Abstract

With the aim of studying electromagnetic surface wave resonance, we rigorously solve the homogeneous and inhomogeneous problem associated with an optically excited thin metallic film. We then demonstrate unambiguously that the excited eigenmode engendering plasmonic resonance in the so-called Kretschmann–Raether configuration is an unguided mode (i.e., with an anti-evanescent structure). This result, challenging the classical interpretation of the outgoing wave condition applied to surface waves, permits a quantitative interpretation of the attenuated total reflection curves.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982).
  2. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
    [CrossRef]
  3. E. Kretschmann and H. Raether, “Radiative decay of non radiative plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136(1968).
  4. A. Otto, “Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift für Physik 216, 398–410 (1968).
    [CrossRef]
  5. L. Salomon, G. Bassou, H. Aourag, J. P. Dufour, F. de Fornel, F. Carcenac, and A. V. Zayats, “Local excitation of surface plasmon polaritons at discontinuities of a metal film: theoretical analysis and optical near-field measurements,” Phys. Rev. B 65, 125409 (2002).
    [CrossRef]
  6. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polariton,” Phys. Rep. 408, 131–314 (2005).
    [CrossRef]
  7. V. M. Shalaev and S. Kawata, eds., Nanophotonics with Surface PlasmonsAdvances in Nano-Optics and Nano-Photonics Series (Elsevier, 2007).
  8. S. A. Maier, Plasmonics, Fundamentals and Applications (Springer, 2007).
  9. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  10. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
    [CrossRef]
  11. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
    [CrossRef]
  12. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
    [CrossRef]
  13. A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunnelling,” Phys. Rev. B 71, 165418 (2005).
    [CrossRef]
  14. A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
    [CrossRef]
  15. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130 (2000).
    [CrossRef]
  16. K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory,” Anal Chem 74, 696–701 (2002).
    [CrossRef]
  17. A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett. 30, 41–43 (2005).
    [CrossRef]
  18. P. M. Adam, L. Salomon, F. de Fornel, and J. P. Goudonnet, “Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope,” Phys. Rev. B 48, 2680–2683 (1993).
    [CrossRef]
  19. T. Wakamatsu and K. Saito, “Interpretation of attenuated-total-reflection dips observed in surface plasmon resonance,” J. Opt. Soc. Am. B 24, 2307–2313 (2007).
    [CrossRef]
  20. H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
    [CrossRef]
  21. Y. Gravel and Y. Sheng, “Rigorous solution for the transient surface plasmon polariton launched by subwavelength slit scattering,” Opt. Express 16, 21903–21913 (2008).
    [CrossRef]
  22. A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B 82, 035411 (2010).
    [CrossRef]
  23. J. D. Jackson, Classical Electrodynamics (Wiley, 1975).
  24. A. S. B.-B. Dhia and P. Joly, “Mathematical analysis and numerical approximation of optical waveguides,” in Mathematical Modeling in Optical Science, G. Bao, L. Cowsar, and W. Masters, eds., Frontiers in Applied Mathematics Series (SIAM, 2001), pp. 273–324.
  25. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  26. J. G. Kovacs, “Optical excitation of surface plasmon-polaritons in layered media,” in Electromagnetic Surface Modes, A. D. Boardman, ed. (Wiley, 1982), pp. 143–200.
  27. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  28. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
    [CrossRef]
  29. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2001).
    [CrossRef]
  30. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
    [CrossRef]
  31. A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberg, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
    [CrossRef]
  32. M. J. Adams, An Introduction to Optical Waveguides (Wiley, 1981).
  33. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  34. M. R. Spiegel, Theory and Problems of Laplace Transforms (McGraw-Hill, 1985).
  35. Z. Gryczynski, E. G. Matveeva, N. Calander, J. Zhang, J. R. Lakowicz, and I. Gryczynski, “Surface plasmon coupled emission,” in Surface Plasmon Nanophotonics, M. L. Brongersma and P. G. Kik, eds. (Springer, 2006), pp. 247–265.
  36. A. Neogi, C. W. Lee, H. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablanovich, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
    [CrossRef]
  37. M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863–3865 (2004).
    [CrossRef]

2010

A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B 82, 035411 (2010).
[CrossRef]

2009

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

2008

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
[CrossRef]

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef]

Y. Gravel and Y. Sheng, “Rigorous solution for the transient surface plasmon polariton launched by subwavelength slit scattering,” Opt. Express 16, 21903–21913 (2008).
[CrossRef]

2007

2005

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett. 30, 41–43 (2005).
[CrossRef]

A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunnelling,” Phys. Rev. B 71, 165418 (2005).
[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polariton,” Phys. Rep. 408, 131–314 (2005).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberg, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[CrossRef]

2004

M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863–3865 (2004).
[CrossRef]

2002

A. Neogi, C. W. Lee, H. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablanovich, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[CrossRef]

L. Salomon, G. Bassou, H. Aourag, J. P. Dufour, F. de Fornel, F. Carcenac, and A. V. Zayats, “Local excitation of surface plasmon polaritons at discontinuities of a metal film: theoretical analysis and optical near-field measurements,” Phys. Rev. B 65, 125409 (2002).
[CrossRef]

K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory,” Anal Chem 74, 696–701 (2002).
[CrossRef]

2001

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2001).
[CrossRef]

2000

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130 (2000).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

1997

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef]

1993

P. M. Adam, L. Salomon, F. de Fornel, and J. P. Goudonnet, “Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope,” Phys. Rev. B 48, 2680–2683 (1993).
[CrossRef]

1986

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1968

E. Kretschmann and H. Raether, “Radiative decay of non radiative plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136(1968).

A. Otto, “Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift für Physik 216, 398–410 (1968).
[CrossRef]

1957

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[CrossRef]

Adam, P. M.

P. M. Adam, L. Salomon, F. de Fornel, and J. P. Goudonnet, “Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope,” Phys. Rev. B 48, 2680–2683 (1993).
[CrossRef]

Adams, M. J.

M. J. Adams, An Introduction to Optical Waveguides (Wiley, 1981).

Aourag, H.

L. Salomon, G. Bassou, H. Aourag, J. P. Dufour, F. de Fornel, F. Carcenac, and A. V. Zayats, “Local excitation of surface plasmon polaritons at discontinuities of a metal film: theoretical analysis and optical near-field measurements,” Phys. Rev. B 65, 125409 (2002).
[CrossRef]

Arakawa, E. T.

Archambault, A.

A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B 82, 035411 (2010).
[CrossRef]

Arias-Gonzalez, J. R.

M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863–3865 (2004).
[CrossRef]

Arnold, C.

A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B 82, 035411 (2010).
[CrossRef]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Aussenegg, F. R.

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Bassou, G.

L. Salomon, G. Bassou, H. Aourag, J. P. Dufour, F. de Fornel, F. Carcenac, and A. V. Zayats, “Local excitation of surface plasmon polaritons at discontinuities of a metal film: theoretical analysis and optical near-field measurements,” Phys. Rev. B 65, 125409 (2002).
[CrossRef]

Berini, P.

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2001).
[CrossRef]

Boardman, A. D.

A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982).

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Calander, N.

Z. Gryczynski, E. G. Matveeva, N. Calander, J. Zhang, J. R. Lakowicz, and I. Gryczynski, “Surface plasmon coupled emission,” in Surface Plasmon Nanophotonics, M. L. Brongersma and P. G. Kik, eds. (Springer, 2006), pp. 247–265.

Carcenac, F.

L. Salomon, G. Bassou, H. Aourag, J. P. Dufour, F. de Fornel, F. Carcenac, and A. V. Zayats, “Local excitation of surface plasmon polaritons at discontinuities of a metal film: theoretical analysis and optical near-field measurements,” Phys. Rev. B 65, 125409 (2002).
[CrossRef]

Carminati, R.

M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863–3865 (2004).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

de Fornel, F.

L. Salomon, G. Bassou, H. Aourag, J. P. Dufour, F. de Fornel, F. Carcenac, and A. V. Zayats, “Local excitation of surface plasmon polaritons at discontinuities of a metal film: theoretical analysis and optical near-field measurements,” Phys. Rev. B 65, 125409 (2002).
[CrossRef]

P. M. Adam, L. Salomon, F. de Fornel, and J. P. Goudonnet, “Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope,” Phys. Rev. B 48, 2680–2683 (1993).
[CrossRef]

Dhia, A. S. B.-B.

A. S. B.-B. Dhia and P. Joly, “Mathematical analysis and numerical approximation of optical waveguides,” in Mathematical Modeling in Optical Science, G. Bao, L. Cowsar, and W. Masters, eds., Frontiers in Applied Mathematics Series (SIAM, 2001), pp. 273–324.

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Ditlbacher, H.

Drezet, A.

Dufour, J. P.

L. Salomon, G. Bassou, H. Aourag, J. P. Dufour, F. de Fornel, F. Carcenac, and A. V. Zayats, “Local excitation of surface plasmon polaritons at discontinuities of a metal film: theoretical analysis and optical near-field measurements,” Phys. Rev. B 65, 125409 (2002).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef]

Everitt, H.

A. Neogi, C. W. Lee, H. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablanovich, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Farahi, R. H.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
[CrossRef]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Ferrell, T. L.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
[CrossRef]

A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunnelling,” Phys. Rev. B 71, 165418 (2005).
[CrossRef]

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett. 30, 41–43 (2005).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Goudonnet, J. P.

P. M. Adam, L. Salomon, F. de Fornel, and J. P. Goudonnet, “Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope,” Phys. Rev. B 48, 2680–2683 (1993).
[CrossRef]

Gravel, Y.

Greffet, J.-J.

A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B 82, 035411 (2010).
[CrossRef]

M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863–3865 (2004).
[CrossRef]

Gryczynski, I.

Z. Gryczynski, E. G. Matveeva, N. Calander, J. Zhang, J. R. Lakowicz, and I. Gryczynski, “Surface plasmon coupled emission,” in Surface Plasmon Nanophotonics, M. L. Brongersma and P. G. Kik, eds. (Springer, 2006), pp. 247–265.

Gryczynski, Z.

Z. Gryczynski, E. G. Matveeva, N. Calander, J. Zhang, J. R. Lakowicz, and I. Gryczynski, “Surface plasmon coupled emission,” in Surface Plasmon Nanophotonics, M. L. Brongersma and P. G. Kik, eds. (Springer, 2006), pp. 247–265.

Hohenau, A.

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1975).

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Joly, P.

A. S. B.-B. Dhia and P. Joly, “Mathematical analysis and numerical approximation of optical waveguides,” in Mathematical Modeling in Optical Science, G. Bao, L. Cowsar, and W. Masters, eds., Frontiers in Applied Mathematics Series (SIAM, 2001), pp. 273–324.

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Knoll, W.

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130 (2000).
[CrossRef]

Kovacs, J. G.

J. G. Kovacs, “Optical excitation of surface plasmon-polaritons in layered media,” in Electromagnetic Surface Modes, A. D. Boardman, ed. (Wiley, 1982), pp. 143–200.

Krenn, J. R.

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non radiative plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136(1968).

Kurihara, K.

K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory,” Anal Chem 74, 696–701 (2002).
[CrossRef]

Kuroda, T.

A. Neogi, C. W. Lee, H. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablanovich, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Lakowicz, J. R.

Z. Gryczynski, E. G. Matveeva, N. Calander, J. Zhang, J. R. Lakowicz, and I. Gryczynski, “Surface plasmon coupled emission,” in Surface Plasmon Nanophotonics, M. L. Brongersma and P. G. Kik, eds. (Springer, 2006), pp. 247–265.

Lalanne, P.

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef]

Lee, C. W.

A. Neogi, C. W. Lee, H. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablanovich, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Leitner, A.

Lereu, A. L.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
[CrossRef]

A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunnelling,” Phys. Rev. B 71, 165418 (2005).
[CrossRef]

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett. 30, 41–43 (2005).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Liebermann, T.

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130 (2000).
[CrossRef]

Liu, H. T.

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics, Fundamentals and Applications (Springer, 2007).

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polariton,” Phys. Rep. 408, 131–314 (2005).
[CrossRef]

Marquier, F.

A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B 82, 035411 (2010).
[CrossRef]

Matveeva, E. G.

Z. Gryczynski, E. G. Matveeva, N. Calander, J. Zhang, J. R. Lakowicz, and I. Gryczynski, “Surface plasmon coupled emission,” in Surface Plasmon Nanophotonics, M. L. Brongersma and P. G. Kik, eds. (Springer, 2006), pp. 247–265.

Meriaudeau, F.

A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunnelling,” Phys. Rev. B 71, 165418 (2005).
[CrossRef]

Neogi, A.

A. Neogi, C. W. Lee, H. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablanovich, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef]

Otto, A.

A. Otto, “Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift für Physik 216, 398–410 (1968).
[CrossRef]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Passian, A.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
[CrossRef]

A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunnelling,” Phys. Rev. B 71, 165418 (2005).
[CrossRef]

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett. 30, 41–43 (2005).
[CrossRef]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non radiative plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136(1968).

H. Raether, Surface Plasmons (Springer-Verlag, 1988).

Ritchie, R. H.

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[CrossRef]

Saito, K.

Salomon, L.

L. Salomon, G. Bassou, H. Aourag, J. P. Dufour, F. de Fornel, F. Carcenac, and A. V. Zayats, “Local excitation of surface plasmon polaritons at discontinuities of a metal film: theoretical analysis and optical near-field measurements,” Phys. Rev. B 65, 125409 (2002).
[CrossRef]

P. M. Adam, L. Salomon, F. de Fornel, and J. P. Goudonnet, “Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope,” Phys. Rev. B 48, 2680–2683 (1993).
[CrossRef]

Sheng, Y.

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polariton,” Phys. Rep. 408, 131–314 (2005).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Spiegel, M. R.

M. R. Spiegel, Theory and Problems of Laplace Transforms (McGraw-Hill, 1985).

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Steinberg, B.

Stepanov, A. L.

Suzuki, K.

K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory,” Anal Chem 74, 696–701 (2002).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Tackeuchi, A.

A. Neogi, C. W. Lee, H. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablanovich, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Thomas, M.

M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863–3865 (2004).
[CrossRef]

Thundat, T.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
[CrossRef]

A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunnelling,” Phys. Rev. B 71, 165418 (2005).
[CrossRef]

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett. 30, 41–43 (2005).
[CrossRef]

van Hulst, N. F.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
[CrossRef]

Wakamatsu, T.

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Wig, A.

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett. 30, 41–43 (2005).
[CrossRef]

A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunnelling,” Phys. Rev. B 71, 165418 (2005).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Yablanovich, E.

A. Neogi, C. W. Lee, H. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablanovich, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polariton,” Phys. Rep. 408, 131–314 (2005).
[CrossRef]

L. Salomon, G. Bassou, H. Aourag, J. P. Dufour, F. de Fornel, F. Carcenac, and A. V. Zayats, “Local excitation of surface plasmon polaritons at discontinuities of a metal film: theoretical analysis and optical near-field measurements,” Phys. Rev. B 65, 125409 (2002).
[CrossRef]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Zhang, J.

Z. Gryczynski, E. G. Matveeva, N. Calander, J. Zhang, J. R. Lakowicz, and I. Gryczynski, “Surface plasmon coupled emission,” in Surface Plasmon Nanophotonics, M. L. Brongersma and P. G. Kik, eds. (Springer, 2006), pp. 247–265.

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Anal Chem

K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory,” Anal Chem 74, 696–701 (2002).
[CrossRef]

Appl. Phys. Lett.

M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863–3865 (2004).
[CrossRef]

Colloids Surf. A

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130 (2000).
[CrossRef]

J. Opt. Soc. Am. B

J. Vac. Sci. Technol. A

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
[CrossRef]

Nature

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rep.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polariton,” Phys. Rep. 408, 131–314 (2005).
[CrossRef]

Phys. Rev.

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[CrossRef]

Phys. Rev. B

L. Salomon, G. Bassou, H. Aourag, J. P. Dufour, F. de Fornel, F. Carcenac, and A. V. Zayats, “Local excitation of surface plasmon polaritons at discontinuities of a metal film: theoretical analysis and optical near-field measurements,” Phys. Rev. B 65, 125409 (2002).
[CrossRef]

A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B 82, 035411 (2010).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

A. Neogi, C. W. Lee, H. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablanovich, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[CrossRef]

P. M. Adam, L. Salomon, F. de Fornel, and J. P. Goudonnet, “Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope,” Phys. Rev. B 48, 2680–2683 (1993).
[CrossRef]

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2001).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunnelling,” Phys. Rev. B 71, 165418 (2005).
[CrossRef]

Phys. Rev. Lett.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Science

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef]

Z. Naturforsch. A

E. Kretschmann and H. Raether, “Radiative decay of non radiative plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136(1968).

Zeitschrift für Physik

A. Otto, “Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift für Physik 216, 398–410 (1968).
[CrossRef]

Other

A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982).

V. M. Shalaev and S. Kawata, eds., Nanophotonics with Surface PlasmonsAdvances in Nano-Optics and Nano-Photonics Series (Elsevier, 2007).

S. A. Maier, Plasmonics, Fundamentals and Applications (Springer, 2007).

J. D. Jackson, Classical Electrodynamics (Wiley, 1975).

A. S. B.-B. Dhia and P. Joly, “Mathematical analysis and numerical approximation of optical waveguides,” in Mathematical Modeling in Optical Science, G. Bao, L. Cowsar, and W. Masters, eds., Frontiers in Applied Mathematics Series (SIAM, 2001), pp. 273–324.

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

J. G. Kovacs, “Optical excitation of surface plasmon-polaritons in layered media,” in Electromagnetic Surface Modes, A. D. Boardman, ed. (Wiley, 1982), pp. 143–200.

H. Raether, Surface Plasmons (Springer-Verlag, 1988).

M. R. Spiegel, Theory and Problems of Laplace Transforms (McGraw-Hill, 1985).

Z. Gryczynski, E. G. Matveeva, N. Calander, J. Zhang, J. R. Lakowicz, and I. Gryczynski, “Surface plasmon coupled emission,” in Surface Plasmon Nanophotonics, M. L. Brongersma and P. G. Kik, eds. (Springer, 2006), pp. 247–265.

M. J. Adams, An Introduction to Optical Waveguides (Wiley, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Scheme of the electromagnetic wave interaction with a thin-film embedded between two semi-infinite media.

Fig. 2.
Fig. 2.

(a) Real and (b) imaginary parts of the eigenmode dispersion curves for a 40 nm thick gold film.

Fig. 3.
Fig. 3.

Real and imaginary parts of the kz components corresponding with the eigenmodes in dielectric medium 1 (a), (b) and dielectric medium 2 (c), (d). The values obtained in the K–R configuration at λ=632.8nm are represented by the red lines and crosses.

Fig. 4.
Fig. 4.

Square modules of the Fresnel coefficients (a) r and (b) t for a film thickness of 40 nm at 632.8 nm calculated for complex values of kx and (c) on the real axis.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

kzi=±[(ωc)2εikx2]1/2.
Θ=((a+b)(cb)eikzmd(ab)(c+b)eikzmd(a+b)(c+b)eikzmd(ab)(cb)eikzmd4ab(a+b)(c+b)eikzmd(ab)(cb)eikzmd4cb(a+b)(c+b)eikzmd(ab)(cb)eikzmd(ab)(c+b)eikzmd(a+b)(cb)eikzmd(a+b)(c+b)eikzmd(ab)(cb)eikzmd)
D(kz1,kzm,kz2,d)=0kz2ε2=kzmεm(kz1ε1ch(ikzmd)kzmεmsh(ikzmd))kz1ε1sh(ikzmd)kzmεmch(ikzmd).

Metrics