing, W. Wang, and H. Peng, “Theoretical analysis of hot image effect from phase scatterer,” Acta Phys. Sin. 53, 2175–2179 (2004).

Tang, Z.

Wan, W.

C. Barsi, W. Wan, and J. W. Fleischer, “Imaging through nonlinear media using digital holography,” Nat. Photonics 3, 211–215 (2009).
[CrossRef]

Wang, T.

Wang, W.

L. Xie, J. Zhao, J. Su, F. Jing, W. Wang, and H. Peng, “Theoretical analysis of hot image effect from phase scatterer,” Acta Phys. Sin. 53, 2175–2179 (2004).

L. Xie, F. Jing, J. Zhao, J. Su, W. Wang, and H. Peng, “Nonlinear hot-image formation of an intense laser beam in media with gain and loss,” Opt. Commun. 236, 343–348 (2004).
[CrossRef]

Wang, Y.

Y. Hu, Y. Wang, S. Wen, and D. Fan, “Nonlinear images of scatterers in chirped pulsed laser beams,” Chin. Phys. B 19, 114207 (2010).
[CrossRef]

Y. Wang, J. Deng, L. Chen, S. Wen, and K. You, “Formation of hot images in laser beams through a self-defocusing Kerr medium slab,” Chin. Phys. Lett. 26, 024205 (2009).
[CrossRef]

Y. Hu, Y. Wang, S. Wen, J. Deng, and D. Fan, “Hot images from phase defects in high-power broadband laser beams,” Opt. Lasers Eng. 47, 194–198 (2009).
[CrossRef]

Y. Wang, S. Wen, L. Zhang, Y. Hu, and D. Fan, “Obscuration size dependence of hot image in laser beam through a Kerr medium slab with gain and loss,” Appl. Opt. 47, 1152–1163 (2008).
[CrossRef]

Y. Wang, S. Wen, K. You, Z. Tang, J. Deng, L. Zhang, and D. Fan, “Multiple hot images from an obscuration in an intense laser beam through cascaded Kerr medium disks,” Appl. Opt. 47, 5668–5681 (2008).
[CrossRef]

Y. Hu, Y. Wang, and S. Wen, “Formation of the second-order hot image in broadband laser systems,” Proc. SPIE 6823, 682310 (2007).
[CrossRef]

Y. Wang, Y. Hu, S. Wen, K. You, and X. Fu, “Study of nonlinear hot image effect of Gaussian optical beams,” Acta Phys. Sin. 56, 5855–5861 (2007).

Wei, H.

Wen, S.

Y. Hu, Y. Wang, S. Wen, and D. Fan, “Nonlinear images of scatterers in chirped pulsed laser beams,” Chin. Phys. B 19, 114207 (2010).
[CrossRef]

Y. Wang, J. Deng, L. Chen, S. Wen, and K. You, “Formation of hot images in laser beams through a self-defocusing Kerr medium slab,” Chin. Phys. Lett. 26, 024205 (2009).
[CrossRef]

Y. Hu, Y. Wang, S. Wen, J. Deng, and D. Fan, “Hot images from phase defects in high-power broadband laser beams,” Opt. Lasers Eng. 47, 194–198 (2009).
[CrossRef]

Y. Wang, S. Wen, L. Zhang, Y. Hu, and D. Fan, “Obscuration size dependence of hot image in laser beam through a Kerr medium slab with gain and loss,” Appl. Opt. 47, 1152–1163 (2008).
[CrossRef]

Y. Wang, S. Wen, K. You, Z. Tang, J. Deng, L. Zhang, and D. Fan, “Multiple hot images from an obscuration in an intense laser beam through cascaded Kerr medium disks,” Appl. Opt. 47, 5668–5681 (2008).
[CrossRef]

Y. Hu, Y. Wang, and S. Wen, “Formation of the second-order hot image in broadband laser systems,” Proc. SPIE 6823, 682310 (2007).
[CrossRef]

Y. Wang, Y. Hu, S. Wen, K. You, and X. Fu, “Study of nonlinear hot image effect of Gaussian optical beams,” Acta Phys. Sin. 56, 5855–5861 (2007).

Widmayer, C. C.

Williams, W. H.

W. H. Williams, K. R. Manes, J. T. Hunt, P. A. Renard, D. Eimerl, and D. Milam, “Modeling of self-focusing experiments by beam propagation codes,” ICF Quart. Rep. 6, 7–14 (1996).

Wright, E. M.

Xie, L.

T. Peng, J. Zhao, L. Xie, Z. Ye, H. Wei, J. Su, and J. Zhao, “Simulation analysis of the restraining effect of a spatial filter on a hot image,” Appl. Opt. 46, 3205–3209 (2007).
[CrossRef]

L. Xie, J. Zhao, and F. Jing, “Second-order hot image from a scatterer in high-power laser systems,” Appl. Opt. 44, 2553–2557 (2005).
[CrossRef]

L. Xie, F. Jing, J. Zhao, J. Su, W. Wang, and H. Peng, “Nonlinear hot-image formation of an intense laser beam in media with gain and loss,” Opt. Commun. 236, 343–348 (2004).
[CrossRef]

L. Xie, J. Zhao, J. Su, F. Jing, W. Wang, and H. Peng, “Theoretical analysis of hot image effect from phase scatterer,” Acta Phys. Sin. 53, 2175–2179 (2004).

Xu, J.

Ye, Z.

Z. Ye, J. Zhao, T. Peng, and D. Li, “Evolution of the hot image effect in high-power laser system with cascaded Kerr medium,” Opt. Lasers Eng. 47, 1199–1204 (2009).
[CrossRef]

D. Li, J. Zhao, T. Peng, and Z. Ye, “Hot images induced by arrayed mechanical defects in high-power laser system with cascaded medium,” Opt. Eng. 47, 114202 (2008).
[CrossRef]

T. Peng, J. Zhao, L. Xie, Z. Ye, H. Wei, J. Su, and J. Zhao, “Simulation analysis of the restraining effect of a spatial filter on a hot image,” Appl. Opt. 46, 3205–3209 (2007).
[CrossRef]

You, K.

Y. Wang, J. Deng, L. Chen, S. Wen, and K. You, “Formation of hot images in laser beams through a self-defocusing Kerr medium slab,” Chin. Phys. Lett. 26, 024205 (2009).
[CrossRef]

Y. Wang, S. Wen, K. You, Z. Tang, J. Deng, L. Zhang, and D. Fan, “Multiple hot images from an obscuration in an intense laser beam through cascaded Kerr medium disks,” Appl. Opt. 47, 5668–5681 (2008).
[CrossRef]

Y. Wang, Y. Hu, S. Wen, K. You, and X. Fu, “Study of nonlinear hot image effect of Gaussian optical beams,” Acta Phys. Sin. 56, 5855–5861 (2007).

Yuan, S.

Zhang, L.

Zhao, J.

T. Peng, J. Zhao, and D. Li, “Theoretical analysis of hot-image effect in a high-power laser system with cascaded nonlinear medium,” Opt. Lasers Eng. 49, 972–978 (2011).
[CrossRef]

Z. Ye, J. Zhao, T. Peng, and D. Li, “Evolution of the hot image effect in high-power laser system with cascaded Kerr medium,” Opt. Lasers Eng. 47, 1199–1204 (2009).
[CrossRef]

D. Li, J. Zhao, T. Peng, and Z. Ye, “Hot images induced by arrayed mechanical defects in high-power laser system with cascaded medium,” Opt. Eng. 47, 114202 (2008).
[CrossRef]

T. Peng, J. Zhao, L. Xie, Z. Ye, H. Wei, J. Su, and J. Zhao, “Simulation analysis of the restraining effect of a spatial filter on a hot image,” Appl. Opt. 46, 3205–3209 (2007).
[CrossRef]

T. Peng, J. Zhao, L. Xie, Z. Ye, H. Wei, J. Su, and J. Zhao, “Simulation analysis of the restraining effect of a spatial filter on a hot image,” Appl. Opt. 46, 3205–3209 (2007).
[CrossRef]

L. Xie, J. Zhao, and F. Jing, “Second-order hot image from a scatterer in high-power laser systems,” Appl. Opt. 44, 2553–2557 (2005).
[CrossRef]

L. Xie, F. Jing, J. Zhao, J. Su, W. Wang, and H. Peng, “Nonlinear hot-image formation of an intense laser beam in media with gain and loss,” Opt. Commun. 236, 343–348 (2004).
[CrossRef]

L. Xie, J. Zhao, J. Su, F. Jing, W. Wang, and H. Peng, “Theoretical analysis of hot image effect from phase scatterer,” Acta Phys. Sin. 53, 2175–2179 (2004).

Zhuo, H.

Acta Phys. Sin.

L. Xie, J. Zhao, J. Su, F. Jing, W. Wang, and H. Peng, “Theoretical analysis of hot image effect from phase scatterer,” Acta Phys. Sin. 53, 2175–2179 (2004).

Y. Wang, Y. Hu, S. Wen, K. You, and X. Fu, “Study of nonlinear hot image effect of Gaussian optical beams,” Acta Phys. Sin. 56, 5855–5861 (2007).

Appl. Opt.

Chin. Phys. B

Y. Hu, Y. Wang, S. Wen, and D. Fan, “Nonlinear images of scatterers in chirped pulsed laser beams,” Chin. Phys. B 19, 114207 (2010).
[CrossRef]

Chin. Phys. Lett.

Y. Wang, J. Deng, L. Chen, S. Wen, and K. You, “Formation of hot images in laser beams through a self-defocusing Kerr medium slab,” Chin. Phys. Lett. 26, 024205 (2009).
[CrossRef]

ICF Quart. Rep.

W. H. Williams, K. R. Manes, J. T. Hunt, P. A. Renard, D. Eimerl, and D. Milam, “Modeling of self-focusing experiments by beam propagation codes,” ICF Quart. Rep. 6, 7–14 (1996).

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Nat. Photonics

C. Barsi, W. Wan, and J. W. Fleischer, “Imaging through nonlinear media using digital holography,” Nat. Photonics 3, 211–215 (2009).
[CrossRef]

Opt. Commun.

L. Xie, F. Jing, J. Zhao, J. Su, W. Wang, and H. Peng, “Nonlinear hot-image formation of an intense laser beam in media with gain and loss,” Opt. Commun. 236, 343–348 (2004).
[CrossRef]

Opt. Eng.

D. Li, J. Zhao, T. Peng, and Z. Ye, “Hot images induced by arrayed mechanical defects in high-power laser system with cascaded medium,” Opt. Eng. 47, 114202 (2008).
[CrossRef]

Opt. Lasers Eng.

T. Peng, J. Zhao, and D. Li, “Theoretical analysis of hot-image effect in a high-power laser system with cascaded nonlinear medium,” Opt. Lasers Eng. 49, 972–978 (2011).
[CrossRef]

Z. Ye, J. Zhao, T. Peng, and D. Li, “Evolution of the hot image effect in high-power laser system with cascaded Kerr medium,” Opt. Lasers Eng. 47, 1199–1204 (2009).
[CrossRef]

Y. Hu, Y. Wang, S. Wen, J. Deng, and D. Fan, “Hot images from phase defects in high-power broadband laser beams,” Opt. Lasers Eng. 47, 194–198 (2009).
[CrossRef]

Opt. Lett.

Phys. Rev. A

A. Goy and D. Psaltis, “Digital reverse propagation in focusing Kerr media,” Phys. Rev. A 83, 031802(R) (2011).
[CrossRef]

Proc. SPIE

Y. Hu, Y. Wang, and S. Wen, “Formation of the second-order hot image in broadband laser systems,” Proc. SPIE 6823, 682310 (2007).
[CrossRef]

Rev. Mod. Phys.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[CrossRef]

Other

R. W. Boyd, S. G. Lukishova, and Y. R. Shen, Self-Focusing: Past and Present (Springer, 2009).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Propagation diagram for this paper.

Fig. 2.
Fig. 2.

Transverse intensity profile of the beam modulated by two opaque scatterers.

Fig. 3.
Fig. 3.

Evolutions of the intensities at some special points in the beam. The solid curve, the short-dashed curve, and the dash-dotted curve are the evolutions of Irm, Irc1, and Irc2 for the dual-scatterer case, respectively; the dashed curve is the evolution of Irm,s for the corresponding single-scatterer case.

Fig. 4.
Fig. 4.

(a) and (b) are the intensity profiles of the beam in the hot-image plane at z=2.18m, where (b) is for y=0 in (a), and (c) is the corresponding evolution of the beam intensity on the x axis.

Fig. 5.
Fig. 5.

(a)–(c) are the intensity profile of the beam at z=1.45m, where both (a) and (b) are for the dual-scatterer case and (b) is for y=0 in (a); (c) is for the corresponding single-scatterer case, and (d) is the evolution of the beam intensity on the x axis and is corresponding to (a).

Fig. 6.
Fig. 6.

Intensity profile of the beam in the plane of pseudo-second-order hot image at z=1.77m, and (b) is for y=0 in (a).

Fig. 7.
Fig. 7.

Results for the influence of the in-beam position of the center of the scatterer plane. (a) Shows the results of the intensities of the hot image (solid curve), interference hot image (dashed curve), and pseudo-second-order hot image (dash-dotted curve). (b) Shows the results of the central intensities in the hot image fringes for S1 (solid curve) and S2 (dashed curve). In both panels, the short-dashed curve shows the results for the hot-image intensity of the corresponding single-scatterer case.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T={tin the area of scatterers1out of the area of scatterers,
E=E0exp[12(x2+y2r02)m],
Az=i12k22A+iB0|A|2A,
Az=i12k12A,

Metrics