Abstract

We report absolute frequency measurement of the molecular iodine P(28) 24-0 a1, a10, and a15 hyperfine transitions at 548 nm. The light source is based on a frequency-doubled fiber amplifier system seeded by an external cavity diode laser. Saturated absorption is performed by modulation transfer spectroscopy, and the absolute transition frequency is measured by an optical frequency comb. The effects of pressure shift and pressure broadening are discussed. Our determination of the line centers reaches a precision of better than 20 kHz. This light source can be used as a reference laser for lithium ion spectroscopy.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-M. Chartier, S. Fredin-Picard, and L. Robertsson, “Frequency-stabilized 543 nm He–Ne laser systems: a new candidate for the realization of the metre?” Opt. Commun. 74, 87–92 (1989).
    [CrossRef]
  2. W.-Y. Cheng and J.-T. Shy, “Wavelength standard at 543 nm and the corresponding I2127 hyperfine transitions,” J. Opt. Soc. Am. B 18, 363–369 (2001).
    [CrossRef]
  3. T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
    [CrossRef]
  4. L. Chen, W.-Y. Cheng, and J. Ye, “Hyperfine interactions and perturbation effects in the B0u+(Πu3) state of I2127,” J. Opt. Soc. Am. B 21, 820–832 (2004).
    [CrossRef]
  5. J. Zhang, Z. H. Lu, and L. J. Wang, “Absolute frequency measurement of the molecular iodine hyperfine components near 560 nm with a solid-state laser source,” Appl. Opt. 48, 5629–5635 (2009).
    [CrossRef]
  6. F.-L. Hong, H. Inaba, K. Hosaka, M. Yasuda, and A. Onae, “Doppler-free spectroscopy of molecular iodine using a frequency-stable light source at 578 nm,” Opt. Express 17, 1652–1659 (2009).
    [CrossRef]
  7. S. L. Cornish, Y.-W. Liu, I. C. Lane, P. E. G. Baird, G. P. Barwood, P. Taylor, and W. R. C. Rowley, “Interferometric measurements of I2127 reference frequencies for 1S–2S spectroscopy in muonium, hydrogen, and deuterium,” J. Opt. Soc. Am. B 17, 6–10 (2000).
    [CrossRef]
  8. L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greene, D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu, T. P. O’Connor, R. C. Pardo, K. E. Rehm, J. P. Schiffer, and X. D. Tang, “Laser spectroscopic determination of the He6nuclear charge radius,” Phys. Rev. Lett. 93, 142501 (2004).
    [CrossRef]
  9. G. Ewald, W. Nörtershäuser, A. Dax, S. Götte, R. Kirchner, H.-J. Kluge, Th. Kühl, R. Sanchez, A. Wojtaszek, B. A. Bushaw, G. W. F. Drake, Z.-C. Yan, and C. Zimmermann, “Nuclear charge radii of Li8,9 determined by laser spectroscopy,” Phys. Rev. Lett. 93, 113002 (2004).
    [CrossRef]
  10. B. Bodermann, H. Knöckel, and E. Tiemann, “Widely usable interpolation formulae for hyperfine splittings in the I2127spectrum,” Eur. Phys. J. D 19, 31–44 (2002).
    [CrossRef]
  11. H. Knöckel, B. Bodermann, and E. Tiemann, “High precision description of the rovibronic structure of the I2 B–X spectrum,” Eur. Phys. J. D 28, 199–209 (2004).
    [CrossRef]
  12. W. A. van Wijngaarden, “Precision measurements of fine and hyperfine structure in lithium I and II,” Can. J. Phys. 83, 327–337 (2005).
    [CrossRef]
  13. T. Zelevinsky, D. Farkas, and G. Gabrielse, “Precision measurement of the three 23PJ helium fine structure intervals,” Phys. Rev. Lett. 95, 203001 (2005).
    [CrossRef]
  14. C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Absolute transition frequencies and quantum interference in a frequency comb based measurement of the Li6;7 D Lines,” Phys. Rev. Lett. 107, 023001 (2011).
    [CrossRef]
  15. K. Pachucki, “Improved result for helium 23S1 ionization energy,” Phys. Rev. Lett. 84, 4561–4564 (2000).
    [CrossRef]
  16. L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
    [CrossRef]
  17. J.-L. Peng, H. Ahn, R.-H. Shu, H.-C. Chui, and J. W. Nicholson, “Highly stable, frequency-controlled mode-locked erbium fiber laser comb,” Appl. Phys. B 86, 49–53 (2006).
    [CrossRef]
  18. M. Nakazawa, “Phase-sensitive detection on Lorentzian line shape and its application to frequency stabilization of lasers,” J. Appl. Phys. 59, 2297–2305 (1986).
    [CrossRef]

2011 (1)

C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Absolute transition frequencies and quantum interference in a frequency comb based measurement of the Li6;7 D Lines,” Phys. Rev. Lett. 107, 023001 (2011).
[CrossRef]

2009 (2)

2006 (1)

J.-L. Peng, H. Ahn, R.-H. Shu, H.-C. Chui, and J. W. Nicholson, “Highly stable, frequency-controlled mode-locked erbium fiber laser comb,” Appl. Phys. B 86, 49–53 (2006).
[CrossRef]

2005 (2)

W. A. van Wijngaarden, “Precision measurements of fine and hyperfine structure in lithium I and II,” Can. J. Phys. 83, 327–337 (2005).
[CrossRef]

T. Zelevinsky, D. Farkas, and G. Gabrielse, “Precision measurement of the three 23PJ helium fine structure intervals,” Phys. Rev. Lett. 95, 203001 (2005).
[CrossRef]

2004 (4)

H. Knöckel, B. Bodermann, and E. Tiemann, “High precision description of the rovibronic structure of the I2 B–X spectrum,” Eur. Phys. J. D 28, 199–209 (2004).
[CrossRef]

L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greene, D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu, T. P. O’Connor, R. C. Pardo, K. E. Rehm, J. P. Schiffer, and X. D. Tang, “Laser spectroscopic determination of the He6nuclear charge radius,” Phys. Rev. Lett. 93, 142501 (2004).
[CrossRef]

G. Ewald, W. Nörtershäuser, A. Dax, S. Götte, R. Kirchner, H.-J. Kluge, Th. Kühl, R. Sanchez, A. Wojtaszek, B. A. Bushaw, G. W. F. Drake, Z.-C. Yan, and C. Zimmermann, “Nuclear charge radii of Li8,9 determined by laser spectroscopy,” Phys. Rev. Lett. 93, 113002 (2004).
[CrossRef]

L. Chen, W.-Y. Cheng, and J. Ye, “Hyperfine interactions and perturbation effects in the B0u+(Πu3) state of I2127,” J. Opt. Soc. Am. B 21, 820–832 (2004).
[CrossRef]

2003 (1)

T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
[CrossRef]

2002 (1)

B. Bodermann, H. Knöckel, and E. Tiemann, “Widely usable interpolation formulae for hyperfine splittings in the I2127spectrum,” Eur. Phys. J. D 19, 31–44 (2002).
[CrossRef]

2001 (1)

2000 (2)

1989 (1)

J.-M. Chartier, S. Fredin-Picard, and L. Robertsson, “Frequency-stabilized 543 nm He–Ne laser systems: a new candidate for the realization of the metre?” Opt. Commun. 74, 87–92 (1989).
[CrossRef]

1986 (1)

M. Nakazawa, “Phase-sensitive detection on Lorentzian line shape and its application to frequency stabilization of lasers,” J. Appl. Phys. 59, 2297–2305 (1986).
[CrossRef]

1936 (1)

L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
[CrossRef]

Ahn, H.

J.-L. Peng, H. Ahn, R.-H. Shu, H.-C. Chui, and J. W. Nicholson, “Highly stable, frequency-controlled mode-locked erbium fiber laser comb,” Appl. Phys. B 86, 49–53 (2006).
[CrossRef]

Bailey, K.

L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greene, D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu, T. P. O’Connor, R. C. Pardo, K. E. Rehm, J. P. Schiffer, and X. D. Tang, “Laser spectroscopic determination of the He6nuclear charge radius,” Phys. Rev. Lett. 93, 142501 (2004).
[CrossRef]

Baird, P. E. G.

Barwood, G. P.

Bodermann, B.

H. Knöckel, B. Bodermann, and E. Tiemann, “High precision description of the rovibronic structure of the I2 B–X spectrum,” Eur. Phys. J. D 28, 199–209 (2004).
[CrossRef]

B. Bodermann, H. Knöckel, and E. Tiemann, “Widely usable interpolation formulae for hyperfine splittings in the I2127spectrum,” Eur. Phys. J. D 19, 31–44 (2002).
[CrossRef]

Brewer, S. M.

C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Absolute transition frequencies and quantum interference in a frequency comb based measurement of the Li6;7 D Lines,” Phys. Rev. Lett. 107, 023001 (2011).
[CrossRef]

Brown, R. C.

C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Absolute transition frequencies and quantum interference in a frequency comb based measurement of the Li6;7 D Lines,” Phys. Rev. Lett. 107, 023001 (2011).
[CrossRef]

Bushaw, B. A.

G. Ewald, W. Nörtershäuser, A. Dax, S. Götte, R. Kirchner, H.-J. Kluge, Th. Kühl, R. Sanchez, A. Wojtaszek, B. A. Bushaw, G. W. F. Drake, Z.-C. Yan, and C. Zimmermann, “Nuclear charge radii of Li8,9 determined by laser spectroscopy,” Phys. Rev. Lett. 93, 113002 (2004).
[CrossRef]

Chartier, J.-M.

J.-M. Chartier, S. Fredin-Picard, and L. Robertsson, “Frequency-stabilized 543 nm He–Ne laser systems: a new candidate for the realization of the metre?” Opt. Commun. 74, 87–92 (1989).
[CrossRef]

Chen, L.

Cheng, W.-Y.

Chui, H.-C.

J.-L. Peng, H. Ahn, R.-H. Shu, H.-C. Chui, and J. W. Nicholson, “Highly stable, frequency-controlled mode-locked erbium fiber laser comb,” Appl. Phys. B 86, 49–53 (2006).
[CrossRef]

Cornish, S. L.

Dax, A.

G. Ewald, W. Nörtershäuser, A. Dax, S. Götte, R. Kirchner, H.-J. Kluge, Th. Kühl, R. Sanchez, A. Wojtaszek, B. A. Bushaw, G. W. F. Drake, Z.-C. Yan, and C. Zimmermann, “Nuclear charge radii of Li8,9 determined by laser spectroscopy,” Phys. Rev. Lett. 93, 113002 (2004).
[CrossRef]

Drake, G. W. F.

G. Ewald, W. Nörtershäuser, A. Dax, S. Götte, R. Kirchner, H.-J. Kluge, Th. Kühl, R. Sanchez, A. Wojtaszek, B. A. Bushaw, G. W. F. Drake, Z.-C. Yan, and C. Zimmermann, “Nuclear charge radii of Li8,9 determined by laser spectroscopy,” Phys. Rev. Lett. 93, 113002 (2004).
[CrossRef]

L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greene, D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu, T. P. O’Connor, R. C. Pardo, K. E. Rehm, J. P. Schiffer, and X. D. Tang, “Laser spectroscopic determination of the He6nuclear charge radius,” Phys. Rev. Lett. 93, 142501 (2004).
[CrossRef]

Ewald, G.

G. Ewald, W. Nörtershäuser, A. Dax, S. Götte, R. Kirchner, H.-J. Kluge, Th. Kühl, R. Sanchez, A. Wojtaszek, B. A. Bushaw, G. W. F. Drake, Z.-C. Yan, and C. Zimmermann, “Nuclear charge radii of Li8,9 determined by laser spectroscopy,” Phys. Rev. Lett. 93, 113002 (2004).
[CrossRef]

Farkas, D.

T. Zelevinsky, D. Farkas, and G. Gabrielse, “Precision measurement of the three 23PJ helium fine structure intervals,” Phys. Rev. Lett. 95, 203001 (2005).
[CrossRef]

Fraser, L. H. D.

L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
[CrossRef]

Fredin-Picard, S.

J.-M. Chartier, S. Fredin-Picard, and L. Robertsson, “Frequency-stabilized 543 nm He–Ne laser systems: a new candidate for the realization of the metre?” Opt. Commun. 74, 87–92 (1989).
[CrossRef]

Gabrielse, G.

T. Zelevinsky, D. Farkas, and G. Gabrielse, “Precision measurement of the three 23PJ helium fine structure intervals,” Phys. Rev. Lett. 95, 203001 (2005).
[CrossRef]

Gillaspy, J. D.

C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Absolute transition frequencies and quantum interference in a frequency comb based measurement of the Li6;7 D Lines,” Phys. Rev. Lett. 107, 023001 (2011).
[CrossRef]

Gillespie, L. J.

L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
[CrossRef]

Götte, S.

G. Ewald, W. Nörtershäuser, A. Dax, S. Götte, R. Kirchner, H.-J. Kluge, Th. Kühl, R. Sanchez, A. Wojtaszek, B. A. Bushaw, G. W. F. Drake, Z.-C. Yan, and C. Zimmermann, “Nuclear charge radii of Li8,9 determined by laser spectroscopy,” Phys. Rev. Lett. 93, 113002 (2004).
[CrossRef]

Greene, J. P.

L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greene, D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu, T. P. O’Connor, R. C. Pardo, K. E. Rehm, J. P. Schiffer, and X. D. Tang, “Laser spectroscopic determination of the He6nuclear charge radius,” Phys. Rev. Lett. 93, 142501 (2004).
[CrossRef]

Henderson, D.

L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greene, D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu, T. P. O’Connor, R. C. Pardo, K. E. Rehm, J. P. Schiffer, and X. D. Tang, “Laser spectroscopic determination of the He6nuclear charge radius,” Phys. Rev. Lett. 93, 142501 (2004).
[CrossRef]

Holt, R. J.

L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greene, D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu, T. P. O’Connor, R. C. Pardo, K. E. Rehm, J. P. Schiffer, and X. D. Tang, “Laser spectroscopic determination of the He6nuclear charge radius,” Phys. Rev. Lett. 93, 142501 (2004).
[CrossRef]

Hong, F.-L.

Hosaka, K.

Inaba, H.

Janssens, R. V. F.

L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greene, D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu, T. P. O’Connor, R. C. Pardo, K. E. Rehm, J. P. Schiffer, and X. D. Tang, “Laser spectroscopic determination of the He6nuclear charge radius,” Phys. Rev. Lett. 93, 142501 (2004).
[CrossRef]

Jiang, C. L.

L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greene, D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu, T. P. O’Connor, R. C. Pardo, K. E. Rehm, J. P. Schiffer, and X. D. Tang, “Laser spectroscopic determination of the He6nuclear charge radius,” Phys. Rev. Lett. 93, 142501 (2004).
[CrossRef]

Kirchner, R.

G. Ewald, W. Nörtershäuser, A. Dax, S. Götte, R. Kirchner, H.-J. Kluge, Th. Kühl, R. Sanchez, A. Wojtaszek, B. A. Bushaw, G. W. F. Drake, Z.-C. Yan, and C. Zimmermann, “Nuclear charge radii of Li8,9 determined by laser spectroscopy,” Phys. Rev. Lett. 93, 113002 (2004).
[CrossRef]

Kluge, H.-J.

G. Ewald, W. Nörtershäuser, A. Dax, S. Götte, R. Kirchner, H.-J. Kluge, Th. Kühl, R. Sanchez, A. Wojtaszek, B. A. Bushaw, G. W. F. Drake, Z.-C. Yan, and C. Zimmermann, “Nuclear charge radii of Li8,9 determined by laser spectroscopy,” Phys. Rev. Lett. 93, 113002 (2004).
[CrossRef]

Knöckel, H.

H. Knöckel, B. Bodermann, and E. Tiemann, “High precision description of the rovibronic structure of the I2 B–X spectrum,” Eur. Phys. J. D 28, 199–209 (2004).
[CrossRef]

B. Bodermann, H. Knöckel, and E. Tiemann, “Widely usable interpolation formulae for hyperfine splittings in the I2127spectrum,” Eur. Phys. J. D 19, 31–44 (2002).
[CrossRef]

Kühl, Th.

G. Ewald, W. Nörtershäuser, A. Dax, S. Götte, R. Kirchner, H.-J. Kluge, Th. Kühl, R. Sanchez, A. Wojtaszek, B. A. Bushaw, G. W. F. Drake, Z.-C. Yan, and C. Zimmermann, “Nuclear charge radii of Li8,9 determined by laser spectroscopy,” Phys. Rev. Lett. 93, 113002 (2004).
[CrossRef]

Lane, I. C.

Liu, Y.-W.

Lu, Z. H.

Lu, Z.-T.

L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greene, D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu, T. P. O’Connor, R. C. Pardo, K. E. Rehm, J. P. Schiffer, and X. D. Tang, “Laser spectroscopic determination of the He6nuclear charge radius,” Phys. Rev. Lett. 93, 142501 (2004).
[CrossRef]

Mueller, P.

L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greene, D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu, T. P. O’Connor, R. C. Pardo, K. E. Rehm, J. P. Schiffer, and X. D. Tang, “Laser spectroscopic determination of the He6nuclear charge radius,” Phys. Rev. Lett. 93, 142501 (2004).
[CrossRef]

Nakazawa, M.

M. Nakazawa, “Phase-sensitive detection on Lorentzian line shape and its application to frequency stabilization of lasers,” J. Appl. Phys. 59, 2297–2305 (1986).
[CrossRef]

Nicholson, J. W.

J.-L. Peng, H. Ahn, R.-H. Shu, H.-C. Chui, and J. W. Nicholson, “Highly stable, frequency-controlled mode-locked erbium fiber laser comb,” Appl. Phys. B 86, 49–53 (2006).
[CrossRef]

Nörtershäuser, W.

G. Ewald, W. Nörtershäuser, A. Dax, S. Götte, R. Kirchner, H.-J. Kluge, Th. Kühl, R. Sanchez, A. Wojtaszek, B. A. Bushaw, G. W. F. Drake, Z.-C. Yan, and C. Zimmermann, “Nuclear charge radii of Li8,9 determined by laser spectroscopy,” Phys. Rev. Lett. 93, 113002 (2004).
[CrossRef]

O’Connor, T. P.

L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greene, D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu, T. P. O’Connor, R. C. Pardo, K. E. Rehm, J. P. Schiffer, and X. D. Tang, “Laser spectroscopic determination of the He6nuclear charge radius,” Phys. Rev. Lett. 93, 142501 (2004).
[CrossRef]

Onae, A.

Pachucki, K.

K. Pachucki, “Improved result for helium 23S1 ionization energy,” Phys. Rev. Lett. 84, 4561–4564 (2000).
[CrossRef]

Pardo, R. C.

L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greene, D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu, T. P. O’Connor, R. C. Pardo, K. E. Rehm, J. P. Schiffer, and X. D. Tang, “Laser spectroscopic determination of the He6nuclear charge radius,” Phys. Rev. Lett. 93, 142501 (2004).
[CrossRef]

Peng, J.-L.

J.-L. Peng, H. Ahn, R.-H. Shu, H.-C. Chui, and J. W. Nicholson, “Highly stable, frequency-controlled mode-locked erbium fiber laser comb,” Appl. Phys. B 86, 49–53 (2006).
[CrossRef]

Porto, J. V.

C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Absolute transition frequencies and quantum interference in a frequency comb based measurement of the Li6;7 D Lines,” Phys. Rev. Lett. 107, 023001 (2011).
[CrossRef]

Quinn, T. J.

T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
[CrossRef]

Rehm, K. E.

L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greene, D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu, T. P. O’Connor, R. C. Pardo, K. E. Rehm, J. P. Schiffer, and X. D. Tang, “Laser spectroscopic determination of the He6nuclear charge radius,” Phys. Rev. Lett. 93, 142501 (2004).
[CrossRef]

Robertsson, L.

J.-M. Chartier, S. Fredin-Picard, and L. Robertsson, “Frequency-stabilized 543 nm He–Ne laser systems: a new candidate for the realization of the metre?” Opt. Commun. 74, 87–92 (1989).
[CrossRef]

Rowley, W. R. C.

Sanchez, R.

G. Ewald, W. Nörtershäuser, A. Dax, S. Götte, R. Kirchner, H.-J. Kluge, Th. Kühl, R. Sanchez, A. Wojtaszek, B. A. Bushaw, G. W. F. Drake, Z.-C. Yan, and C. Zimmermann, “Nuclear charge radii of Li8,9 determined by laser spectroscopy,” Phys. Rev. Lett. 93, 113002 (2004).
[CrossRef]

Sansonetti, C. J.

C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Absolute transition frequencies and quantum interference in a frequency comb based measurement of the Li6;7 D Lines,” Phys. Rev. Lett. 107, 023001 (2011).
[CrossRef]

Schiffer, J. P.

L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greene, D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu, T. P. O’Connor, R. C. Pardo, K. E. Rehm, J. P. Schiffer, and X. D. Tang, “Laser spectroscopic determination of the He6nuclear charge radius,” Phys. Rev. Lett. 93, 142501 (2004).
[CrossRef]

Shu, R.-H.

J.-L. Peng, H. Ahn, R.-H. Shu, H.-C. Chui, and J. W. Nicholson, “Highly stable, frequency-controlled mode-locked erbium fiber laser comb,” Appl. Phys. B 86, 49–53 (2006).
[CrossRef]

Shy, J.-T.

Simien, C. E.

C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Absolute transition frequencies and quantum interference in a frequency comb based measurement of the Li6;7 D Lines,” Phys. Rev. Lett. 107, 023001 (2011).
[CrossRef]

Tan, J. N.

C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Absolute transition frequencies and quantum interference in a frequency comb based measurement of the Li6;7 D Lines,” Phys. Rev. Lett. 107, 023001 (2011).
[CrossRef]

Tang, X. D.

L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greene, D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu, T. P. O’Connor, R. C. Pardo, K. E. Rehm, J. P. Schiffer, and X. D. Tang, “Laser spectroscopic determination of the He6nuclear charge radius,” Phys. Rev. Lett. 93, 142501 (2004).
[CrossRef]

Taylor, P.

Tiemann, E.

H. Knöckel, B. Bodermann, and E. Tiemann, “High precision description of the rovibronic structure of the I2 B–X spectrum,” Eur. Phys. J. D 28, 199–209 (2004).
[CrossRef]

B. Bodermann, H. Knöckel, and E. Tiemann, “Widely usable interpolation formulae for hyperfine splittings in the I2127spectrum,” Eur. Phys. J. D 19, 31–44 (2002).
[CrossRef]

van Wijngaarden, W. A.

W. A. van Wijngaarden, “Precision measurements of fine and hyperfine structure in lithium I and II,” Can. J. Phys. 83, 327–337 (2005).
[CrossRef]

Wang, L. J.

Wang, L.-B.

L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greene, D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu, T. P. O’Connor, R. C. Pardo, K. E. Rehm, J. P. Schiffer, and X. D. Tang, “Laser spectroscopic determination of the He6nuclear charge radius,” Phys. Rev. Lett. 93, 142501 (2004).
[CrossRef]

Wojtaszek, A.

G. Ewald, W. Nörtershäuser, A. Dax, S. Götte, R. Kirchner, H.-J. Kluge, Th. Kühl, R. Sanchez, A. Wojtaszek, B. A. Bushaw, G. W. F. Drake, Z.-C. Yan, and C. Zimmermann, “Nuclear charge radii of Li8,9 determined by laser spectroscopy,” Phys. Rev. Lett. 93, 113002 (2004).
[CrossRef]

Wu, S.

C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Absolute transition frequencies and quantum interference in a frequency comb based measurement of the Li6;7 D Lines,” Phys. Rev. Lett. 107, 023001 (2011).
[CrossRef]

Yan, Z.-C.

G. Ewald, W. Nörtershäuser, A. Dax, S. Götte, R. Kirchner, H.-J. Kluge, Th. Kühl, R. Sanchez, A. Wojtaszek, B. A. Bushaw, G. W. F. Drake, Z.-C. Yan, and C. Zimmermann, “Nuclear charge radii of Li8,9 determined by laser spectroscopy,” Phys. Rev. Lett. 93, 113002 (2004).
[CrossRef]

Yasuda, M.

Ye, J.

Zelevinsky, T.

T. Zelevinsky, D. Farkas, and G. Gabrielse, “Precision measurement of the three 23PJ helium fine structure intervals,” Phys. Rev. Lett. 95, 203001 (2005).
[CrossRef]

Zhang, J.

Zimmermann, C.

G. Ewald, W. Nörtershäuser, A. Dax, S. Götte, R. Kirchner, H.-J. Kluge, Th. Kühl, R. Sanchez, A. Wojtaszek, B. A. Bushaw, G. W. F. Drake, Z.-C. Yan, and C. Zimmermann, “Nuclear charge radii of Li8,9 determined by laser spectroscopy,” Phys. Rev. Lett. 93, 113002 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

J.-L. Peng, H. Ahn, R.-H. Shu, H.-C. Chui, and J. W. Nicholson, “Highly stable, frequency-controlled mode-locked erbium fiber laser comb,” Appl. Phys. B 86, 49–53 (2006).
[CrossRef]

Can. J. Phys. (1)

W. A. van Wijngaarden, “Precision measurements of fine and hyperfine structure in lithium I and II,” Can. J. Phys. 83, 327–337 (2005).
[CrossRef]

Eur. Phys. J. D (2)

B. Bodermann, H. Knöckel, and E. Tiemann, “Widely usable interpolation formulae for hyperfine splittings in the I2127spectrum,” Eur. Phys. J. D 19, 31–44 (2002).
[CrossRef]

H. Knöckel, B. Bodermann, and E. Tiemann, “High precision description of the rovibronic structure of the I2 B–X spectrum,” Eur. Phys. J. D 28, 199–209 (2004).
[CrossRef]

J. Am. Chem. Soc. (1)

L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
[CrossRef]

J. Appl. Phys. (1)

M. Nakazawa, “Phase-sensitive detection on Lorentzian line shape and its application to frequency stabilization of lasers,” J. Appl. Phys. 59, 2297–2305 (1986).
[CrossRef]

J. Opt. Soc. Am. B (3)

Metrologia (1)

T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
[CrossRef]

Opt. Commun. (1)

J.-M. Chartier, S. Fredin-Picard, and L. Robertsson, “Frequency-stabilized 543 nm He–Ne laser systems: a new candidate for the realization of the metre?” Opt. Commun. 74, 87–92 (1989).
[CrossRef]

Opt. Express (1)

Phys. Rev. Lett. (5)

L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greene, D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu, T. P. O’Connor, R. C. Pardo, K. E. Rehm, J. P. Schiffer, and X. D. Tang, “Laser spectroscopic determination of the He6nuclear charge radius,” Phys. Rev. Lett. 93, 142501 (2004).
[CrossRef]

G. Ewald, W. Nörtershäuser, A. Dax, S. Götte, R. Kirchner, H.-J. Kluge, Th. Kühl, R. Sanchez, A. Wojtaszek, B. A. Bushaw, G. W. F. Drake, Z.-C. Yan, and C. Zimmermann, “Nuclear charge radii of Li8,9 determined by laser spectroscopy,” Phys. Rev. Lett. 93, 113002 (2004).
[CrossRef]

T. Zelevinsky, D. Farkas, and G. Gabrielse, “Precision measurement of the three 23PJ helium fine structure intervals,” Phys. Rev. Lett. 95, 203001 (2005).
[CrossRef]

C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Absolute transition frequencies and quantum interference in a frequency comb based measurement of the Li6;7 D Lines,” Phys. Rev. Lett. 107, 023001 (2011).
[CrossRef]

K. Pachucki, “Improved result for helium 23S1 ionization energy,” Phys. Rev. Lett. 84, 4561–4564 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup. IO, optical isolator; λ/2, half-wave plate; PBS, polarizing beam splitter; FP, Fabry–Perot cavity; PD, photodiode detector; PID, electronic feedback loop; FA, fiber amplifier; and AOM, acousto-optic modulator.

Fig. 2.
Fig. 2.

Hyperfine structure pattern of the P(28) 20-0 a1a15 lines. The SNR is 500 at lock-in time constant of 30 ms.

Fig. 3.
Fig. 3.

Pressure shift of the transition frequency. The negative slope shows that the interaction due to collision is attractive.

Fig. 4.
Fig. 4.

Allan deviation of the measured beat frequency between the frequency comb and the IR laser that is frequency doubled and locked to the P(28) 20-0 a1 line.

Fig. 5.
Fig. 5.

Results of the measurements. Each data point represents the mean value of 500 measurements. The standard deviation of the measurements divided by square root of 500 is assigned as the error bar of each point. The results for the three transitions, a1, a10, and a15, are 546 437 908 757(3) kHz; 546 438 483 314(1) kHz; and 546 438 771 915(2) kHz, respectively. The large fluctuation of the data points deviating from the mean value is due to other sources of uncertainties and is summarized in Table 1.

Fig. 6.
Fig. 6.

Measured transition frequency of iodine P(28) 20-0 a1 line versus modulation amplitude of the pump beam frequency using AOM. For each data point, the alignment of the pump beam has been checked to ensure a symmetric line shape of the error signal. We do not see any effects for modulation amplitude at 2 MHz.

Fig. 7.
Fig. 7.

Linewidth versus the vapor pressure of the iodine cell. These data are obtained using the a11 component of the P(28) 24-0 lines at a pump power of 3 mW.

Fig. 8.
Fig. 8.

Linewidth versus the pump power. These data are obtained using the a11 component of the P(28) 24-0 lines at an iodine vapor pressure of 8.2 Pa.

Tables (2)

Tables Icon

Table 1. Sources of Uncertainties (kHz)

Tables Icon

Table 2. Results of the Transition Frequency and Hyperfine Splittings and Comparison to the Calculated Values (kHz)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

log(P)=3512.830T2.013·log(T)+18.37971,
fiodine=fpump+fprobe2=fprobe+fAOM2=2fIR+fAOM2=2(Nfrep+foffset±fbeat)+fAOM2,
α=13(4+3β21),

Metrics