Abstract

A semi-analytical model for the optical properties of silicon nanowires (SiNWs) is presented. Results from the model offer a good physical understanding of the optical behavior of SiNWs. It is shown that light trapping within ordered nanowires only happens over a small wavelength band (20–75 nm) that is dependent on the diameter of the nanowires, not length. Furthermore, wavelength tunable absorption peaks can be achieved in ordered SiNWs by adjusting the geometrical parameters. A good match between the model and experimental results confirms the validity of the proposed effective index model.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
    [CrossRef]
  2. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91, 233117 (2007).
    [CrossRef]
  3. A. F. Roudsari, S. S. Saini, N. O, and M. P. Anantram, “High-gain multiple-gate photodetector with nanowires in the channel,” IEEE Electron Device Lett. 32, 357–359 (2011).
    [CrossRef]
  4. P. Servati, A. Colli, S. Hofmann, Y. Q. Fu, P. Beecher, Z. A. K. Durrani, A. C. Ferrari, A. J. Flewitt, J. Robertson, and W. I. Milne, “Scalable silicon nanowire photodetectors,” J. Phys. E 38, 64–66 (2007).
    [CrossRef]
  5. T. Xu, J. Huang, L. He, Y. He, S. Su, and S. Lee, “Ordered silicon nanocones arrays for label-free DNA quantitative analysis by surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 99, 153116 (2011).
    [CrossRef]
  6. M. Khorasaninejad, J. Walia, N. Dhindsa, and S. S. Saini, “Highly enhanced Raman scattering from vertical silicon nanowire arrays,” Appl. Phys. Lett. 101, 173114 (2012).
    [CrossRef]
  7. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
    [CrossRef]
  8. H. Bao and X. Ruan, “Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications,” Opt. Lett. 35, 3378–3380 (2010).
    [CrossRef]
  9. Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, and X. W. Sun, “Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications,” Opt. Lett. 36, 1884–1886 (2011).
    [CrossRef]
  10. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–18381 (2009).
    [CrossRef]
  11. J. Li, H. Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G. Lo, and D. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell applications,” Appl. Phys. Lett. 95, 243113 (2009).
    [CrossRef]
  12. S. Peng and G. M. Morris, “Resonant scattering from two dimensional-gratings,” J. Opt. Soc. Am. A 13, 993–1005 (1996).
    [CrossRef]
  13. M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett. 12, 4228–4234(2012).
    [CrossRef]
  14. M. Khorasaninejad, N. Abedzadeh, J. Sun, J. N. Hilfiker, and S. S. Saini, “Polarization resolved reflection from ordered vertical silicon nanowire arrays,” Opt. Lett. 37, 2961–2963 (2012).
    [CrossRef]
  15. D. E. Aspnes, “Optical properties of thin film,” Thin Solid Films 89, 249–262 (1982).
    [CrossRef]
  16. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  17. Federal Standard 1037C, Telecom Glossary, “Cutback technique”, http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm (1996).
  18. M. Khorasaninejad, N. Abedzadeh, A. S. Jawanda, N. O, M. P. Anantram, and S. S. Saini, “Bunching characteristics of silicon nanowire arrays” J. Appl. Phys. 111, 044328 (2012).
    [CrossRef]
  19. G. Grzela, D. Hourlier, and J. G. Rivas, “Polarization-dependent light extinction in ensembles of polydisperse vertical semiconductor nanowires: a Mie scattering effective medium,” Phys. Rev. B 86, 045305 (2012).
    [CrossRef]
  20. B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37, 3756–3758 (2012).

2012 (6)

M. Khorasaninejad, J. Walia, N. Dhindsa, and S. S. Saini, “Highly enhanced Raman scattering from vertical silicon nanowire arrays,” Appl. Phys. Lett. 101, 173114 (2012).
[CrossRef]

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett. 12, 4228–4234(2012).
[CrossRef]

M. Khorasaninejad, N. Abedzadeh, A. S. Jawanda, N. O, M. P. Anantram, and S. S. Saini, “Bunching characteristics of silicon nanowire arrays” J. Appl. Phys. 111, 044328 (2012).
[CrossRef]

G. Grzela, D. Hourlier, and J. G. Rivas, “Polarization-dependent light extinction in ensembles of polydisperse vertical semiconductor nanowires: a Mie scattering effective medium,” Phys. Rev. B 86, 045305 (2012).
[CrossRef]

M. Khorasaninejad, N. Abedzadeh, J. Sun, J. N. Hilfiker, and S. S. Saini, “Polarization resolved reflection from ordered vertical silicon nanowire arrays,” Opt. Lett. 37, 2961–2963 (2012).
[CrossRef]

B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37, 3756–3758 (2012).

2011 (3)

T. Xu, J. Huang, L. He, Y. He, S. Su, and S. Lee, “Ordered silicon nanocones arrays for label-free DNA quantitative analysis by surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 99, 153116 (2011).
[CrossRef]

A. F. Roudsari, S. S. Saini, N. O, and M. P. Anantram, “High-gain multiple-gate photodetector with nanowires in the channel,” IEEE Electron Device Lett. 32, 357–359 (2011).
[CrossRef]

Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, and X. W. Sun, “Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications,” Opt. Lett. 36, 1884–1886 (2011).
[CrossRef]

2010 (2)

2009 (2)

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–18381 (2009).
[CrossRef]

J. Li, H. Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G. Lo, and D. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell applications,” Appl. Phys. Lett. 95, 243113 (2009).
[CrossRef]

2007 (3)

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[CrossRef]

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91, 233117 (2007).
[CrossRef]

P. Servati, A. Colli, S. Hofmann, Y. Q. Fu, P. Beecher, Z. A. K. Durrani, A. C. Ferrari, A. J. Flewitt, J. Robertson, and W. I. Milne, “Scalable silicon nanowire photodetectors,” J. Phys. E 38, 64–66 (2007).
[CrossRef]

1996 (1)

1982 (1)

D. E. Aspnes, “Optical properties of thin film,” Thin Solid Films 89, 249–262 (1982).
[CrossRef]

Abedzadeh, N.

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett. 12, 4228–4234(2012).
[CrossRef]

M. Khorasaninejad, N. Abedzadeh, J. Sun, J. N. Hilfiker, and S. S. Saini, “Polarization resolved reflection from ordered vertical silicon nanowire arrays,” Opt. Lett. 37, 2961–2963 (2012).
[CrossRef]

M. Khorasaninejad, N. Abedzadeh, A. S. Jawanda, N. O, M. P. Anantram, and S. S. Saini, “Bunching characteristics of silicon nanowire arrays” J. Appl. Phys. 111, 044328 (2012).
[CrossRef]

Anantram, M. P.

M. Khorasaninejad, N. Abedzadeh, A. S. Jawanda, N. O, M. P. Anantram, and S. S. Saini, “Bunching characteristics of silicon nanowire arrays” J. Appl. Phys. 111, 044328 (2012).
[CrossRef]

A. F. Roudsari, S. S. Saini, N. O, and M. P. Anantram, “High-gain multiple-gate photodetector with nanowires in the channel,” IEEE Electron Device Lett. 32, 357–359 (2011).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, “Optical properties of thin film,” Thin Solid Films 89, 249–262 (1982).
[CrossRef]

Balch, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91, 233117 (2007).
[CrossRef]

Bao, H.

Beecher, P.

P. Servati, A. Colli, S. Hofmann, Y. Q. Fu, P. Beecher, Z. A. K. Durrani, A. C. Ferrari, A. J. Flewitt, J. Robertson, and W. I. Milne, “Scalable silicon nanowire photodetectors,” J. Phys. E 38, 64–66 (2007).
[CrossRef]

Chen, G.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[CrossRef]

Colli, A.

P. Servati, A. Colli, S. Hofmann, Y. Q. Fu, P. Beecher, Z. A. K. Durrani, A. C. Ferrari, A. J. Flewitt, J. Robertson, and W. I. Milne, “Scalable silicon nanowire photodetectors,” J. Phys. E 38, 64–66 (2007).
[CrossRef]

Demir, H. V.

Dhindsa, N.

M. Khorasaninejad, J. Walia, N. Dhindsa, and S. S. Saini, “Highly enhanced Raman scattering from vertical silicon nanowire arrays,” Appl. Phys. Lett. 101, 173114 (2012).
[CrossRef]

Du, Q. G.

Durrani, Z. A. K.

P. Servati, A. Colli, S. Hofmann, Y. Q. Fu, P. Beecher, Z. A. K. Durrani, A. C. Ferrari, A. J. Flewitt, J. Robertson, and W. I. Milne, “Scalable silicon nanowire photodetectors,” J. Phys. E 38, 64–66 (2007).
[CrossRef]

Ferrari, A. C.

P. Servati, A. Colli, S. Hofmann, Y. Q. Fu, P. Beecher, Z. A. K. Durrani, A. C. Ferrari, A. J. Flewitt, J. Robertson, and W. I. Milne, “Scalable silicon nanowire photodetectors,” J. Phys. E 38, 64–66 (2007).
[CrossRef]

Flewitt, A. J.

P. Servati, A. Colli, S. Hofmann, Y. Q. Fu, P. Beecher, Z. A. K. Durrani, A. C. Ferrari, A. J. Flewitt, J. Robertson, and W. I. Milne, “Scalable silicon nanowire photodetectors,” J. Phys. E 38, 64–66 (2007).
[CrossRef]

Fronheiser, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91, 233117 (2007).
[CrossRef]

Fu, Y. Q.

P. Servati, A. Colli, S. Hofmann, Y. Q. Fu, P. Beecher, Z. A. K. Durrani, A. C. Ferrari, A. J. Flewitt, J. Robertson, and W. I. Milne, “Scalable silicon nanowire photodetectors,” J. Phys. E 38, 64–66 (2007).
[CrossRef]

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
[CrossRef]

Grzela, G.

G. Grzela, D. Hourlier, and J. G. Rivas, “Polarization-dependent light extinction in ensembles of polydisperse vertical semiconductor nanowires: a Mie scattering effective medium,” Phys. Rev. B 86, 045305 (2012).
[CrossRef]

He, L.

T. Xu, J. Huang, L. He, Y. He, S. Su, and S. Lee, “Ordered silicon nanocones arrays for label-free DNA quantitative analysis by surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 99, 153116 (2011).
[CrossRef]

He, Y.

T. Xu, J. Huang, L. He, Y. He, S. Su, and S. Lee, “Ordered silicon nanocones arrays for label-free DNA quantitative analysis by surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 99, 153116 (2011).
[CrossRef]

Hilfiker, J. N.

Hofmann, S.

P. Servati, A. Colli, S. Hofmann, Y. Q. Fu, P. Beecher, Z. A. K. Durrani, A. C. Ferrari, A. J. Flewitt, J. Robertson, and W. I. Milne, “Scalable silicon nanowire photodetectors,” J. Phys. E 38, 64–66 (2007).
[CrossRef]

Hourlier, D.

G. Grzela, D. Hourlier, and J. G. Rivas, “Polarization-dependent light extinction in ensembles of polydisperse vertical semiconductor nanowires: a Mie scattering effective medium,” Phys. Rev. B 86, 045305 (2012).
[CrossRef]

Hu, L.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[CrossRef]

Huang, J.

T. Xu, J. Huang, L. He, Y. He, S. Su, and S. Lee, “Ordered silicon nanocones arrays for label-free DNA quantitative analysis by surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 99, 153116 (2011).
[CrossRef]

Jawanda, A. S.

M. Khorasaninejad, N. Abedzadeh, A. S. Jawanda, N. O, M. P. Anantram, and S. S. Saini, “Bunching characteristics of silicon nanowire arrays” J. Appl. Phys. 111, 044328 (2012).
[CrossRef]

Kam, C. H.

Khorasaninejad, M.

M. Khorasaninejad, J. Walia, N. Dhindsa, and S. S. Saini, “Highly enhanced Raman scattering from vertical silicon nanowire arrays,” Appl. Phys. Lett. 101, 173114 (2012).
[CrossRef]

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett. 12, 4228–4234(2012).
[CrossRef]

M. Khorasaninejad, N. Abedzadeh, A. S. Jawanda, N. O, M. P. Anantram, and S. S. Saini, “Bunching characteristics of silicon nanowire arrays” J. Appl. Phys. 111, 044328 (2012).
[CrossRef]

M. Khorasaninejad, N. Abedzadeh, J. Sun, J. N. Hilfiker, and S. S. Saini, “Polarization resolved reflection from ordered vertical silicon nanowire arrays,” Opt. Lett. 37, 2961–2963 (2012).
[CrossRef]

Korevaar, B. A.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91, 233117 (2007).
[CrossRef]

Kwong, D.

J. Li, H. Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G. Lo, and D. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell applications,” Appl. Phys. Lett. 95, 243113 (2009).
[CrossRef]

Lee, S.

T. Xu, J. Huang, L. He, Y. He, S. Su, and S. Lee, “Ordered silicon nanocones arrays for label-free DNA quantitative analysis by surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 99, 153116 (2011).
[CrossRef]

Leu, P. W.

Li, J.

J. Li, H. Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G. Lo, and D. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell applications,” Appl. Phys. Lett. 95, 243113 (2009).
[CrossRef]

Li, X.

J. Li, H. Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G. Lo, and D. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell applications,” Appl. Phys. Lett. 95, 243113 (2009).
[CrossRef]

Lin, C.

Lo, P. G.

J. Li, H. Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G. Lo, and D. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell applications,” Appl. Phys. Lett. 95, 243113 (2009).
[CrossRef]

Milne, W. I.

P. Servati, A. Colli, S. Hofmann, Y. Q. Fu, P. Beecher, Z. A. K. Durrani, A. C. Ferrari, A. J. Flewitt, J. Robertson, and W. I. Milne, “Scalable silicon nanowire photodetectors,” J. Phys. E 38, 64–66 (2007).
[CrossRef]

Morris, G. M.

O, N.

M. Khorasaninejad, N. Abedzadeh, A. S. Jawanda, N. O, M. P. Anantram, and S. S. Saini, “Bunching characteristics of silicon nanowire arrays” J. Appl. Phys. 111, 044328 (2012).
[CrossRef]

A. F. Roudsari, S. S. Saini, N. O, and M. P. Anantram, “High-gain multiple-gate photodetector with nanowires in the channel,” IEEE Electron Device Lett. 32, 357–359 (2011).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Patchett, S.

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett. 12, 4228–4234(2012).
[CrossRef]

Peng, S.

Povinelli, M. L.

Rand, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91, 233117 (2007).
[CrossRef]

Rivas, J. G.

G. Grzela, D. Hourlier, and J. G. Rivas, “Polarization-dependent light extinction in ensembles of polydisperse vertical semiconductor nanowires: a Mie scattering effective medium,” Phys. Rev. B 86, 045305 (2012).
[CrossRef]

Robertson, J.

P. Servati, A. Colli, S. Hofmann, Y. Q. Fu, P. Beecher, Z. A. K. Durrani, A. C. Ferrari, A. J. Flewitt, J. Robertson, and W. I. Milne, “Scalable silicon nanowire photodetectors,” J. Phys. E 38, 64–66 (2007).
[CrossRef]

Roudsari, A. F.

A. F. Roudsari, S. S. Saini, N. O, and M. P. Anantram, “High-gain multiple-gate photodetector with nanowires in the channel,” IEEE Electron Device Lett. 32, 357–359 (2011).
[CrossRef]

Ruan, X.

Saini, S. S.

M. Khorasaninejad, N. Abedzadeh, A. S. Jawanda, N. O, M. P. Anantram, and S. S. Saini, “Bunching characteristics of silicon nanowire arrays” J. Appl. Phys. 111, 044328 (2012).
[CrossRef]

M. Khorasaninejad, N. Abedzadeh, J. Sun, J. N. Hilfiker, and S. S. Saini, “Polarization resolved reflection from ordered vertical silicon nanowire arrays,” Opt. Lett. 37, 2961–2963 (2012).
[CrossRef]

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett. 12, 4228–4234(2012).
[CrossRef]

M. Khorasaninejad, J. Walia, N. Dhindsa, and S. S. Saini, “Highly enhanced Raman scattering from vertical silicon nanowire arrays,” Appl. Phys. Lett. 101, 173114 (2012).
[CrossRef]

A. F. Roudsari, S. S. Saini, N. O, and M. P. Anantram, “High-gain multiple-gate photodetector with nanowires in the channel,” IEEE Electron Device Lett. 32, 357–359 (2011).
[CrossRef]

Servati, P.

P. Servati, A. Colli, S. Hofmann, Y. Q. Fu, P. Beecher, Z. A. K. Durrani, A. C. Ferrari, A. J. Flewitt, J. Robertson, and W. I. Milne, “Scalable silicon nanowire photodetectors,” J. Phys. E 38, 64–66 (2007).
[CrossRef]

Su, S.

T. Xu, J. Huang, L. He, Y. He, S. Su, and S. Lee, “Ordered silicon nanocones arrays for label-free DNA quantitative analysis by surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 99, 153116 (2011).
[CrossRef]

Sulima, O.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91, 233117 (2007).
[CrossRef]

Sun, J.

Sun, X. W.

Tsakalakos, L.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91, 233117 (2007).
[CrossRef]

Walia, J.

M. Khorasaninejad, J. Walia, N. Dhindsa, and S. S. Saini, “Highly enhanced Raman scattering from vertical silicon nanowire arrays,” Appl. Phys. Lett. 101, 173114 (2012).
[CrossRef]

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett. 12, 4228–4234(2012).
[CrossRef]

Wang, B.

Wong, S. M.

J. Li, H. Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G. Lo, and D. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell applications,” Appl. Phys. Lett. 95, 243113 (2009).
[CrossRef]

Xu, T.

T. Xu, J. Huang, L. He, Y. He, S. Su, and S. Lee, “Ordered silicon nanocones arrays for label-free DNA quantitative analysis by surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 99, 153116 (2011).
[CrossRef]

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
[CrossRef]

Yu, H. Y.

Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, and X. W. Sun, “Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications,” Opt. Lett. 36, 1884–1886 (2011).
[CrossRef]

J. Li, H. Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G. Lo, and D. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell applications,” Appl. Phys. Lett. 95, 243113 (2009).
[CrossRef]

Zhang, G.

J. Li, H. Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G. Lo, and D. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell applications,” Appl. Phys. Lett. 95, 243113 (2009).
[CrossRef]

Appl. Phys. Lett. (4)

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91, 233117 (2007).
[CrossRef]

T. Xu, J. Huang, L. He, Y. He, S. Su, and S. Lee, “Ordered silicon nanocones arrays for label-free DNA quantitative analysis by surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 99, 153116 (2011).
[CrossRef]

M. Khorasaninejad, J. Walia, N. Dhindsa, and S. S. Saini, “Highly enhanced Raman scattering from vertical silicon nanowire arrays,” Appl. Phys. Lett. 101, 173114 (2012).
[CrossRef]

J. Li, H. Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G. Lo, and D. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell applications,” Appl. Phys. Lett. 95, 243113 (2009).
[CrossRef]

IEEE Electron Device Lett. (1)

A. F. Roudsari, S. S. Saini, N. O, and M. P. Anantram, “High-gain multiple-gate photodetector with nanowires in the channel,” IEEE Electron Device Lett. 32, 357–359 (2011).
[CrossRef]

J. Appl. Phys. (1)

M. Khorasaninejad, N. Abedzadeh, A. S. Jawanda, N. O, M. P. Anantram, and S. S. Saini, “Bunching characteristics of silicon nanowire arrays” J. Appl. Phys. 111, 044328 (2012).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. E (1)

P. Servati, A. Colli, S. Hofmann, Y. Q. Fu, P. Beecher, Z. A. K. Durrani, A. C. Ferrari, A. J. Flewitt, J. Robertson, and W. I. Milne, “Scalable silicon nanowire photodetectors,” J. Phys. E 38, 64–66 (2007).
[CrossRef]

Nano Lett. (3)

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[CrossRef]

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett. 12, 4228–4234(2012).
[CrossRef]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. B (1)

G. Grzela, D. Hourlier, and J. G. Rivas, “Polarization-dependent light extinction in ensembles of polydisperse vertical semiconductor nanowires: a Mie scattering effective medium,” Phys. Rev. B 86, 045305 (2012).
[CrossRef]

Thin Solid Films (1)

D. E. Aspnes, “Optical properties of thin film,” Thin Solid Films 89, 249–262 (1982).
[CrossRef]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Federal Standard 1037C, Telecom Glossary, “Cutback technique”, http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Schematic of nanowires showing how reflections were simulated and measured from normally incident light and light at angle θ. (b) Semi-infinite nanowires that were simulated, allowing the structure in (a) to be simulated as a thin film of length L on a substrate, as in (c).

Fig. 2.
Fig. 2.

How absorption coefficient k is calculated using simulated transmitted power T through a semi-infinitely long nanowire at different lengths L through the nanowires. The data shown is from 90 nm diameter nanowires at 589 nm wavelength.

Fig. 3.
Fig. 3.

Effective refractive index values n of nanowires in air plotted against wavelength λ for diameter (a) 90 nm, (b) 135 nm, and (c) 190 nm. The refractive index of bulk silicon is plotted for reference.

Fig. 4.
Fig. 4.

Absorption coefficient values k of nanowires in air plotted against wavelength λ for diameter (a) 90 nm, (b) 135 nm, and (c) 190 nm. The absorption coefficient of bulk silicon is plotted for reference.

Fig. 5.
Fig. 5.

Absorption A calculated from normally incident light on nanowires of length 1 μm and pitch of 400 nm on silicon substrate for (a) 135 nm and (b) 190 nm diameter. Absorption from silicon of the same thickness on SiO2 is also plotted for reference.

Fig. 6.
Fig. 6.

Reflection R of normally incident light from nanowires on silicon with a diameter of 135 nm and a pitch of 400 nm for a length of (a) 1.0 μm and (b) 1.5 μm.

Fig. 7.
Fig. 7.

SEM image of 190 nm diameter nanowires.

Fig. 8.
Fig. 8.

Reflections from light with an incident angle of 65° from our effective index model, measured reflections, Bruggeman approximation, and RCWA simulations for diameters of (a) 90 nm and (b) 135 nm.

Fig. 9.
Fig. 9.

(a) Predicted values of absorption coefficient for different diameters with a pitch of 400 nm. (b) Absorption coefficient peak wavelength value versus diameter for a pitch of 400 and 200 nm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T=(1R)e(αL),
R=(n1)2+k2(n+1)2+k2.
R=|rab+(rbctabtbaeL(j2β+α)1rbarbceL(j2β+α))|2,
T=nc|(tabtbceL(j2β+α)1rbarbceL(j2β+α))|2,

Metrics